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Simple Summary: Drones offer the potential for monitoring sharks at beaches to improve public
safety. It is necessary to investigate their effectiveness at detecting sharks in conditions specific to
Southeast Queensland, because they have not previously been used in this capacity in this region.
The Queensland SharkSmart drone trial ran for 12 months at five beaches, in 2020-2021. The trial ran
3369 flights and sighted 174 sharks (including 48 large sharks over 2 m in length). Sharks were sighted
on 3% of flights on average, with North Stradbroke Island having the highest shark sighting rate. We
found that location, the sighting of other marine life, season and time of day all had an important
impact on the likelihood of sighting a shark from the drones. Overall, we demonstrated that drones
could operate across a range of weather conditions and detect sharks effectively. Additionally, the

drones provided extra safety benefits because they were used to identify swimmers caught in rip

check for

updates currents and locate missing persons. This research highlights the broad value of drones as a public
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safety tool at beaches, and the results of this study will help refine the operation of drones to further
improve their effectiveness in the future.

Abstract: Drones enable the monitoring for sharks in real-time, enhancing the safety of ocean users
with minimal impact on marine life. Yet, the effectiveness of drones for detecting sharks (especially
potentially dangerous sharks; i.e., white shark, tiger shark, bull shark) has not yet been tested at
Queensland beaches. To determine effectiveness, it is necessary to understand how environmental

Academic Editor: José and operational factors affect the ability of drones to detect sharks. To assess this, we utilised
data from the Queensland SharkSmart drone trial, which operated at five southeast Queensland
beaches for 12 months in 2020-2021. The trial conducted 3369 flights, covering 1348 km and sighting
174 sharks (48 of which were >2 m in length). Of these, eight bull sharks and one white shark were
detected, leading to four beach evacuations. The shark sighting rate was 3% when averaged across
all beaches, with North Stradbroke Island (NSI) having the highest sighting rate (17.9%) and Coolum

North the lowest (0%). Drone pilots were able to differentiate between key shark species, including
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Drones offer a unique perspective of the coastal environment and can provide an
effective platform for detecting potentially dangerous sharks in real-time, improving the
safety of ocean users. Additionally, drones have minimal impact on the environment or
40/). marine life. Drones have been widely used in recent years for marine science research, for
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quantifying fauna presence [1,2] and behaviour [3,4] to monitoring fishing activity [5,6] and
beach usage [7]. Detecting and monitoring sharks from drones to improve public safety
is another key area that has recently developed, particularly in Australia [8-10]. Drone
technology is rapidly advancing, with lightweight, affordable, easy-to-pilot drones now
available. As such, drones offer new opportunities to detect sharks in real-time and collect
data on the species present and their relative abundance, behaviour and potential risk to
ocean users.

Drones have been trialled extensively across New South Wales (NSW) in eastern
Australia in recent years and are now operational across >50 beaches throughout the state.
Research from this trial has investigated the influence of environmental conditions on
the probability of sighting sharks [9-11], using advanced camera technology to improve
detection [12], the behaviour of white sharks (Carcharodon carcharias Linnaeus, 1758) close
to surf beaches and near whale carcasses [13,14] and the abundance and diversity of
other marine fauna [8,15]. Surveys of public perceptions of drones reported a high level of
support (>85%) for their use as a safety tool at beaches, because of their real-time monitoring
capability and the fact that they have minimal impact on marine life [16,17].

Understanding how environmental variables influence the probability of detecting
sharks from drones is important for assessing their effectiveness as a public safety tool.
Recent research in NSW and the USA reported that depth and water clarity are the most
important variables influencing probability of sighting sharks, although time of day, wind
speed and cloud cover can also have an effect [1,9]. When commencing drone monitoring
for sharks in new regions, it is necessary to investigate environmental influences, because
localised variation may have an important impact on the probability of sighting sharks.
For example, prevailing wind conditions, seabed habitat type, depth, turbidity and sea
conditions can all change from one beach to the next. In Southeast Queensland, surf beaches
have generally high water clarity year round, with a sandy substrate that can enable sharks
to be detected due to higher contrast. However, high winds, large waves and heavy rainfall
can occur, particularly during summer months. This study therefore sought to assess how
an extensive range of environmental variables may influence the probability of sighting
sharks across five beaches in Southeast Queensland, over a 12-month period. In particular,
the research aimed to (1) identify differences in probability of sighting sharks between
survey locations, (2) assess how environmental variables affect probability of sighting
sharks, and (3), determine if seasonal variation occurs in relation to 1 and 2.

