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Simple Summary: The HRAS gene has been reported to cause cancer, and identifying alleles that
could potentially predispose one to cancer could lead to early diagnosis and better prognosis. Here
for the first time, we conducted a machine-learning approach to identify high-risk predictive alleles of
the HRAS gene. Our study reported alleles that may serve as potential targets for different proteomic
studies, diagnoses, and therapeutic interventions focusing on cancer.

Abstract: The Harvey rat sarcoma (HRAS) proto-oncogene belongs to the RAS family and is one of
the pathogenic genes that cause cancer. Deleterious nsSNPs might have adverse consequences at
the protein level. This study aimed to investigate deleterious nsSNPs in the HRAS gene in predict-
ing structural alterations associated with mutants that disrupt normal protein–protein interactions.
Functional and structural analysis was employed in analyzing the HRAS nsSNPs. Putative post-
translational modification sites and the changes in protein–protein interactions, which included
a variety of signal cascades, were also investigated. Five different bioinformatics tools predicted
33 nsSNPs as “pathogenic” or “harmful”. Stability analysis predicted rs1554885139, rs770492627,
rs1589792804, rs730880460, rs104894227, rs104894227, and rs121917759 as unstable. Protein–protein
interaction analysis revealed that HRAS has a hub connecting three clusters consisting of 11 proteins,
and changes in HRAS might cause signal cascades to dissociate. Furthermore, Kaplan–Meier bioin-
formatics analyses indicated that the HRAS gene deregulation affected the overall survival rate
of patients with breast cancer, leading to prognostic significance. Thus, based on these analyses,
our study suggests that the reported nsSNPs of HRAS may serve as potential targets for different
proteomic studies, diagnoses, and therapeutic interventions focusing on cancer.
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1. Introduction

The HRas proto-oncogene GTPase (HRAS) is one of the pathogenic genes that cause
cancer. The human HRAS gene is located on chromosome 11p15.5 and is responsible for
cell division by regulating the cellular signaling pathway using a molecular switch mecha-
nism [1]. HRAS is encoded by the RAS protein, which is commonly deregulated in human
cancer [2]. RAS is considered ‘undruggable’ because the RAS protein lacks a druggable
binding pocket [3]. Mutations in HRAS have been reported in rhabdomyosarcoma, salivary
gland carcinoma, thyroid carcinoma, and bladder and mouth carcinoma [4–7].

Single nucleotide polymorphisms (SNPs) account for more than 90% of all nucleic
acid sequence variations in humans. Non-synonymous single nucleotide polymorphisms
(nsSNPs) cause amino acid substitution, which may affect protein function and lead to
pathogenic phenotypes [8]. nsSNPs have also been reported to affect protein stability,
which impacts protein function and further alters a protein’s allosteric sites and its stabil-
ity [9,10]. nsSNPs in genes are responsible for cell growth and could potentially lead to
downregulation of the gene causing continuous proliferation, thus leading towards the
formation of cancer cells and has been associated with various human diseases [11–14].
Furthermore, analyses of putative functional SNP in cancer genes have been reported to
exhibit prominent improvement in human health in terms of personalized therapeutics [15].

Mutations in the HRAS gene have been reported to be common among different types
of cancer; however, the structural and functional effect of the reported mutations remains
vague. Understanding how the HRAS nsSNPs lead toward cancer could provide better
insights into understanding the influencing pathways, which hold implications for cancer
diagnosis and prognosis. Therefore, this study aims to investigate the nsSNPs of HRAS
in understanding its pathogenesis for elucidating the diagnosis and prognosis of cancer
using in silico analysis. The nsSNPs of the HRAS gene were extracted from the NCBI
database and screened for high-risk pathogenicity using multiple bioinformatics software
tools based on their high accuracy and frequency of use [16,17]. The various bioinformatics
steps involved in this study are shown in Figure 1.
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2. Materials and Methods
2.1. Retrieving nsSNPs

The HRAS nsSNPs were obtained from the NCBI dbSNP 2.0 (gene ID: 3265) database
(National Center for Biological Information) (http://www.ncbi.nlm.nih.gov/ (accessed
on 12 October 2020)). The amino acid and DNA sequences, SNP IDs, wild-type amino
acids, amino acid positions, missense amino acids, and minor allele frequency (MAF)
were also retrieved. A total of 180 nsSNPs were extracted from this database. The human
HRAS protein structure was accessed from the Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Data Bank (PDB) (ID: 4Q21).

2.2. Identifying the Damaging nsSNPs

Five different bioinformatics tools were used to predict the functional effects of nsS-
NPs. These tools were: PROVEAN (Protein Variation Effect Analyzer) embedded with
SIFT (Sorting Intolerant from Tolerant) [http://provean.jcvi.org/genome_submit_2.php?
species=human (accessed on 18 October 2020)], PolyPhen-2 (Polymorphism Phenotyp-
ing v2) [http://genetics.bwh.harvard.edu/pph2/bgi.shtm (accessed on 18 October 2020),
as well as SNPs&GO embedded with PhD-SNP (Predictor of human Deleterious Single
Nucleotide Polymorphisms) [https://snps.biofold.org/snps-and-go/snps-and-go.html
(accessed on 18 October 2020)]. The nsSNPs predicted deleterious by all five in silico tools
were considered high-risk nsSNPs and investigated further.

