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Simple Summary: With more than one-third of the world population at risk of acquiring the
disease, dengue fever is a major public health problem. Caused by four antigenically distinct but
related serotypes, disease severity is associated with the immunological status of the individual,
seronegative or seropositive, prior to a natural dengue infection. While a primary natural dengue
infection is often asymptomatic or mild, individuals experiencing a secondary dengue infection with
a heterologous serotype have higher risk of developing the severe form of the disease, linked to the
antibody-dependent enhancement (ADE) process. We develop a modeling framework to describe the
dengue immune responses mediated by antibodies. Our model framework can describe qualitatively
the dynamic of the viral load and antibodies production for scenarios of primary and secondary
infections, as found in the empirical immunology literature. Studies such as the one described here
serve as a baseline to further model extensions. Future refinements of our framework will be of use
to evaluate the impact of imperfect dengue vaccines.

Abstract: Dengue fever is a viral mosquito-borne infection and a major international public health
concern. With 2.5 billion people at risk of acquiring the infection around the world, disease severity
is influenced by the immunological status of the individual, seronegative or seropositive, prior to
natural infection. Caused by four antigenically related but distinct serotypes, DENV-1 to DENV-4,
infection by one serotype confers life-long immunity to that serotype and a period of temporary
cross-immunity (TCI) to other serotypes. The clinical response on exposure to a second serotype is
complex with the so-called antibody-dependent enhancement (ADE) process, a disease augmentation
phenomenon when pre-existing antibodies to previous dengue infection do not neutralize but
rather enhance the new infection, used to explain the etiology of severe disease. In this paper,
we present a minimalistic mathematical model framework developed to describe qualitatively the
dengue immunological response mediated by antibodies. Three models are analyzed and compared:
(i) primary dengue infection, (ii) secondary dengue infection with the same (homologous) dengue
virus and (iii) secondary dengue infection with a different (heterologous) dengue virus. We explore
the features of viral replication, antibody production and infection clearance over time. The model
is developed based on body cells and free virus interactions resulting in infected cells activating
antibody production. Our mathematical results are qualitatively similar to the ones described in
the empiric immunology literature, providing insights into the immunopathogenesis of severe
disease. Results presented here are of use for future research directions to evaluate the impact of
dengue vaccines.
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1. Introduction

Dengue fever is a viral mosquito-borne infection affecting a large percentage of the
population living in the tropics and subtropics. Caused by four antigenically related but
distinct viruses, DENV-1, DENV-2, DENV-3 and DENV-4, it is estimated that around
400 million dengue infections occur every year [1], with disease severity being influenced
by the immunological status of the individual, seronegative or seropositive, prior to natural
infection. While a primary dengue infection is usually asymptomatic or results in mild
disease manifestation, the immunological response on exposure to a heterologous dengue
serotype is complex, recognized to be a risk factor of progressing to severe disease [2–7].

Early dengue diagnosis is important for the clinical management of the patient [8,9].
The most commonly used technique for dengue routine diagnosis is the enzyme-linked
immunosorbent assay (ELISA), with primary or secondary infections being characterized
based on the concentration of immunoglobulins M and G from the blood sample, the so-
called IgM and IgG antibodies, respectively [10–12].

From the basic immunology literature, it is known that the IgM is the first antibody
secreted by the adaptive immune system in response to a foreign antigen, followed by
the production of IgG antibodies with increased affinity for the pathogen causing the
infection [13,14]. Likewise, in a primary dengue infection, the IgM antibody type is pro-
duced more quickly and to higher levels than the IgG antibody type, and the reverse is
true in secondary dengue infection [6,7]. In addition to conferring life-long protective
immunity against a specific serotype, the IgG antibody is able to cross-react with het-
erologous DENV-serotypes [6,7,15–17]. Instead of neutralizing the new dengue serotype,
the pre-existing antibodies promote the enhancement of the infection by facilitating the
entry of the complex antibody-heterologous virus into target cells. This disease augmen-
tation phenomenon is called antibody-dependent enhancement (ADE) [3,6,7,18,19] and
its occurrence in dengue has been used to explain the etiology of severe disease [7,20–22],
which has been shown to be correlated with higher viral loads [23–26].