2. Materials and Methods
2.1. Study Location

The Queensland SharkSmart drone trial operated from 19 September 2020 to 4 October
2021, as a partnership between the Queensland Government Department of Agriculture
and Fisheries (DAF) and Surf Life Saving Queensland (SLSQ) [18]. Drones were operated
at two beaches on the Sunshine Coast (Alexandra Headland and Coolum North), two
beaches on the Gold Coast (Southport Main Beach and Burleigh Beach) and one beach
on North Stradbroke Island (NSI; Ocean Beach) (Figure 1). These beaches were selected
as they are popular locations which have high year-round visitation by a range of ocean
users, including swimmers, surfers, kayakers and others and because they are known to
have relatively high water clarity. Trial sites were co-located with existing SLSQ services
so drone operations could be integrated into existing beach safety operations. Gold Coast
city lifeguard services were also involved in drone flight operations at the two Gold Coast
beaches. All sites were located outside of CASA regulated airspace that would prevent
drone operation, e.g., within 5.5 km of an airport.

2.2. Drone Flights

DJI Mavic Pro drones were operated on weekends, public holidays and school holidays
by licensed SLSQ pilots, because beach usage by the public was highest on these days
and more lifeguards/lifesavers were on duty. Pilots conducted two flights per hour from
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approximately 8 am until midday. Flights were only conducted in the morning due to
prevailing weather conditions in Southeast Queensland, where the wind speeds typically
increase in the afternoon. Flights lasted 16.98 &+ 3.34 min (mean =+ SD) and followed a
400 m transect behind the surf break (Figure 2). The inside edge of the field of view from
the transect lined up approximately with the ‘backline’ of the surf break. The position of the
surf break can change significantly due to tide and weather variables, so flights were made
with manual control (as opposed to automated flight paths). Each flight path extended up
to 200 m north and south of the ground control station to stay within visual line of sight,
covering up to an 800 m flight circuit (i.e., 200 m north then the drone pivots 180 degrees
and heads back 200 m south back to the start point, then 200 m south followed by 200 m
north back to the start point). These 400 m transects covered only a portion of each beach
close to the lifesaving flags, as opposed to the entirety of the beach, because the pilots
were required to always maintain visual line of sight of the drone. Drones were flown at
approximately 10-20 km h~! and at a constant altitude of 60 m, providing a field of view
width of approximately 110 m with the camera at a 45° angle. The full length of the SLSQ
flagged area was included within the flight path. Drones took off and landed from a 30 m
exclusion zone on the beach and they were not flown directly above ocean users or people
on the beach. To protect privacy of beach users, the drone cameras were only turned on
once the drone was above the water.

Southeast
Queensland

Coolum North
Sunshine [
Coast Alexandra
Headlands

North Stradbroke Island

152.5°E 153.0°E 153.5°E 154.0°E

Figure 1. Map of Queensland SharkSmart Drone Trial beach locations in Southeast Queensland,
Australia.
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Figure 2. Schematic showing the position of drone transects relative to the flagged area of the beach.

2.3. Data Collection

Drones were set to record continuously in 4K video to maximise the resolution for
detecting sharks, and all telemetry data was recorded in the form of accessory. SRT files. All
footage was securely archived for later analysis with key operational and environmental
data collected for every flight. When a shark was sighted, the drone pilot lowered the
aircraft to 1020 m above the water surface to determine the species [19] and total length
while estimating distance of the animal from ocean users. The pilot would then closely
follow the shark until it either moved further offshore to the point where it was no longer
close to ocean users, or the battery life or distance of the drone from the pilot prevented it.
If a shark posed a risk to people in the water, then SLSQ would evacuate people from the
water as a safety precaution. Data about the shark sighting was recorded, including the size
and species of shark, the time and latitude and longitude as well as the drone height, length
of time the shark was followed and its direction of travel. All sightings were verified by
the primary author using the recorded footage from the flight. Data for key environmental
variables such as wind speed (km h™1), sea state (Beaufort scale) and barometric pressure
(hPa) were retrieved by the drone pilot, from the Bureau of Meteorology (BOM) website, for
each location and every flight. The level of cloud cover in oktas was estimated by the pilot
at the start of each flight and the level of turbidity and glare were quantified from video
once the drone started the transect. Because they were estimated by the pilots, these three
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environmental factors were subjective and likely to vary based on different perceptions
between pilots.