2.3. Verifying the High-Risk nsSNPs

PMut [https://mmb.irbbarcelona.org/PMut/ (accessed on 20 August 2021)] was used
to verify the nsSNPs identified by the previous five tools. The prediction has a range of 0–1,
where the range of 0–0.5 is considered neutral while that of 0.5–1 is considered disease [18].

2.4. Analyzing Protein Stability

I-Mutant3.0 [http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
(accessed on 28 October 2020)] was used to determine protein stability. Its predictions are
based on two support vector machines (SVM), and it uses ProTherm, which is now the most
comprehensive database of thermodynamic experimental data on protein stability when
mutated (calculated as free energy change value DDG) [19]. It also predicts the reliability
index (RI) of the results ranging from 0–10, where 10 is the highest reliability. Other than
inputting the protein sequence and the mutation sites, the temperature and pH setting
remained the same (25 ◦C, pH 7).

2.5. Analyzing Protein Evolutionary Conservation

ConSurf [https://consurf.tau.ac.il/ (accessed on 28 October 2020)] was used to es-
timate the evolutionary conservation of amino acid residues in a protein based on phy-
logenetic relations between homologous sequences [20]. In this study, 50 homologous
sequences were used to estimate the conservation score of each residue of HRAS protein.

2.6. 3D Protein Modeling

The 3D models for wild-type HRAS protein and its mutants were generated us-
ing Phyre2 [http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index (accessed
on 28 October 2020)] and I-TASSER (Iterative Threading ASSEmbly Refinement) [https:
//zhanglab.ccmb.med.umich.edu/I-TASSER/ (accessed on 5 November 2020)]. PDB for-
mats for wild-type HRAS and its mutants were obtained through Phyre2 by substituting
each nsSNP into the HRAS protein sequence [21]. Then, TM-align [https://zhanglab.ccmb.
med.umich.edu/TM-align/ (accessed on 28 October 2020)] was employed to compare
wild-type with mutant protein structures. This algorithm computes a template modeling
score (TM-score) and the root mean square deviation (RMSD) along with the superposition
of the structures. The TM-score gives values between 0 and 1, where 0.00 < TM score < 0.30
means random structural similarity, 0.50 < TM score < 1.00 means in about the same
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fold. While higher RMSD indicates greater variation between wild-type and mutant struc-
tures [22,23]. Finally, the proteins were subjected to I-TASSER, which predicts the top five
highest possible protein models for the sequence. All the models generated were verified
with ERRAT [https://servicesn.mbi.ucla.edu/ERRAT/ (accessed on 5 November 2020)],
and the resulting structures were viewed using Chimera 1.15.

2.7. Predicting Post-Translational Modification (PTM) Sites

The putative methylation sites at lysine and arginine residues in the HRAS pro-
tein sequence were predicted using MusiteDeep [https://www.musite.net/ (accessed on
20 August 2021)] and GPS-MSP 1.0 [http://msp.biocuckoo.org/online.php (accessed on
20 August 2021)]. A local database from UnitProtKB/Swiss-Prot was always provided
and updated in MusiteDeep. The known PTM sites were shown on the sequence accord-
ing to the confidence threshold [8]. GPS-MSP 1.0 was used to predict the potential of
methylation sites, and it only showed sites that were higher than the cutoff point [24].
Phosphorylation sites in the HRAS protein at serine, threonine, and tyrosine residues were
predicted using NetPhos 3.1 [https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
(accessed on 20 August 2021)] and GPS 5.0 [http://gps.biocuckoo.org/online.php (ac-
cessed on 20 August 2021)]. NetPhos 3.1 uses ensembles of neural networks to complete
this task, and residues with scores >0.5 the residue was considered phosphorylated [25].
Likewise, in GPS 5.0, the positions with scores higher than the cutoff point were listed by
the program [26]. Putative protein ubiquitylation sites at lysine residues were predicted by
BDM-PUB [http://bdmpub.biocuckoo.org/prediction.php (accessed on 20 August 2021)]
and iUbiq-Lys [http://www.jci-bioinfo.cn/iUbiq-Lys (accessed on 20 August 2021)]. In
BDM-PUB, the Bayesian Discrimination Method (BDM) was used to determine the proba-
bility score [27]. In iUbiq-Lys, SVM was used as a vector for calculation [28].

2.8. Predicting Protein–Protein Interactions by Search Tool for the Retrieval of Interacting
Proteins (STRING)

STRING (https://string-db.org/ (accessed on 3 December 2020)]) is a database that
calculates protein–protein interactions [29]. The database contains data from empirical
evidence, computational prediction tools, and collections of universal text. The interaction
of HRAs proteins with other proteins was determined using STRING.

2.9. PolymiRTS Database 3.0

PolymiRTS (https://compbio.uthsc.edu/miRSNP/ (accessed on 3 December 2020)])
analyses SNPs and INDELs in microRNA, which may affect the miRNA-mRNA interactions
resulting in altered expression of protein [30]. The effects of the variants are classified as
“D” (the derived allele disrupts a conserved miRNA site), “N” (the derived allele disrupts a
nonconserved miRNA site), “C” (the derived allele generates a new miRNA site), and “O”
(the derived allele creates a new miRNA site). The ancestral allele cannot be determined
with “D” and “C” groups indicating functional impacts.