Treatment of uncomplicated dengue cases is only supportive, and severe dengue cases
require careful attention to fluid management and proactive treatment of hemorrhagic
symptoms. Two tetravalent dengue vaccines have completed phase 3 clinical trial: Deng-
vaxia, a product developed by Sanofi Pasteur that is now licensed in several countries [27],
and the DenVax vaccine, developed by Takeda Pharmaceutical Company [28,29]. While
Dengvaxia has resulted in serious adverse events in seronegative individuals compared
with age-matched seronegative controls [30–33], long-term surveillance consisting of pru-
dent and careful observation of DenVax vaccine recipients is required, since negative
vaccine efficacy was estimated for vaccinated seronegative individuals who were infected
with serotype 3, as opposed to an intermediate efficacy for seropositive [34,35].

In recent years, mathematical modeling became an important tool for the under-
standing of infectious disease epidemiology and dynamics, at both macroscopic and
microscopic levels, addressing ideas about the components of host-pathogen interactions.
Dengue models are often used to understand infectious disease dynamics and to eval-
uate the introduction of intervention strategies such as vector control and vaccination.
At the population level, multi-strain dengue dynamics have been modeled with extended
(susceptible-infected-recovered) SIR-type models including immunological aspects of the
disease such as temporary cross-immunity and ADE phenomenology [36–42]. However,
within-host host dengue modeling is restricted to a small number of studies so far [43–48].
Within-host models consider the dynamic interaction between free virus and susceptible
target cells [43–45], differing on the functional form used to model viral infectivity, immune
response, and viral clearance dynamics. However, the role of pre-existing DENV-serotype
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specific IgG antibody in a secondary dengue infection with an explicit mechanism to
explain its protective or enhancing effect has not been deeply explored yet.

In this paper, we present a mathematical model framework developed to describe the
dengue immunological response mediated by antibodies. Three models are analyzed and
compared: (i) primary dengue infection, (ii) secondary dengue infection with the same
(homologous) serotype and (iii) secondary dengue infection with a heterologous dengue
virus. The model is a refined version to that proposed in [43], and can describe qualitatively
the dynamics of viral load and antibody production and decay for scenarios of primary and
secondary infections as found in the empirical immunology literature [3,6,7,15,18,19,22].
Providing insights into the immunopathogenesis of severe diseases, the results presented
here are of use for future research directions to evaluate the impact of dengue vaccines.

2. Modeling Within-Host Dengue Infections

In the absence of good laboratory data, the aim of this study is to describe qualita-
tively the dynamics of viral load and antibodies responses during dengue infections. We
also evaluate the effects of pre-existing antibodies, produced during a primary dengue
infection, on a secondary dengue infection with the same serotype (homologous serotype),
and secondary dengue infection with a different serotype (heterologous serotype).

In this section, we present the models developed to describe dengue immunological
responses mediated by antibodies. A minimalistic mathematical modeling framework
considering primary and secondary dengue infections is proposed, with models devel-
oped by adding gradually the steps of disease infection and immunological responses,
as described in the immunology literature. The proposed models are based on body cells
and free viral particle interactions that result in infected cells and subsequently trigger
the activation of the immune response mediated by antibodies. We explore the feature of
viral replication, viral load, antibody production, antibody activation and antibody decay,
as well as the infection clearance process during a primary dengue infection, a secondary
dengue infection with homologous serotype and a secondary dengue infection with a
heterologous serotype, where the process of ADE is expected to occur.

2.1. Primary Dengue Infection Model

Dengue viruses are transmitted to a human host by an infected female Aedes mosquito
bite. It is called a primary dengue infection if it occurs in seronegative hosts, i.e., individuals
with no history of previous dengue infections. In its simplicity, the interaction between
target cells, infected cell, virus, and immunological response mediated by antibodies is
represented in Figure 1.

Briefly, susceptible target cells, monocytes, and dendritic cells (S) are produced by
the body at a constant rate (πS) and have a natural mortality rate µS, where 1

µS
is the

expected lifetime of the uninfected, i.e., susceptible target cell. Free dengue virus V infects
susceptible target cells S at rate a, producing infected cells I (see process 1 in Figure 1) [49].
It is assumed that infected cells have an infection-induced mortality rate µi ≥ µS, releasing
free virus κ to the system (see process 2 in Figure 1). We assume that several free virus
particles are needed to infect a single susceptible cell and therefore, while the number
of susceptible cells decreases with aSV rate, the number of free viruses decreases with a
bSV rate.