2.4. Data Analysis

Shark sighting rates were calculated at a beach level to identify the percentage of
flights where sharks were observed, enabling comparison between beaches. Leopard
sharks (Stegostoma fasciatum, Hermann, 1783) were excluded from the analyses due to their
high abundance at multiple beaches, which would have inflated the number of sharks
recorded, and because they pose no risk to ocean users.

A Generalised Linear Mixed Effects model (GLMM) was applied to determine how
a range of environmental and operational factors (Table 1) influenced the probability of
detecting sharks. The response variable of the GLMM was modelled with a binomial
distribution (presence/absence of sharks). Predictor variables were checked for correlation,
which indicated all variable combinations had <0.5 Pearson correlation coefficients. The
distribution of predictor variables were also checked and a square root or log +1 transfor-
mation was applied to achieve more uniform distributions if necessary. Date in the form
of Julian Day from the start of the trial was included as a random factor in the GLMMs
to account for any random variation at the day level. To determine the best-fitting model
and identify significant variables which explained a meaningful proportion of the deviance
in the response variable, we applied a backward stepwise approach to drop individual
predictors one step at a time to identify how this changed the Akaike Information Criterion
(AIC) values [20]. The best performing model was identified as having the lowest AIC and
only those predictor variables which were significant. All statistical analysis was performed
in the R language for statistical computing [21]. The package ‘Ime4’ was used for running
GLMMs [22].

Table 1. List of environmental and operational variables for which data was collected during the
Queensland SharkSmart drone trial, including the metric used and the hypothesized importance of
each variable for influencing the probability of sighting sharks.

Variable Metric Used Data Source Hypothesised Spatial and T.emporal
Importance Resolution
Environmental variables
From nearest weather
station at 30 min intervals.
Weather stations were the
Wind speed can lead to increased following d1star}ces from
surface disturbance (e.g., whitecaps) beach locations:
Bureau of & P Alexandra Headland:
. 1 and thus reduce the chance of
Wind speed Kmh Meteorology detecting sharks [1]. Drones were 6.6 km
(BOM) & ' Coolum North: 6.0 km
only able to safely operate up to . .
20 km h-1 Burleigh Beach: 11.0 km
’ Southport Main Beach:
1.3 km
North Stradbroke Island:
19.0 km
Wind direction can influence the
level of wind disturbance on the From nearest weather
Wind direction Compass direction BOM - station (see list above) at
water and thus the detectability o
30 min intervals
of sharks
. Rainfall over the previous week can
Total rainfall over influence the level of turbidity in th From nearest ther
Rainfall previous week BOM uence the ‘evel o7 Y € om nearest weathe

(mm)

water column and therefore the
likelihood of sighting sharks

station (see list above)
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Table 1. Cont.

Variable

Metric Used Data Source

Hypothesised
Importance

Spatial and Temporal
Resolution

Environmental variables

Cloud cover

Barometric
pressure

Sea state

Turbidity

Glare

Presence of other
fauna

Season

Location

Time of day

Oktas Estlmfated by
pilot
hPa BOM
Beaufort Scale
(low = 1-high =12) BOM
0-100% Estlmf;lted by
pilot
1 (low)—5 (high) Estimated by
scale pilot
Presence/absence Recor'ded by
pilot
Summer-Autumn- Recorded by
Spring-Winter pilot

Operational variables

The level of cloud cover can affect
detectability of sharks by
influencing the amount of sunlight
entering the water and the resulting
contrast of sharks against
the seabed.

Barometric pressure affects weather
conditions and can also influence
shark behaviour and movements in
some cases [23,24]

Sea state affects the level of surface
disturbance and the ability to see
into the water column from a drone

Turbidity affects visibility into the
water column

The level of sun glare on the ocean
surface can affect the ability of drone
pilots to see into the water column

Presence of other fauna, especially
potential prey species, could attract
sharks into the area

There are seasonal changes in
weather patterns in Southeast
Queensland, for example low
pressure systems are more common
in summer and can cause heavy rain,
high winds and rough sea states.