2.10. Kaplan–Meier Plotter Analysis (KM Plotter)

The Kaplan–Meier plotter evaluates the impact of 54,000 genes on survival in 21 types
of cancer using meta-analysis-based detection and validation of biomarkers for cancer [31].
The overall survival (OS) is the period of time from the start of changes in gene expression
level until the time a patient diagnosed with it is still alive. A p-value less than 0.05 will be
considered statistically significant.

2.11. Molecular Dynamics Simulation

The structural stability of the mutants was simulated in a temporal manner using
molecular dynamics (MD) simulation for wild-type and each mutant structure using
GROMACS version 2020 [32,33]. The MD simulation was powered by the CHARMM36
force field and CHARMM-modified TIP3P water model [34]. The systems were solvated
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with water contained in a dodecahedron box with borders a minimum of 1.0 Å from the
protein structure. The system was deionized with default cations and anions to achieve
electrostatic neutralization. To prepare the system for the MD environment, the system was
minimized using the steepest descent algorithm until energy convergence. Then, NVT and
NPT simulations for 100 picoseconds each to equilibrate the system at the proper starting
temperature, pressure, and density were carried out. Finally, the system proceeded with
the production of MD simulations for 10 nanoseconds (ns) to observe protein structure
dynamics over time.

For analysis, the first and last frame of the protein throughout the production of
the MD simulation, as well as the computed stability metrics such as root mean square
deviation (RMSD), root mean square fluctuation (RMSF) per residue, and radius of gyration
(Rg) were extracted.

3. Results
3.1. nsSNPs Retrieved from dbSNP Database

nsSNPs were retrieved from the dbSNP database as it is the more extensive SNP
database [23]. A total of 2299 HRAS SNPs were extracted, of which 180 were nsSNPs
located at the intronic region (28 nsSNPs) and exonic region (152 nsSNPs).

3.2. Deleterious nsSNPs Identified in HRAS Gene

PROVEAN, SIFT, PolyPhen-2, SNPs&GO, and PhD-SNP were used to predict and
identify the most deleterious nsSNPs. A total of 33 nsSNPs were predicted as “pathogenic”
or “harmful” by all five tools, hence they were high-risk nsSNPs (Table 1).

3.3. Verification of 33 HRAS High-Risk nsSNPs by PMut and I-Mutant

The 33 high-risk nsSNPs were further verified using PMut. Table 2 shows the pre-
diction of the 33 nsSNPs by PMut for verification, where all of them were predicted to be
“disease”, indicating that it is damaging. I-Mutant 3.0 was used to predict protein stability
after each mutation. The effect on protein stability, reliability index (RI), and free energy
change value (DDG) were predicted (Table 2). A decrease in stability was observed for
30 nsSNPs, of which V14G, I36T, F90S, L113P, and L133P showed a DDG value lower than
−0.5, indicating a larger impact on the protein.

3.4. Conservation Profile of Deleterious nsSNPs in HRAS

ConSurf was used to calculate the evolutionary conservation of amino acid residues
of the HRAS protein. V14, D38, T58, G60, R73, K117, E143, and A146 were predicted as
functional, highly conserved, and exposed residues. G15 was predicted as structural, highly
conserved, and buried residue. G12, G13, R102, R123, R161, and R164 were predicted as
exposed but not functional residues. Y4, I36, M72, G75, G77, F90, L113, G115, A130, L133,
A134, and I163 were predicted as buried residues (Table 3).
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Table 1. High-risk nsSNPs identified by five in silico programs.