Macrophages are also considered in the system as a target susceptible cell Sm. Upon in-
fection, those cells differentiate to become presenting cells (P), shown in process 3 in
Figure 1. Presenting cells are assumed to trigger, via antigen presentation, the production
of antibodies IgM (M) and IgG (G) with rates αM and αG, respectively (see process 4 and 5
in Figure 1. Presenting cells can eventually die with antigen presentation induced mortality
rate µP.
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Figure 1. Schematic in-host dengue immunological responses mediated by antibodies: primary
infection. Three blocks are used to describe 7 steps during the infection, from viral replication up to
infection clearance.

While in a primary infection IgM antibodies are produced first and to higher levels
than IgG, the reverse is true in a secondary infection. IgM antibody (a pentamer molecule)
and IgG antibody (a monomer molecule) [50], bind into the free virus with rates γMdM
and γGdG, generating antibody-virus complexes IgM-DENV (CM) and IgG-DENV (CG),
respectively (see process 6 and 7 in Figure 1) [18,51]. Those complexes are assumed to clear
the ongoing infection after being recognized by killing cells.

In order to understand the individual dynamics of viral replication, viral load, antibod-
ies production and decay, and finally the clearance of infection, our model is constructed
in blocks of equations which are coupled gradually until we obtain the complete model
framework able to describe a primary dengue infection and its immunological response
mediated by antibodies.

2.1.1. Virus Replication Dynamics

With susceptible target cells (monocytes and dendritic cells) S, infected cells I, and the
virus V, the process of viral replication can be analyzed with a basic SIV model as follows

dS
dt

= πS − µSS − aSV

dI
dt

= aSV − (µi + µS)I (1)

dV
dt

= κµi I − bSV,

where all parameters are described in Table 1.
The model described in Equation System (1) shows an exponential growth of viral

particles in the absence of any immunological response. The free viral growth depends on
the virus replication factor κ, as well as by the infection rate of susceptible cells a and the
removal rate of viral particles during the infection of susceptible cells b. As the values of
parameters are shown in Table 1, the numerical simulations are shown in Figure 2, with free
virus detected around day 2 of the infection process.
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Figure 2. Free virus dynamics for primary infection prior to antibody production. The viral repli-
cation dynamics are shown in natural scale (a) and in semi-logarithmic scale (b) with initial value
S(t0) = πS/µS, I(t0) = 0, and V(t0) = 3. Model parameters are shown in Table 1.

To investigate the sensitivity of viral level related to the model parameters in Equation
System (1), Figure 3 presents the numerical result of viral load related to the viral replication
factor κ, the infection rate of susceptible target cells a, and the removal rate of viral particles
b. Sensitivity analysis is performed by varying one of the parameters and fixing the others.
The result shows that the variation of the number of free viral particles released by an
infected cell plays a major role in viral load peak, reaching very high values in a short
period of time as κ increases (see Figure 3a).

As for the infection rate of susceptible cells a, free viral particle levels increase as the
parameter value increases, since a higher infection rate generates more infected cells that
will release more viral particles. The biological time for free viral particles detection also
decreases as parameter a increases, as shown in Figure 3b. On the other hand, only a small
variation of free viral load particles is observed when changing the rate b, at which the
viral particles are lost due to the infection process, as shown in Figure 3c.
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Figure 3. Sensitivity analysis for the parameters involved on free virus dynamics. (a) For fixed
a = 0.02 and b = 15a parameters, we vary the viral replication factor κ in the range [20, 100]. (b) For
fixed κ = 50 and b = 0.3, we vary the infection rate of susceptible cells parameter a in the range
[0.01, 0.05]. (c) The removal rate of viral particles b is varied in the range [11a, 18a] with of fixed
κ = 50 and a = 0.02.
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Table 1. The biological meaning of the parameters and parameter values used for the numerical simulation.