There are differences in habitat type,
depth, level of exposure and faunal
composition at the five different
locations which can influence shark
movements and behaviour

Time of day affects the angle of the
sun and therefore the level of glare
and the depth to which sunlight
penetrates into the water column.
Shark behaviour and movement
patterns also vary with time of
day [25]

At flight location at start
of flight

From nearest weather
station (see list above) at
30 min intervals

From nearest weather
station (see list above) at
30 min intervals

At flight location at start
of flight

At flight location at start
of flight

Presence or absence of any
fauna sighted during the
whole flight

Three month period for
each season

Each beach location where
flights were conducted

Time that flight occurred.
Flight one commenced at
8am and flight eight
finished at midday

Beach Recor.ded by
pilot
Flight number Recor.ded by
pilot
3. Results

3.1. Operational Results

During the 12 months of drone operations, 3369 individual flights were conducted,
covering a distance of 1348 km (Table 2). Drones were able to operate in a range of weather
conditions across seasons, although they could not fly in winds greater than 20 km h=! or
during rainfall. This resulted in 174 flight days being lost to poor weather across the five
beaches combined, which represented 17% of the total number of flight days (Table 2).
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Table 2. Operational metrics for each beach covered by the Queensland SharkSmart drone trial. Data
covers the time period 19 September 2020—4 October 2021.

No. of Days Lost to Bad

Location Tot:lFlﬁu?ber C DISte::lnle Weather (Percentage of
of Flights overed (km) Total Days)
Alexandra

Headlands 830 332 20 (10)
Coolum North 759 304 49 (23)
Burleigh Beach 705 282 22 (11)
Southport Main Beach 712 285 34 (16)
North Stradbroke Island 363 145 49 (23)
TOTAL 3369 1348 174 (17)

3.2. Shark Sighting Rates

A total of 174 sharks were sighted across the five beaches. The number of sightings
was highly variable across beaches, ranging from no shark sightings at Coolum North to
94 sightings at NSI (Table 3). The majority of these sightings were small whaler sharks
(Carcharhinus spp.) <2 m in total length, however, 48 large sharks were seen, mostly at
Burleigh Beach and NSI. For the three species that may be potentially dangerous to humans
(white, tiger (Galeocerdo cuvier, Péron & Lesueur, 1822) and bull sharks (Carcharhinus leucas,
Valenciennes, 1839)), there were two sightings at Burleigh Beach, three at Southport Main
Beach and four at NSI, which led to four beach evacuations. No large sharks were sighted
at either Alexandra Headland or Coolum North. Drone pilots were generally able to
differentiate between the main groups of sharks, including white /bull and whaler sharks
(Figure 3). However, in certain ocean conditions such as higher turbidity or if the shark
remained close to the seabed, identification to species/group was not possible. Even in
optimal water visibility, whaler sharks were not able to be identified to species level, due to
their similar morphology. In total, sharks were sighted on 3% of all flights (beaches pooled),
with the sighting rates varying from 0% at Coolum North to 17.9% at NSI. Shark sightings
occurred on 5.1% of flights at Burleigh Beach, 0.6% at Southport Main Beach and 0.2% at
Alexandra Headland.

Table 3. Number of sharks sighted at Queensland SharkSmart drone trial beaches.

Location N uz(:]zlr of No. of Large No. of White, No. of Beach
Sharks 1 (>2 m) Sharks Bull, Tiger Evacuations
Alexandra
Headlands 3 1 0 0
Coolum North 0 0 0 0
Burleigh Beach 73 23 2 2
Southport Main
Beach 4 2 3 0
North
Stradbroke 94 22 4 2
Island
TOTAL 174 48 9 4

! total does not include leopard sharks.