SNP ID Amino Acid Change
PROVEAN SIFT PolyPhen-2 SNPs&GO PhD-SNP

Sc (Cutoff = −2.5) Pred TI Effect Sc Pred RI Pred RI

rs764622691 Y4C −6.39 Deleterious Damaging 0 Pro-damaging 0.999 Disease 2 Disease 2
rs104894229 G12C −7.26 Deleterious Damaging 0.006 Pos-damaging 0.448 Disease 5 Disease 8
rs104894230 G12V −7.21 Deleterious Damaging 0.008 Pos-damaging 0.52 Disease 4 Disease 7
rs104894228 G13C −7.72 Deleterious Damaging 0 Pos-damaging 0.448 Disease 7 Disease 9
rs104894226 G13V −7.65 Deleterious Damaging 0 Pro-damaging 0.966 Disease 8 Disease 8
rs1589793707 V14G −5.85 Deleterious Damaging 0.001 Pro-damaging 1 Disease 2 Disease 7
rs1554885139 G15D −5.66 Deleterious Damaging 0.001 Pro-damaging 0.993 Disease 8 Disease 9
rs775056058 I36T −3.57 Deleterious Damaging 0.043 Pro-damaging 0.941 Disease 3 Disease 6
rs750680771 D38H −6.02 Deleterious Damaging 0 Pro-damaging 0.977 Disease 0 Disease 3
rs121917758 T58I −5.82 Deleterious Damaging 0 Pro-damaging 0.994 Disease 3 Disease 6
rs770492627 T58P −5.82 Deleterious Damaging 0.046 Pro-damaging 1 Disease 4 Disease 6
rs1589792804 G60S −5.82 Deleterious Damaging 0.001 Pro-damaging 0.959 Disease 4 Disease 6
rs730880460 G60V −8.73 Deleterious Damaging 0 Pro-damaging 0.997 Disease 5 Disease 7
rs755488418 M72R −5.77 Deleterious Damaging 0 Pos-damaging 0.873 Disease 2 Disease 7
rs749674880 R73C −7.91 Deleterious Damaging 0 Pro-damaging 0.97 Disease 5 Disease 9
rs756190012 G75R −7.93 Deleterious Damaging 0 Pro-damaging 0.999 Disease 5 Disease 8
rs1309567083 G77S −5.94 Deleterious Damaging 0.001 Pro-damaging 0.986 Disease 2 Disease 8
rs1589792507 F90S −7.15 Deleterious Damaging 0.006 Pro-damaging 0.997 Disease 3 Disease 8
rs1057517913 R102W −6.82 Deleterious Damaging 0 Pos-damaging 0.467 Disease 0 Disease 7
rs1389645747 L113P −5.81 Deleterious Damaging 0 Pro-damaging 0.986 Disease 5 Disease 8
rs917210997 G115R −7.45 Deleterious Damaging 0 Pro-damaging 0.99 Disease 5 Disease 7
rs104894227 K117R −2.77 Deleterious Damaging 0.004 Pro-damaging 0.964 Disease 0 Disease 5
rs369106578 R123C −6.81 Deleterious Damaging 0 Pro-damaging 0.99 Disease 3 Disease 8
rs730880464 R123P −5.73 Deleterious Damaging 0 Pro-damaging 1 Disease 6 Disease 8
rs1564788957 A130P −3.27 Deleterious Damaging 0.003 Pro-damaging 0.94 Disease 3 Disease 7
rs766801436 L133P −4.91 Deleterious Damaging 0.001 Pro-damaging 0.997 Disease 3 Disease 7
rs397517141 A134V −3.49 Deleterious Damaging 0.01 Pos-damaging 0.611 Disease 2 Disease 5
rs909222512 E143Q −2.67 Deleterious Damaging 0.009 Pos-damaging 0.765 Disease 1 Disease 4
rs104894231 A146P −4.57 Deleterious Damaging 0.001 Pro-damaging 0.994 Disease 6 Disease 7
rs121917759 A146V −3.67 Deleterious Damaging 0 Pos-damaging 0.596 Disease 4 Disease 7
rs758956556 R161C −7.16 Deleterious Damaging 0 Pro-damaging 1 Disease 3 Disease 7
rs1564787934 I163F −3.57 Deleterious Damaging 0.002 Pro-damaging 0.986 Disease 2 Disease 6
rs753977266 R164P −4.66 Deleterious Damaging 0.001 Pro-damaging 0.997 Disease 3 Disease 8

Pred = prediction; TI = tolerance index; Sc = score; Pro-damg = probably damaging; Pos-damg = possibly damaging; RI = reliability index.
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Table 2. P-Mut, I-Mutant, and TM-align predictions for deleterious nsSNPs.