Dengue Modeling Framework Parameters

Parameters Parameter Values Biological Meaning References

πS 600 constant target cell production (monocytes/dendritic cells) per
day [45,52]

πM 300 constant target cell production (macrophages) per day [45,52]
µS 1/30 lifespan of susceptible target cells in days [48]
µi 2 lifespan of infected cells (monocytes/dendritic cells) per day modeled
µP 0.1 · µ1 lifespan of presenting cells per day modeled
a = am 0.02 infection rate of susceptible target cells per viral particle per day modeled
b = bm 15 · a removal rate of viral particles during the infection of target cells modeled
κ 50 viral replication factor [53]
αM 10 reproduction rate of IgM antibody per day modeled
αG 1.5 reproduction rate of IgG antibody per day modeled
αGsec 2000 activation rate of pre-existing IgG antibody per day modeled
γM = γG 0.06 antibodies binding rate per day modeled
dM 4 · γM binding rate of free virus with IgM antibody per day modeled
dG γG binding rate of free virus with IgG antibody per day modeled
µM 0.03 decay rate of IgM per day [33]
µG 1/365 decay rate of IgG per day [33]
µCM = µCG 1 decay rate of antibody-virus complexes per day modeled
S(t0) πS/µS initial value for target cells (monocytes/dendritic cells) [48]
Sm(t0) πM/µS initial value for target cells (macrophages) [48]
V(t0) 3 initial value for free viral particles upon infection (mosquito bite) modeled

2.1.2. IgM and IgG Antibody Production and Decay and Free Viral Load Dynamics

To understand the process of antibody production via antigen presentation, we now ex-
tend the Equation System (3) to include another susceptible target cell type, the macrophages
(Sm). Upon infection, macrophages will differentiate to become antigen-presenting cells
P, triggering the production of free IgM and free IgG antibodies types [13,33,54] at rates
αM and αG, respectively. In a primary infection, IgM antibodies, a pentamer molecule, are
produced first and to higher levels than IgG antibodies, a monomer molecule [50]. Free
IgM and free IgG bind into the free viral particles with dMγM and dGγG binding rates,
respectively.

The extended model to describe the IgM and IgG production is given by

dS
dt

= πS − µSS − aSV

dI
dt

= aSV − (µi + µS)I

dV
dt

= κµI − bSV − bmSmV − dM MV − dGVG

Sm

dt
= πm − µSSm − amSmV (2)

dP
dt

= amSmV − (µP + µS)P

dM
dt

= αMP − γM MV − µM M

dG
dt

= αGP − γGGV − µGG,

including natural removal for IgM, µM M, and IgG, µGG.
Free IgM antibody production is observed to start between day 2 and day 3 of the

infection process (see Figure 4a), lasting for about three months (see Figure 4b). Free IgG an-
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tibody type appears shortly after IgM antibodies (see Figure 4a), with lower concentration
levels, but lasting much longer than free IgM (see Figure 4b), reaching eventually a constant
“life-long immunity” level. Viral load dynamics (see Figure 4c) is influenced by the antibod-
ies production, with a peak between day 5 and day 6 of the infection process. The complete
process of free virus dynamics in the presence of antibodies is shown in Figure 4d.
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Figure 4. For a primary dengue infection, antibodies IgM (in violet) and IgG (in green) production dynamics are shown
for a 10 days period (a) and for a 300 days period (b). Free virus particle dynamics for a 12 days period is shown in (c).
The complete process of viral load in the presence of antibodies is shown in (d). Here, for better visualization, free viruses
were scaled to 2000. The initial values used for these simulations are S(t0) = πS/µS, I(t0) = 0, Sm(t0) = πM/µS, P(t0) = 0,
M(t0) = 0, and G(t0) = 0.

2.1.3. Antibody-Virus Complexes and Infection Clearance

Following the antibody production process described above, the model framework is
extended to include the antibody-virus complex production, IgM-DENV (CM) and IgG-
DENV (CG), which are assumed to be responsible for clearing the ongoing infection after
being recognized by killing cells. With constant target cells production πS, for monocytes
and dendritic cells, and πm for macrophages, the complete modeling framework including
each step presented in Figure 1 is written as a system of ordinary differential equations
(ODEs) as follows
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dS
dt

= πS − aSV − µSS

dI
dt

= aSV − (µi + µS)I

dV
dt

= κµi I − bSV − bmSmV − dMVM − dGVG

dSm

dt
= πm − amSmV − µSSm

dP
dt

= amSmV − (µP + µS)P (3)

dM
dt

= αMP − γM MV − µM M

dG
dt

= αGP − µGG − γGVG

dCM
dt

= γMVM − µCM CM

dCG
dt

= γGVG − µCG CG.