3.3. Assessing the Influence of Environmental and Operational Factors on the Probability of
Sighting a Shark

Drones operated across a wide range of environmental conditions during the trial, pro-
viding important data to assess how environmental factors may affect shark sightings. For
example, wind speed varied between 0 and 20 km h~! (mean 4+- SD =8.2 + 3.7 km h~!) and
was recorded from all compass directions, most commonly from the northwest and least
often from the west-southwest. Glare and turbidity (which were estimated by the pilot) var-
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ied substantially from category 1-5 (mode = 3) and 0- 100% (mean =+ SD = 29.6 £ 23.1%),
respectively. Other environmental parameters that were likely to influence the sightings of
sharks were cloud cover, which ranged from 0-8 oktas (mode = 1) and sea state, spanning
1-6 on the Beaufort scale (mode = 2). Rainfall over the previous 7 days had a large range
from 0-548.2 mm, with a mean of 33.5 4= 65.0 mm.

Figure 3. Example images of sharks recorded during the Queensland SharkSmart drone trial.
(a) white shark (Carcharodon carcharias), recorded at Southport Main Beach, Gold Coast in September
2020, (b) group of five large whaler sharks observed at Ocean Beach, North Stradbroke Island in
November 2020, (c) whaler shark (Carcharhinus sp.) from the blacktip complex recorded at North
Stradbroke Island in December 2020, (d) small whaler shark (Carcharhinus sp.) seen at North Strad-
broke Island in January 2021, (e) bull shark (Carcharhinus leucas) recorded at Burleigh Beach in June
2021 and (f) whaler shark (Carcharhinus sp.) at North Stradbroke Island in December 2020.

GLMMs indicated that location, the sighting of other fauna, season and flight number
were the most important factors that had a significant influence on the probability of
sighting sharks, explaining 14% of the deviance in the response variable. The model
including these variables had the lowest AIC (Table S1). The probability of sighting a shark
was highest at NSI (0.03), followed by Burleigh Beach (0.009), with Alexandra Headlands
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and Southport Main Beach having lower values (Figure 4a). No sharks were sighted at
Coolum North so this location was not included in the model. The sighting of other fauna
increased the likelihood of a shark being sighted (0.009), compared to if other fauna were
not sighted (0.004) (Figure 4b). Season also had a variable impact on the probability of shark
sightings, with the highest probability of shark sightings occurring in summer (0.03), which
was more than double the likelihood for sightings in spring (0.009) (Figure 4c). Sharks were
most likely to be sighted on the first two flights of the day (both 0.04) and least likely on
flights 3 and 5 (both 0.009) (Figure 4d). There was a low number of occurrences for flight
number 8, due to staff availability and weather, so it was excluded from this analysis.

03 0.3
(a) (b)
2
£ 02
2
£ o 02
s £
5 k)
s z
£ 01 2
* s
g
S
& 01
| ——
0.0
d FS = k-3
B [&) o }
£ & £ o
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3 @ g £ 00
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3 £ & Not sighted Sighted
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N @ K Sighting of other fauna
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< «© S o
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Figure 4. Influence of significant predictor variables on the probability of sighting sharks, across all
beaches where sharks were sighted. (a) location, (b) sighting of other fauna, (c) season, (d) flight
number. Solid black lines indicate model fitted values. Grey shaded areas indicate 95% confidence
intervals.

4. Discussion

The Queensland SharkSmart drone trial demonstrated the capability for operating
drones as a public safety tool to detect sharks, running 3369 flights across five beaches and
covering 1348 km. The ability to detect and track sharks at beaches when people were in
the water provided a safety benefit because the pilots were able to monitor these sharks in
real time and warn ocean users and close the beach if a shark was presenting a threat.

4.1. Operational Results

Drones were able to operate across a range of weather conditions, although they were
unable to fly in poor weather, which led to 10-23% of days where flights could not be
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completed. This was expected given the unpredictable and variable weather that occurs
on the east coast of Australia, however from a public safety perspective, it is important
to note that no people were in the water on the majority of the days when drone flights
were cancelled due to the prevailing weather (SLSQ, pers. comm.). Colefax et al. [10]
also found that when drone flights were cancelled at NSW beaches due to poor weather,
there were no people in the water in 72% of cases. Beaches that were sheltered from
certain wind directions, including Alexandra Headlands and Burleigh Beach, had the
lowest loss of flights, compared to those that were more exposed, which included NSI and
Coolum North.

From an operational perspective and although not part of the experimental design,
it is also important to note that our drones provided a range of public safety benefits at
beaches, in addition to detecting sharks. This was demonstrated by their use to identify
people caught in rip currents and assist with missing person searches during the trial.