nsSNP ID Amino Acid Change
PMut I-Mutant TM-Align Predictions

Prediction Stability RI DDG (kcal/mol) TM-Score RMSD

rs764622691 4, Y→ C 0.75 (Disease) Increase 0 −0.96 0.99193 0.54

rs104894229 12, G→ C 0.79 (Disease) Decrease 6 −1.20 0.99305 0.55

rs104894230 12, G→ V 0.83 (Disease) Decrease 4 −0.44 0.79612 2.03

rs104894228 13, G→ C 0.82 (Disease) Decrease 3 −1.17 0.99167 0.54

rs104894226 13, G→ V 0.89 (Disease) Decrease 5 −0.42 0.99167 0.54

rs1589793707 14, V→ G 0.90 (Disease) Decrease 10 −2.44 1 0

rs1554885139 15, G→ D 0.90 (Disease) Decrease 3 −0.80 0.99193 0.54

rs775056058 36, I→ T 0.89 (Disease) Decrease 9 −2.37 0.79612 2.03

rs750680771 38, D→ H 0.90 (Disease) Decrease 5 −0.48 0.98754 0.77

rs121917758 58, T→ I 0.90 (Disease) Increase 2 0.19 0.98201 0.93

rs770492627 58, T→ P 0.90 (Disease) Decrease 3 −0.33 0.99193 0.54

rs1589792804 60, G→ S 0.90 (Disease) Decrease 8 −1.13 0.99305 0.55

rs730880460 60, G→ V 0.90 (Disease) Decrease 6 −0.30 0.99167 0.54

rs755488418 72, M→ R 0.90 (Disease) Decrease 5 −0.87 0.80282 1.98

rs749674880 73, R→ C 0.89 (Disease) Decrease 3 −0.99 0.99193 0.54

rs756190012 75, G→ R 0.85 (Disease) Decrease 4 −0.39 0.98089 0.92

rs1309567083 77, G→ S 0.90 (Disease) Decrease 9 −1.49 0.99305 0.55

rs1589792507 90, F→ S 0.90 (Disease) Decrease 9 −1.99 0.98201 0.93

rs1057517913 102, R→W 0.85 (Disease) Decrease 5 −0.41 0.97805 1.05

rs1389645747 113, L→ P 0.89 (Disease) Decrease 6 −1.71 0.79612 2.03

rs917210997 115, G→ R 0.89 (Disease) Decrease 3 −0.65 0.99193 0.54

rs104894227 117, K→ R 0.90 (Disease) Decrease 1 −0.20 0.97805 1.05

rs369106578 123, R→ C 0.83 (Disease) Decrease 5 −0.78 0.79612 2.03

rs730880464 123, R→ P 0.90 (Disease) Decrease 6 −0.58 0.99851 0.2

rs1564788957 130, A→ P 0.90 (Disease) Decrease 0 −0.16 0.98089 0.92

rs766801436 133, L→ P 0.90 (Disease) Decrease 5 −1.68 0.98649 0.72

rs397517141 134, A→ V 0.89 (Disease) Decrease 4 −0.14 0.99857 0.20

rs909222512 143, E→ Q 0.89 (Disease) Decrease 7 −0.61 0.98929 0.60

rs104894231 146, A→ P 0.90 (Disease) Increase 3 −0.04 0.98754 0.77

rs121917759 146, A→ V 0.89 (Disease) Decrease 2 0.07 0.98607 0.51

rs758956556 161, R→ C 0.79 (Disease) Decrease 6 −0.91 0.98459 0.56

rs1564787934 163, I→ F 0.90 (Disease) Decrease 7 −1.39 0.98754 0.77

rs753977266 164, R→ P 0.80 (Disease) Decrease 6 −0.75 0.98899 0.74

RI = reliability index; DDG = free energy change value; RMSD = root mean square deviation.
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Table 3. ConSurf predictions showing conservation profile of amino acids in HRAS.

SNP ID Residue and
Position

Conservation
Score Prediction

rs764622691 Y4 5 Buried

rs104894229 G12 6 Exposed

rs104894230 G12 6 Exposed

rs104894228 G13 3 Exposed

rs104894226 G13 3 Exposed

rs1589793707 V14 9 Highly conserved and exposed (f)

rs1554885139 G15 9 Highly conserved and buried (s)

rs775056058 I36 8 Buried

rs750680771 D38 8 Highly conserved and exposed (f)

rs121917758 T58 9 Highly conserved and exposed (f)

rs770492627 T58 9 Highly conserved and exposed (f)

rs1589792804 G60 9 Highly conserved and exposed (f)

rs730880460 G60 9 Highly conserved and exposed (f)

rs755488418 M72 7 Buried

rs749674880 R73 8 Highly conserved and exposed (f)

rs756190012 G75 8 Buried

rs1309567083 G77 5 Buried

rs1589792507 F90 7 Buried

rs1057517913 R102 3 Exposed

rs1389645747 L113 7 Buried

rs917210997 G115 7 Buried

rs104894227 K117 9 Highly conserved and exposed (f)

rs369106578 R123 6 Exposed

rs730880464 R123 6 Exposed

rs1564788957 A130 2 Buried

rs766801436 L133 1 Buried

rs397517141 A134 8 Buried

rs909222512 E143 8 Highly conserved and exposed (f)

rs104894231 A146 9 Highly conserved and exposed (f)

rs121917759 A146 9 Highly conserved and exposed (f)

rs758956556 R161 3 Exposed

rs1564787934 I163 5 Buried

rs753977266 R164 3 Exposed
f = predicted functional residue (highly conserved and exposed); s = predicted structural residue (highly conserved
and buried).

A total of eight: 38H, T58P, G60S, G60V, R73C, K117R, E143Q, and A146V nsSNPs
were predicted to be highly conserved and exposed with decreased protein stability. These
were confirmed as the most damaging and selected for comparative modeling.

3.5. Comparative Modeling of Wild-Type HRAS and Its Mutants

To determine whether the eight high-risk nsSNPs alter the wild-type structure of
HRAS protein, Phyre2 was used to generate 3D structures of the wild-type protein and its



Biology 2022, 11, 1604 9 of 16

eight mutants. The c5c2kA template was used for predicting the 3D models. I-TASSER was
used to generate the 3D models for the wild-type HRAS protein and mutants. The common
templates used were 6cuoA, 5wdrA, 1c1y, 6zioA, 5tarA, and 1ctqA. For each input, five
models were generated by I-TASSER, which was verified by ERRAT, and the model with
the highest possible C-score and highest possible ERRAT value was selected (Table 4). The
models were visualized with Chimera 1.15 (Figure 2).

Table 4. Predicting the most deleterious missense nsSNPs of the protein isoforms of the HRAS gene.

dbSNP ID Variant
Type miR ID miRSite Function

Class
Context +
Score Change

rs142218590 SNP

hsa-miR-6886-5p agCTGCGGAagct D −0.22

hsa-miR-1184 aGCTGCAGAagct C −0.386
hsa-miR-1205 agCTGCAGAagct C −0.109
hsa-miR-1301-3p AGCTGCAgaagct C −0.187
hsa-miR-17-3p agCTGCAGAagct C −0.104
hsa-miR-3158-5p agCTGCAGAagct C −0.105
hsa-miR-4660 AGCTGCAgaagct C −0.125
hsa-miR-5047 AGCTGCAgaagct C −0.187
hsa-miR-544a agcTGCAGAAgct C −0.055