The complete model output describing the immunological response mediated by IgM
and IgG antibodies during a primary dengue infection is shown in Figure 5.
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Figure 5. Model simulation: primary dengue infection immunological responses mediated by
antibodies. Overall viral particles measured with free virus and viral particles in complexes (V + 4·
IgM-DENV + IgG-DENV). Free IgM is shown in violet and free IgG in green. Antibodies-virus
complexes IgM-DENV and IgG-DENV are shown in blue and orange, respectively, with initial values
CM(t0) = 0 and CG(t0) = 0.

In Figure 5, the overall viral load curve (in red) includes not only free viral particles,
as shown in Figure 4c, but also the viral particles bound into antibody-virus complexes.
Free IgM (in violet) are observed at very low levels until day 5 of infection since the majority
of the molecules are bound to the free virus, the so-called IgM-DENV complexes (in blue).
Note that for each IgM, four viral particles must be counted on average. Free IgM appears
to be detectable on day 9 after the infection is cleared, i.e., removal of all CM complexes,
lasting for about three months. Free IgG (in green) and IgG-DENV complex (in orange)
are appearing around day 4, and eventually do not play a significant role in the primary
infection clearance. Free IgG reaches very small levels in comparison with the free IgM,
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lasting much longer than IgM, and are assumed to confer lifelong immunity against that
specific serotype.

2.2. Secondary Dengue Infection Model with a Homologous Serotype

After a period of temporary cross-immunity, the human host is considered to be
susceptible again, able to acquire a secondary dengue infection [36]. In this section, we
investigate a secondary infection with the same (homologous) serotype, represented in
Figure 6. The difference here lies in the order of the detection of the antibody levels, IgM
and IgG, in comparison with the dynamics described for the primary dengue infection,
see step 4a and step 4b in Figure 6. Here, the immunological response initiates with the
presence of free virus activating the pre-existing IgG antibody at rate αGsecV, shown in step
4a in Figure 6. The antibody activation process occurs faster than the adaptive humoral
response, with antibody production triggered by antigen presentation, see step 5, referring
to the production of the IgM antibody type, and step 4b, referring to the production of the
IgG antibody type [6,7,13,14]. With that, the overall IgG levels are reaching much higher
levels than the levels observed in a primary infection.

Figure 6. Schematic in-host dengue immunological responses mediated by antibodies: secondary
infection with the same dengue serotype. Three blocks are used to describe 7 steps during the
infection, from viral replication up to infection clearance.

We use the same modeling framework described in Equation System (3), only includ-
ing an extra term αG,sec V (shown in blue), representing the activation of the pre-existing IgG
antibodies that were produced during the primary dengue infection. The complete model
for the secondary dengue infection with a homologous serotype can be written as follows
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dS
dt

= πS − aSV − µSS

dI
dt

= aSV − (µi + µS)I

dV
dt

= κµi I − bSV − bmSmV − dMVM − dGVG

dSm

dt
= πm − amSmV − µSSm

dP
dt

= amSmV − (µP + µS)P (4)

dM
dt

= αMP − γM MV − µM M

dG
dt

= αGP − µGG − γGVG + αGsec V

dCM
dt

= γMVM − µCM CM

dCG
dt

= γGVG − µCG CG,

now with the immunological response initiated by the activation of the pre-existing IgG
antibodies, specific to the serotype causing the primary infection. In the present scenario,
these pre-existing specific IgG antibodies are able to bind and neutralize the homologous
dengue serotype causing the secondary infection.

Figure 7 shows a numerical simulation of the model for the dengue immunological
response during a secondary infection with a homologous serotype. The activation rate for
the pre-existing IgG antibody is set to αG,sec = 2000. The faster increasing pre-existing IgG
is responsible for neutralizing the free viral particles, leading to a lower overall viral load
(in red). The immunological response mediated by antibodies is reversed to the response
described for the primary infection, with high levels of IgG appearing before the IgM.
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Figure 7. Model simulation: secondary dengue infection with a homologous serotype. Overall
viral particles measured with free virus and viral particles in complexes ((V + 4· IgM-DENV + IgG-
DENV)). Free IgM is shown in violet and free IgG in green. Antibodies-virus complexes IgM-DENV
and IgG-DENV are shown in blue and orange, respectively. The initial value of IgG antibody is set,
G(t0) = 1000.