4.2. Shark Sighting Rates

Throughout the drone trial, 174 sharks were sighted, 48 of which were large sharks
(>2 m total length). Overall, the prevalence of shark sightings was low, with sharks detected
on only 3% of flights when all beaches were combined. This result is similar to, albeit
slightly higher than, findings from the NSW drone trial, where only 1.9% of flights recorded
bull, white and /or whaler sharks [11]. Importantly, there were only nine sightings of bull
or white sharks during the current trial, with only four beach evacuations, highlighting
that occurrence of these shark species close to beaches are rare, even though they migrate
through the study region [26-28]. No tiger sharks were sighted during the trial, despite
them occurring in this area [26,29] and being caught on drumlines at North Stradbroke
Island Ocean Beach during the drone trial period (Queensland Shark Control Program,
unpublished data). The lack of tiger shark sightings on drones may have occurred because
they typically occur further offshore and thus may be less likely to come in close to beaches
and also because they were more active at night, as shown by higher catch data in La
Réunion Island [30].

Whaler sharks could not be identified to species level due to their similar morphology,
therefore if a whaler shark larger than 2 m total length was sighted by a drone pilot, it
was considered to be a potentially dangerous shark and was monitored closely, with the
option to evacuate ocean users if it was considered to pose a threat. When reviewing
the footage of shark sightings, we found that shovelnose rays (Aptychotrema spp.) and
white-spotted guitarfish (Rhynchobatus australiae, Whitley, 1939) were sometimes mistaken
for sharks by the pilots, although not in the cases where beaches were evacuated. This
mistaken identity was likely due to their similar silhouette and because they remained close
to the seabed, making definitive identification difficult apart from during optimal water
visibility. Similarly, both species were commonly misidentified as white sharks during
drone operations in NSW (P. Butcher, unpublished data). This highlights the need for
pilots to spend time monitoring marine animals to ensure that they are correctly identified
and the potential risk to ocean users is mitigated. The use of better camera technology
and artificial intelligence [31,32] will aid identification and minimise the number of times
beaches are closed unnecessarily.

4.3. Assessing the Influence of Environmental and Operational Factors on the Probability of
Sighting a Shark

The probability of sighting a shark during drone patrols varied substantially between
locations. NSI had the highest probability of shark sightings, and this was possibly due
to the very high prevalence of other (non-shark) marine fauna (sighted on 79% of flights
at this location), including turtles, rays, large fish and schools of bait fish, all of which
can be important prey species for sharks. Indeed, the presence of other fauna was also
one of the four main predictor variables influencing the probability of shark sightings
in the GLMM analysis, with higher probability when other fauna was present. Colefax
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et al. [13] and Tucker et al. [14] found that white shark behaviour close to surf beaches
was markedly different when food sources were present, with shark swimming speed and
track tortuosity (degree of twistedness, i.e., number of turns) increasing, especially in the
presence of whale carcasses. The sighting of other fauna may have also had a positive
effect in the GLMM because it acted as a proxy for the sightability of sharks, i.e., if the
water conditions were clear enough for other fauna to be sighted then they would also
enable sharks to be sighted. Interestingly, turbidity did not have a significant influence on
sightings of sharks according to the GLMM results, unlike a recent study in NSW, where it
had a strong negative impact on sighting rates [9]. This may have been because the turbidity
levels were consistently lower at the beaches covered by the current study, as opposed to
those in NSW. Additionally, the estimation of turbidity by the pilots was subjective, so the
true relationship between turbidity and the probability of sighting sharks may not have
been fully captured by the data.

The higher probability of shark sightings at Burleigh Beach was likely influenced by its
proximity to Tallebudgera Creek, where outflow brings nutrients into the surrounding area
and increases the density of bait fish and other potential shark prey. Higher catches of sharks
in Queensland Shark Control Program (SCP) nets and drumlines also occurs at Queensland
beaches close to river mouths and after rainfall, especially for bull sharks [33,34]. Higher
numbers of fauna sightings were recorded for the beaches closest to river mouths in the
NSW drone trial [11], and other research has demonstrated the important link between
nutrients and the presence of predators close to river mouths [35]. The very low probability
of sighting sharks at the two Sunshine Coast beaches may have occurred because there
was less suitable habitat and/or prey species at these locations. The fact sharks were only
sighted on 3% of flights overall can act as an important message that sharks are relatively
rare at these beaches and the chances of encountering one is minimal. The communication
of these facts can improve public knowledge of the likelihood of encountering sharks and
increase confidence in ocean users. Such information can also be useful to ocean users
on an individual level, when deciding which beach to visit if they are concerned about
encountering sharks [36].