rs151229168 SNP
hsa-miR-6886-5p aagCTGCGGAagc D −0.22

hsa-miR-2115-5p aagctgTGGAAGC C −0.137
hsa-miR-3692-3p aagcTGTGGAAgc C −0.077

3.6. Post-Translational Modifications

Post-translational modifications (PTMs) are biochemical modifications of amino acids
that extend the structures and change the properties and functions of the protein, regulating
the structural confirmation of proteins, protein–protein interactions, and cellular signaling
processes [35]. Listing a few of many PTMs, methylation (N-methylation) occurs mainly on
lysine and arginine residues; phosphorylation on serine, threonine, and tyrosine residues;
and ubiquitylation on lysine residues only. The eight high-risk nsSNPs identified in this
study were further investigated to see if they have any effect on PTMs in HRAS protein.
The methylation predictors used were MusiteDeep and GPS-MSP 1.0. Only one residue
(K5) was predicted by MusiteDeep (cutoff point = 0.5), while GPS-MSP predicted (at a
very low cutoff point = 0) 11 lysine residues that can be methylated. The residue K5
was the only one in common between both tools (Figure 2). The phosphorylation sites in
HRAS protein were predicted by NetPhos 3.1 and GPS 5.0. NetPhos 3.1 predicted a total
of 19 residues (Ser:7, Thr:7, Tyr:5) that had the potential of being phosphorylated, while
GPS 5.0 predicted 31 residues (Ser:11, Thr:11, Tyr:9). The common sites predicted by both
tools are shown in Figure 3.
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wild-type HRAS protein and its mutant with mutation from Aspartic acid to Histidine at position 38. (C) Superimposed structures of wild-type HRAS protein
and its mutant with mutation from Threonine to Proline at position 58. (D) Superimposed structures of wild-type HRAS protein and its mutant with mutation
from Glycine to Serine at position 60. (E) Superimposed structures of wild-type HRAS protein and its mutant with mutation from Glycine to Valine at position 60.
(F) Superimposed structures of wild-type HRAS protein and its mutant with mutation from Arginine to Cysteine at position 73. (G) Superimposed structures of
wild-type HRAS protein and its mutant with mutation from Lysine to Arginine at position 117. (H) Superimposed structures of wild-type HRAS protein and its
mutant with mutation from Glutamic acid to Glutamine at position 143. (I) Superimposed structures of wild-type HRAS protein and its mutant with mutation from
Alanine to Valine at position 146.



Biology 2022, 11, 1604 11 of 16

Biology 2022, 11, x FOR PEER REVIEW 12 of 18 
 

 

3.6. Post-Translational Modifications 

Post-translational modifications (PTMs) are biochemical modifications of amino ac-

ids that extend the structures and change the properties and functions of the protein, reg-

ulating the structural confirmation of proteins, protein–protein interactions, and cellular 

signaling processes [35]. Listing a few of many PTMs, methylation (N-methylation) occurs 

mainly on lysine and arginine residues; phosphorylation on serine, threonine, and tyro-

sine residues; and ubiquitylation on lysine residues only. The eight high-risk nsSNPs iden-

tified in this study were further investigated to see if they have any effect on PTMs in 

HRAS protein. The methylation predictors used were MusiteDeep and GPS-MSP 1.0. 

Only one residue (K5) was predicted by MusiteDeep (cutoff point = 0.5), while GPS-MSP 

predicted (at a very low cutoff point = 0) 11 lysine residues that can be methylated. The 

residue K5 was the only one in common between both tools (Figure 2). The phosphoryla-

tion sites in HRAS protein were predicted by NetPhos 3.1 and GPS 5.0. NetPhos 3.1 pre-

dicted a total of 19 residues (Ser:7, Thr:7, Tyr:5) that had the potential of being phosphor-

ylated, while GPS 5.0 predicted 31 residues (Ser:11, Thr:11, Tyr:9). The common sites pre-

dicted by both tools are shown in Figure 3. 

 

Figure 3. Putative PTM sites of high-risk nsSNPs in HRAS protein. 

3.7. Protein–Protein Interaction Analysis 

Protein–protein interactions analysis was carried out to determine if the nsSNPs in-

teract with other proteins, thus altering phenotypic effects. The interaction analysis 

showed that HRAS is related to RAS1, PIK3CA, RASA1, BRAF, NF1, RALGDS, SOS1, 

ARAF, RIN1, and PIK3CG gene (Figure 4).  

Figure 3. Putative PTM sites of high-risk nsSNPs in HRAS protein.

3.7. Protein–Protein Interaction Analysis

Protein–protein interactions analysis was carried out to determine if the nsSNPs
interact with other proteins, thus altering phenotypic effects. The interaction analysis
showed that HRAS is related to RAS1, PIK3CA, RASA1, BRAF, NF1, RALGDS, SOS1,
ARAF, RIN1, and PIK3CG gene (Figure 4).

Biology 2022, 11, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 4. Protein–protein interaction network of HRAS with 10 partners. 

3.8. Prediction of nsSNPs within 3′ UTR 

PolymiRTS database was used for the prediction of nsSNPs within 3′ UTR of the 

HRAS gene. nsSNP within the 3′ UTR region may disrupt and/or create miRNA target 

sites. A total of three: rs142218590, rs151229168, and rs140060409 functional SNPs were 

predicted to affect the miRNA target sites, further creating new miRNA binding sites (Ta-

ble 4). 