In this scenario, the complex IgG-DENV (in orange) plays a major role during the
viral clearance (see step 6 in Figure 6 due to its specificity, being able to quickly bind and
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neutralize the homologous virus. Here, our model’s results show the complexes CG (in
orange) appearing already on day 2 of the infection process, binding into the free viral
particles, with an important role during the clearance of the ongoing infection.

2.3. Secondary Infection with a Heterologous Serotype

Similar to the process described in Section 2.2, we now investigate the dynamics of
a secondary infection caused by a heterologous dengue serotype, recognized to be a risk
factor of progressing to severe disease. The difference here lies in the ability of pre-existing
IgG antibodies to bind into the new viral particles (see step 6 in Figure 8) and enhance viral
replication due to the antibody-dependent enhancement (ADE) phenomenon (see step 7 in
Figure 8) since these pre-existing IgG antibodies are not able to neutralize the new virus.

Figure 8. Schematic in-host dengue immunological responses mediated by antibodies: secondary
infection with a different dengue serotype. Four blocks are used to describe 9 steps during the
infection, from viral replication up to infection clearance, including disease augmentation via the
ADE process (steps 6 and 7).

We use the same modeling framework described in Equation System (4), now includ-
ing extra terms aADESCG and bADESCG (shown in violet) affecting the viral replication of
the system, with an enhancement mediated by the complexes of pre-existing IgG-DENV.
The complete model for the secondary dengue infection with a heterologous dengue
serotype can be written as follows
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dS
dt

= πS − aSV − µSS − aADESCG

dI
dt

= aSV − (µi + µS)I + aADESCG

dV
dt

= κµi I − bSV − bmSmV − dMVM − dGVG

dSm

dt
= πm − amSmV − µSSm

dP
dt

= amSmV − (µP + µS)P (5)

dM
dt

= αMP − γM MV − µM M

dG
dt

= αGP − µGG − γGVG + αGsec V

dCM
dt

= γMVM − µCM CM

dCG
dt

= γGVG − µCG CG − bADESCG.

Figure 9 shows the simulation for the immune response during a secondary infection
with a heterologous dengue serotype. With a much higher overall viral load (in red),
the immunological response mediated by antibodies is similar to the described secondary
response with the same virus. However, in this scenario, the pre-existing IgG-DENV
complexes (in orange) play a major role in viral replication enhancement (see step 7 in
Figure 8) via the ADE process. As the viral replication continues, the adaptive humoral
response produces high levels of the IgM antibody type (see step 8 in Figure 8). These high
levels of IgM are assumed to play a major role during the clearance of the ongoing infection,
similarly to the process observed for a primary infection (see Figure 10c). However,
the disease augmentation and the much higher viral load observed in this scenario (see
Figure 10e) leads to more severe clinical symptoms, including hemorrhagic manifestations
that without proper treatment may lead to shock and death. The production of the new
specific IgG antibody type (see step 4b in Figure 8) only occurs later and at a very small
concentration level.
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Figure 9. Model simulation: secondary dengue infection with a heterologous dengue serotype. Viral
particles encountered as free viruses and complexes (V + 4· IgM-DENV+ IgG-DENV). Free IgM is
shown in violet and free IgG in green. Antibody–virus complexes, IgM-DENV and IgG-DENV, are
shown in blue and orange, respectively. The initial values are set the same as previous simulations.

Note that for this study, we focus on the qualitative behavior of the dengue immuno-
logical responses. Concentrations of viral particles and antibodies are given as arbitrary
but reasonable values. Model parameters are shown in Table 1, including the biological
meaning and values used for the numerical simulations. We use the same initial conditions
to perform the simulation of all scenarios: primary infection, secondary infection with
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homologous serotype and secondary infection with heterologous serotype. All the initial
conditions are stated in Table 1, except the ones starting with a value of zero.
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Figure 10. Antibody responses and free viral load comparison. For a primary dengue infection (full line), secondary
infection with a homologous dengue serotype (line with pentagram marker), and secondary infection with heterologous
dengue serotype (dashed line), we show the dynamics for IgM antibody type (in violet) and IgG antibody type (in green).
In (a,b), we plot the antibodies dynamics over a 12-day period while in (c,d) over a 150-day period. Free viral load dynamics
are shown in (e).