Other environmental factors that exerted a significant influence on the probability
of shark sightings were season and time of day (flight number). Sharks were more likely
to be seen during summer and autumn. Although some species such as white sharks
are primarily seen on the east coast of Australia during the austral winter and spring,
summer and autumn have higher water temperatures, which lead to greater abundance
and activity levels of sharks overall [31,32,37] and higher rainfall, which can lead to greater
productivity and prey abundance in the coastal environment due to river outflow carry-
ing nutrients [38,39]. Previous research has also shown that the catch of spinner sharks
(Carcharhinus brevipinna, Valenciennes, 1839), the most commonly caught species in QSCP
nets, was highest in summer months [37]. This species, as well as common blacktip sharks
(Carcharhinus limbatus, Miller and Henle, 1839), are known to move inshore in Southeast
Queensland to breed in spring and summer months [40,41], which would explain the
higher numbers of whaler shark sightings we recorded on drones in the current study.
However, due to difficulties in identifying whaler sharks from drone footage we cannot
be sure that these two species were sighted during the drone trial. Flight number was
used as an indicator of time of day, showing that the probability of sighting sharks was
greatest on the first two flights of the day, which typically occurred between 7:00 am and
8:30 am. This relationship may have occurred due to higher activity levels of sharks in
the early morning [42] and lower levels of disturbance from ocean users and boats in the
area at this time. Yet, Ayres et al. [43] reported more frequent sightings of sharks in the
afternoon in Cabo Pulmo National Park, possibly linked to thermoregulatory behaviour
and tagged white sharks were primarily detected on ocean beaches in eastern Australia in
the middle of the day [44]. Wind speed has been found to affect shark sighting rates in other
drone-based studies, with lower sightability at higher windspeeds [1,43], however it did
not have a significant effect on shark sightability in the current study and the NSW drone
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trial research also found minimal or no effect of wind on sighting rates [9]. Lastly, Ayres
et al. [43] found that increasing temperature and tidal height had a positive relationship
with shark sightings from drones.

It is important to consider that environmental variables can influence both the presence
of sharks close to a beach and the ability to detect them from the drone, therefore the latter
often limits the ability to determine the former, unless optimal conditions (e.g., clear shallow
water <2 m deep in calm conditions) occur during all drone flights. These two processes
can interact, for example, recent rainfall can lead to higher outflow from a river mouth,
leading to greater productivity and prey abundance for sharks, which would increase
the probability of them being present, however the higher turbidity would reduce the
likelihood of detecting the sharks from a drone. Therefore, a shark can be present but
not detectable, or potentially detectable but not present. Thus, to objectively quantify the
effect of environmental variables on sightability, Butcher et al. [9] used shark analogues
(model sharks) to assess whether they could be detected under varying environmental
conditions, reporting that water depth and turbidity were the most important factors and
that detection rates were low when the shark model was at depths >2 m. A study in
the Newport River Estuary in North Carolina, USA also used model sharks, finding that
shark models were significantly less likely to be detected when water depth was greater
than 1 m [1]. Probability of sighting sharks was also lower during the early morning and
when cloud cover and wind speed were higher, although these effects were not statistically
significant [1]. Hensel et al. [45] found that drones were effective at detecting models of
juvenile sharks across a range of benthic substrates (including seagrass meadows, sand
and scattered reefs), although depths were <1.5 m. Kelaher et al. [11] reported that water
clarity had a significant influence on detectability of a range of marine fauna, whereas sea
state and water temperature did not. It is recommended that testing with model sharks is
conducted at the beaches surveyed in the current research, with the models deployed at
different depths and under varying conditions of glare, turbidity and sea state, to provide a
more robust assessment of how environmental variables affect shark sightability.