3.9. Expression Levels of HRAS on Overall Survival (OS) in Patients with Cancers 

Kaplan–Meier plotter was used to determine the prognostic value of HRAS gene ex-

pression for breast, ovarian, lung, and gastric cancers by combining gene expression and 

cancer patient survival. Hazard ratio (HR) with 95% confidence intervals (CI) and log-

rank p-value were calculated. HRAS gene showed a hazard ratio (HR) = 9.53 (95% CI: 1.3–

69.88) and log-rank p-value = 0.006 for breast cancer; indicating that the result was statis-

tically significant (the relation between the high expression of HLA-G gene and greater 

survival rate). However, no significant differences were observed for bladder carcinoma 

(p = 0.6591), cervical squamous cell carcinoma (p = 1), colon adenocarcinoma (p = 0.4552), 

cutaneous melanoma (p = 0.3256), head-neck squamous cell carcinoma (p = 0.5036), kidney 

renal clear cell carcinoma (p = 1), kidney renal papillary cell carcinoma (p = 1), lung ade-

nocarcinoma (p = 9474), and ovarian cancer (p = 1). This indicates that HRAS deregulation 

can serve as a prognostic marker for patients’ breast cancer. 

3.10 Visualization and Analysis of MD Simulation 

RMSD, Rg, and RMSF per residue distributions using a Python library and Mat-

plotlib were visualized and plotted [36]. The RMSF of each residue for each model via the 

ChimeraX defattr method was also visualized [37]. 

4. Discussion 

The HRAS gene has been annotated in the cell proliferation of several carcinomas; 

however, the in silico analysis understanding of the structural and functional effect of 

deleterious nsSNPs has remained uncharacterized. The HRAS gene is reported to contrib-

ute to germline mutations that activate RAS/MAPK signaling to lead toward “RASopa-

thies” [38]. HRAS is also reported as a frequently mutated gene in cancers, subsequently 

reported as an effective RAS inhibitor [39]. Therefore, any changes in the HRAS protein 

Figure 4. Protein–protein interaction network of HRAS with 10 partners.



Biology 2022, 11, 1604 12 of 16

3.8. Prediction of nsSNPs within 3′ UTR

PolymiRTS database was used for the prediction of nsSNPs within 3′ UTR of the HRAS
gene. nsSNP within the 3′ UTR region may disrupt and/or create miRNA target sites. A
total of three: rs142218590, rs151229168, and rs140060409 functional SNPs were predicted
to affect the miRNA target sites, further creating new miRNA binding sites (Table 4).

3.9. Expression Levels of HRAS on Overall Survival (OS) in Patients with Cancers

Kaplan–Meier plotter was used to determine the prognostic value of HRAS gene
expression for breast, ovarian, lung, and gastric cancers by combining gene expression and
cancer patient survival. Hazard ratio (HR) with 95% confidence intervals (CI) and log-rank
p-value were calculated. HRAS gene showed a hazard ratio (HR) = 9.53 (95% CI: 1.3–69.88)
and log-rank p-value = 0.006 for breast cancer; indicating that the result was statistically
significant (the relation between the high expression of HLA-G gene and greater survival
rate). However, no significant differences were observed for bladder carcinoma (p = 0.6591),
cervical squamous cell carcinoma (p = 1), colon adenocarcinoma (p = 0.4552), cutaneous
melanoma (p = 0.3256), head-neck squamous cell carcinoma (p = 0.5036), kidney renal clear
cell carcinoma (p = 1), kidney renal papillary cell carcinoma (p = 1), lung adenocarcinoma
(p = 9474), and ovarian cancer (p = 1). This indicates that HRAS deregulation can serve as a
prognostic marker for patients’ breast cancer.

3.10. Visualization and Analysis of MD Simulation

RMSD, Rg, and RMSF per residue distributions using a Python library and Mat-
plotlib were visualized and plotted [36]. The RMSF of each residue for each model via the
ChimeraX defattr method was also visualized [37].

4. Discussion

The HRAS gene has been annotated in the cell proliferation of several carcinomas;
however, the in silico analysis understanding of the structural and functional effect of dele-
terious nsSNPs has remained uncharacterized. The HRAS gene is reported to contribute to
germline mutations that activate RAS/MAPK signaling to lead toward “RASopathies” [38].
HRAS is also reported as a frequently mutated gene in cancers, subsequently reported
as an effective RAS inhibitor [39]. Therefore, any changes in the HRAS protein at func-
tional and structural levels may alter its bio-molecular interactions. This study determined
the impact of deleterious HRAS nsSNPs at molecular, functional, and structural levels
using computational analysis to identify the most harmful nsSNPs and their impact on
RASSF5 protein.

Damaging nsSNPs were predicted using five different tools (PROVEAN, SIFT, PolyPhen-2,
SNPs&GO, and PhD-SNP), resulting in 33 nsSNPs predicted as “highly damaging”. In
order to further narrow down the number of possible pathogenic nsSNPs, PMut, I-Mutant,
and ConSurf tools were used to predict protein stability, the evolutionary conservation of
amino acids, the physical and chemical properties, and the changes in protein structure
after mutations. This resulted in eight “high-risk” nsSNPs: rs750680771, rs770492627,
rs1589792804, rs730880460, rs749674880, rs104894227, rs909222512, and rs121917759, which
were predicted (i) pathogenic by all five predicting tools; (ii) reduced protein stability; and
(iii) evolutionary conservation showed these nsSNPs as highly conserved. This indicated
that these nsSNPs with altered protein stability could cause misfolding, degradation, or
aberrant conglomeration of proteins [40]. Moreover, we also found that these highly
deleterious nsSNPs with high conservation scores could increase the risk of tumorigenesis
by inactivating HRAS.