3. Antibody Responses and Viral Load Levels to Explain Disease Symptoms
and Severity

In our within-host modeling approach, we show different dengue immunological
responses mediated by antibodies. For each infection process, the IgM-antibody and
IgG-antibody dynamics are shown in Figure 10.

In a primary dengue infection, the antibody IgM type is the dominant antibody type.
IgM binds into the free virus and generates the antibody-virus complexes in the early
stage of the infection (see Figure 10a), reaching high levels and decaying after 3 months
approximately (see Figure 10b) [6,13,14]. The specific antibody IgG is produced afterward
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and will provide the so-called long-life specific immunity. This specific antibody maintains
an immunological memory and is able to bind and to neutralize a homologous dengue
serotype (see Figure 10c,d). Free virus peaks around day 5–6 of the infection process, with a
fast decay reaching undetectable levels after day 8 of the infection process (see Figure 10e).
A primary infection is often asymptomatic and that is eventually correlated with the viral
load levels generated during a primary dengue infection.

During a second infection with a homologous serotype, the pre-existing antibody IgG
type is the dominant antibody type. These antibodies immediately respond to the new
serotype (see Figure 10c), able to neutralize the virus, leading to a much faster clearing
of the infection. These antibodies are lasting longer, boosting the immune system of
the individual, assumed to confer lifelong immunity against that specific serotype (see
Figure 10d). Free virus peaks around day 4–5 and reaches a much lower viral load level
than in a primary infection (see Figure 10e). Here, we assume that individuals would
have no symptoms at all and eventually will not be able to transmit the disease, given the
observed viral load level.

In a second infection with a heterologous serotype, the pre-existing antibody IgG
type immediately responds to the new serotype (see Figure 10c), reaching very high levels.
These antibodies are able to bind to the heterologous dengue serotype, but instead of
neutralizing the virus, it enhances the infection (see Figure 10e). This process is called
antibody-dependent enhancement (ADE), well reproduced by our system, leading to a
much higher viral load level than in a primary infection. Free viral load peaks a bit earlier
than in a secondary infection with a homologous virus. Here, we assume that individuals
would have symptoms and eventually develop the severe form of the disease, the so-called
dengue hemorrhagic fever that without proper treatment will evolve to shock syndrome
and eventually death.

4. Conclusions

We have developed a within-host dengue modeling framework to describe qualita-
tively the dengue infection immunological response mediated by antibodies. Models for a
primary dengue infection, secondary dengue infection with the same virus and secondary
dengue infection with a different dengue virus were analyzed and compared. We have
explored the features of viral replication, antibody production, activation and decay, as well
as the process of infection clearance over time, including the path for disease severity via
the ADE process.

Models were developed by gradually adding the steps of disease infection and the
adaptive immune response described in the immunology literature. The proposed equation
systems were derived from the illustrative schemes, describing each of the dengue infection
process steps individually, representing a primary dengue infection (Figure 1), secondary
dengue infection with homologous serotype (Figure 6), and secondary dengue infection
with heterologous serotype (Figure 8). The models were developed in blocks of equations,
which are coupled gradually until we obtain the complete model framework. In the absence
of a significant amount of laboratory data, the aim of this study is to describe qualitatively
the dengue immunological responses mediated by antibodies and to explore the feature of
antibody production and ADE when pre-existing antibodies are present in the human host.
Studies such as the one described here serves as a baseline for further model extensions.

Our models were able to reproduce qualitatively the features of primary and sec-
ondary dengue infections, including the ADE process leading to the disease enhancement
phenomenon in a secondary dengue infection caused by a heterologous serotype. The mod-
els are, in their minimalistic format, able to give insights into the unknown biological
parameters to be estimated when empirical data of viral load and antibodies concentration
levels are available.

The proposed modeling framework is the first one to describe qualitatively the dynam-
ics of viral load and antibody production, activation and decay for scenarios of primary
and secondary infections, as found in the empirical immunology literature. Providing



Biology 2021, 10, 941 16 of 18

insights into the immunopathogenesis of severe diseases via pre-existing antibodies and
the ADE process, the results presented here are of use for future research evaluating the
impact of imperfect dengue vaccines.
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