4.4. Future Directions

The technological capabilities of drones are rapidly improving, offering new opportu-
nities to build on the research presented here and optimise the use of drones for detecting
sharks in the coastal environment. Artificial Intelligence (AI) is one area which is currently
being explored to assess whether it can be used to improve the detection rates of sharks
and improve operational efficiency [32,46-48]. Recent testing of the SharkSpotter® deep-
learning based Al system in NSW, showed that it can achieve a detection success of 90%,
which is typically higher than the pilot because they can be distracted by other objects and
they are concentrating on flying the drone [47,48]. This Al system operates in near real time
and flags any objects detected, which helps to reduce reliance on pilots to observe sharks,
improving efficiency and reducing pilot fatigue [48]. Furthermore, Purcell et al., [29] had
similar detection rates but also isolated animals into species categories, further enhancing
the capabilities and utility for use in beach safety programs. Due to these benefits, Al
should be trialled on drones operated at Queensland beaches.

There is potential for advanced camera technologies (e.g., hyper or multispectral
cameras) to improve the detection of sharks when conditions are suboptimal, such as when
turbidity or glare are higher, by selecting wavelengths that improve water penetration and
contrast of sharks [8,49]. Although, the optimal wavelength will likely vary depending on
the conditions and locations [8]. Colefax et al. [12] found that the band of wavelengths from
514-554 nm provided optimal contrast between marine fauna (including sharks, dolphins,
rays and fish) and the seabed when using a hyperspectral sensor. However, the high
cost of hyperspectral sensors, as well as the large amount of data they generate which
leads to time consuming post-processing, may limit their cost-efficacy [12]. Alternatively,
using spectral filters on a standard RGB camera to select only green wavelengths from
514-554 nm, can achieve similar results to using a hyperspectral camera, but at a much
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lower cost [12]. These advanced camera technologies and optimal wavelengths should be
trialled at Queensland beaches with shark analogues deployed, to determine whether they
can improve the detection rate of sharks in conditions specific to Queensland.

There is scope to expand the deployment of drones to other beaches in Queensland,
however before doing so it is prudent to quantify whether each individual beach meets
criteria designed to ensure they will be effective. Firstly, environmental conditions need to
be considered because some locations (particularly in North Queensland from 12° to 20°)
may have high turbidity that makes detection of sharks (if present) unlikely. Indeed, trial
flights conducted at Palm Cove near Cairns in North Queensland did not detect any sharks
and the water turbidity was often high. Airspace regulations are another key factor that will
govern where drones can be operated to detect sharks, because CASA regulations currently
prohibit the operation of drones anywhere within a 5.5 km radius of controlled airports.
Some beaches in Queensland fall within this regulation, including those on the southern
Gold Coast (near Gold Coast airport), mid Sunshine coast (near Maroochydore airport),
Cairns and Townsville. There are also limitations on the use of drones in some other areas,
such as important bird nesting sites at certain times of year. To maximise the usefulness
of the drones, it is advised that they are used at beaches with relatively high year-round
visitation rates and which have on-duty lifesavers/lifeguards to operate the drones and
with operational processes in place to respond to shark sightings. Another consideration
is the historical catch of sharks in SCP gear adjacent to the beach. Those beaches which
have a higher catch rate of potentially dangerous sharks due to their biophysical setting
(e.g., proximity to an estuary) and/or environmental conditions (e.g., a productive area
with lots of baitfish and other potential prey for sharks) should be prioritised as there is a
higher likelihood of sharks occurring in these areas. Examples of such locations include
Noosa main beach which is close to an estuary and where there is a relatively higher catch
of bull sharks compared to other locations, but water clarity is still relatively high. All of
these factors influencing the suitability of using drones at different locations have been
investigated in a previous report by Cardno [50]. This should be used as an important
resource to guide the identification of suitable beaches for drone operations.

5. Conclusions

The Queensland SharkSmart drone trial operated for a 12-month period across five
southeast Queensland beaches, detecting 174 sharks, demonstrating that drones can operate
over a range of conditions and successfully detect sharks close to beaches where water
usage is high by the public. Because of this, it is recommended that drones continue to
be operated at southeast Queensland beaches, with further expansion to new locations.
Opportunities to improve the effectiveness of drones for detecting sharks should also be
explored, such as by incorporating Al, optimal wavelengths and beyond visual line of
sight flights. The rapid evolution of drone technology will provide significant potential
for improving this form of non-lethal shark monitoring into the future and enhancing the
protection of ocean users at Queensland beaches.
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