PTMs are essential in regulating the structures and functions of proteins and are
involved in protein–protein interactions and cell signaling [41,42]. The eight “high-risk”
nsSNPs were further investigated to determine their effect on PTM in the HRAS gene.
The phosphorylation of HRAS at Y4C, T58I, and T58P was predicted to cause functional
impairment leading to destabilization of the protein, eventually enhancing the harms
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of PTM impairment (Figure 3). As PTMs can modify the functions and regulate the
expression of a protein, mutations in PTM regions can cause the regulation mechanism
of the protein to malfunction, which will lead to the formation of cancer cells. Compared
with ActiveDriverDB (https://www.activedriverdb.org/ (accessed on 3 December 2020)),
the phosphorylation sites in Figure 4 matched the information. In a study by Ting and
colleagues (2015), the authors found that phosphorylation of Y137 could enhance the
signaling capacity of the HRAS protein by changing the protein conformation and effector
binding [43]. While no methylation sites were shown on the website, it did show a few
ubiquitination sites. However, only one (K170) predicted by BDM-PUB matched it. We
followed the results using ubiquitination predictors and considered that no ubiquitination
sites were predicted. The polarity and hydrophobicity of these three nsSNPs were also
determined as it contributes to the protein’s structure and functionality. The prediction
revealed that a polarity change was observed for T58I and T58P, indicating a change from
neutral to hydrophobic and hydrophilic.

The structural consequences of these deleterious nsSNPs were predicted using the
Phyre2 homology modeling tool. Six templates: 6cuoA, 5wdrA, 1c1y, 6zioA, 5tarA, and
1ctqA, were utilized to generate the wild-type and mutant protein models of the HRAS
protein. Moreover, I-TASSER was used to calculate the C-score, which was verified by
ERRAT. The model with the highest possible C-score and highest possible ERRAT value
was selected. Based on these criteria, the eight nsSNPs were selected.

The protein interaction network of HRAS determined using the STRING tool showed
a strong network (RAF1, P1K3CA, RASA1, BRAF, NF1, RALGDS, SOS1), and a negative
regulation of the fibroblast apoptotic process. HRAS, an upstream activated protein, binds
to RAF and MEK kinases and transduces intra and extracellular signals tyrosine receptor
kinases (Trk) in the MAPK/ERK pathway. Therefore, nsSNPs in HRAS may inhibit the
MAPK/ERK pathway causing the restoration of tumor cells to a non-transformed state and
increasing the activation of the ERK/MAPK signaling pathway leading to the occurrence
and development of tumors [44].

microRNAs have been associated with cancer-associated biological processes, such
as proliferation, differentiation, apoptosis, metabolism, invasion, metastasis, and drug
resistance. Furthermore, the pathological origin of cancer has also been proven to be
directly related to the dysregulation of miRNAs [45]. The polymiRTS analysis in this study
showed that the rs142218590, rs151229168, and rs140060409 functional SNPs were predicted
to affect the miRNA target sites, further creating new miRNA binding sites. Therefore, this
might influence the regulation of HRAS, leading to pathological conditions [46].

This study also evaluated the HRAS nsSNPs against different types of cancer using
the Kaplan–Meier bioinformatics analyses. The results indicated that the HRAS gene
deregulation might affect the overall survival rate of patients with breast cancer and thus
affect prognosis significance. This finding is in agreement with a study by Bieche and
colleagues (2021) that reported that HRAS-mutated AMEs could potentially be treated with
MEK inhibitors [47]. Another study by Zhumakayeva and colleagues (2019) reported the
clinical applicability of HRAS as a prognostic factor or to serve as a therapeutic target for
breast cancer treatment [48].

Lastly, we performed 10 ns MD simulations for the wild-type HRAS and each mutant
structure to simulate the structural stability of the mutant over time. All models were
relatively stabilized without big structural fluctuations, as illustrated by the RMSD and
RMSF scores of less than 1 nanometer (nm) (Figure 5). As expected, we observed relatively
larger fluctuations at the C-terminus coiled structure unanimously for all models. Moreover,
all models’ compactness remained stabilized per their invariant Rg values. Notably, T58P
and K117R mutants consistently exhibited higher RMSD values, indicating more structural
instability than others; however, most of their structural components, except for the C-
terminal coils, fluctuated negligibly with RMSF of less than 0.4 nm.

https://www.activedriverdb.org/
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5. Conclusions

The HRAS protein plays a vital role as a tumor suppressor. This study reports three
major nsSNPs in HRAS: Tyrosine to Cysteine at position 4 (rs764622691), Threonine to
Isoleucine at position 58 (rs121917758), and Threonine to Proline at position 58 (rs770492627)
as high-risk. Furthermore, nsSNPs deregulation was also reported to affect the prognosis
of breast cancer. These nsSNPs can be strongly considered as key molecular biomarkers for
the diagnosis and prognosis of cancer. Nonetheless, in vitro studies are needed to explore
the effects of these polymorphisms on the structure and function of the protein.
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