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Simple Summary: Collagen is useful in many applications including cosmetics, medicine, yarn
production and packaging. Collagen can be recovered from skins of animals raised for meat. Here,
we review methods for the extraction and purification of collagen from animal skins.

Abstract: Collagen is the most abundant structural protein in animals. It is the major component of
skin. It finds uses in cosmetics, medicine, yarn production and packaging. This paper reviews the
extraction of collagen from hides of most consumed animals for meat with the focus on literature pub-
lished since 2000. The different pretreatment and extraction techniques that have been investigated
for producing collagen from animal skins are reviewed. Pretreatment by enzymatic, acid or alkaline
methods have been used. Extraction by chemical hydrolysis, salt solubilization, enzymatic hydrolysis,
ultrasound assisted extraction and other methods are described. Post-extraction purification methods
are also explained. This compilation will be useful for anyone wishing to use collagen as a resource
and wanting to further improve the extraction and purification methods.

Keywords: collagen; extraction; skin

1. Introduction

Animal hides have been used in diverse applications since prehistoric times. Hide
or skin contributes between 3% and 12% (Table 1) to the weight of a live mammal and
may reach up to 20% in poultry (Table 1) [1]. Hides are mostly a by-product of meat
production [2–4]. As meat for human consumption is mostly bovine (beef), porcine (pork),
ovine (lamb), hircine (goat) and galline (chicken) [5–7], hides of these animals are most
readily available. Hides are generally a low value by-product of meat production, and for
some animals, for example sheep, typically go to landfill. Hides have the potential to be
used for adding value to meat production operations [8]. Increasing global consumption of
meat (Figure 1) inevitably means an increasing supply of hides [7]. These hides need to be
better utilized also to minimize environmental impact [7,9].
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Among other applications, hides are used: as a source of the protein keratin for
extraction and incorporation in animal feed [10], fertilizers [11], cosmetics [12] and food
packaging [13]. In addition, gelatine, a food additive and packaging material [14,15],
is produced from hides. Furthermore, hides are a major source of collagen for use in
cosmetics [16,17], medicine [18], yarn production [19] and packaging [16,20].

This paper reviews the extraction of collagen from hides of the most commonly
consumed animals as listed in Table 1. The focus is on the literature published since 2000.

Table 1. Skin as percentage of total body mass.

Animal Skin (% wt/wt) Reference

Cattle 5.1–8.5 [1]
[1]
[1]

Sheep 11.0–11.7
Pig 3.0–8.0

Goat ~9.0 [21]
Chicken 8.0–20.0 [22]

2. Collagen

Collagen is the most abundant structural protein in all animals [23]. It is a component
of the extracellular matrix (ECM) of various connective tissues such as skin, bones, cartilage
and tendons [24]. Naturally synthesized collagen molecules consist of three long helicoidal
chains of amino acid residues with nonhelical terminals at both ends [24] (Figure 2). At least
46 unique polypeptide chains have been found in collagens of various animals [23].

Collagen chains most commonly consist of the repeating motif Gly-X-Y where Gly
is the amino acid glycine while X and Y are generally the amino acids proline and
4-hydroxyproline, respectively [23]. This motif is distinct from the other ECM compo-
nents [23,25,26]. The α-chains of different types of collagens vary in composition, depend-
ing on the frequency of repetition and the length of the segment containing the Gly-X-Y
motif, with or without interruptions, and the amino acid residues that occur in positions X
and Y [27,28].
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Figure 2. Skin-collagen-molecular structure. Adapted with permissions from: (1) Tang et al., Journal
of Voice, published by Elsevier Inc. (Amsterdam, The Netherlands), 2017; (2) Reilly and Lozano,
Plastic and Aesthetic Research, published by OAE Publishing Inc., 2021 (©2021 MINERVA Research
Labs Ltd. (106 New Bond St. London, UK) all rights reserved) [29,30].

The arrangement of the polypeptide chains and the variation of the terminals gives
distinction to the types of collagens, both fibrillar and non-fibrillar. Collagen types vary
in conformations resulting in different lengths of helices and distributions of non-helical
segments. These criteria are used to group collagens into several groups. General groups
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include fibrillar collagens, FACIT (fibril associated collagens with interrupted triple helices),
FACIT-like collagen, basement membrane collagen, beaded filament collagen, transmem-
brane collagen, short-chain collagen, and unclassified collagen [31,32]. At least 29 types
of collagens are currently recognized [27,31]. Fibrillar collagens are the most abundant
ECM proteins in vertebrates, providing stability, connectivity and form to tissues and
organs [32,33]. The most abundant fibrillar collagen in most tissues is type I collagen [34].
It is primarily present in fibril surfaces and connective tissues of the skin and bones [35].
Collagen type I has a rod-like structure made of three helically coiled chains. It has a
molecular weight of approximately 300 kDa, with a length of 280 nm, a diameter of 1.4 nm
and contains about 1020 amino acid residues per chain [27,36,37].

Collagen is widespread in mammal tissues (Figure 3) [24,38] and therefore can be
sourced from various abattoir by-products including hides [38]. The type of collagen
depends on the tissue type. Fibrillar collagens associated with different tissue types
are shown in Table 2 [32,39]. Biocompatibility, biodegradability, and low antigenicity of
collagen make it an attractive material for various applications [16].
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Figure 3. Collagen content of different body parts of animals. Reproduced with permission from
Jafari et al., Polymers, 2020; 12(10):2230. ©2020 MDPI [24].

Table 2. Collagen types, compositions and sources (based on [39,40]).

Type Molecule Source

I [α1(I)]2[α2(I)] Skin, tendon, bone, ligaments, interstitial tissues
II [α1(I I)]3 Intervertebral disc, cartilage, vitreous humor
III [α1(I I I)]3 Cardiovascular vessel, uterus, skin, muscle

V [α1(V)][α2(V)][α3(V)]
Similar to type I, also cell cultures, fetal tissues;

associates with type I
XI [α1(XI)][α2(XI)][α3(XI)] Cartilage, in vertebral cartilage and bone enamel

Differences in Skin of Different Animals

There are significant differences in skins of different animals. These include both the
composition and the structure of the skin. For example, skins of chicken [41] and sheep
are high in fat whereas beef and goat have skins with a lower fat content [42]. There
may be differences in the composition of the collagen, specifically the hydroxyproline
content. The arrangement of the collagen fibrils also varies markedly among species, with a
higher alignment of the fibrils in species such as goat, buffalo and cattle than in sheep
and pig [43,44]. Within a species, different breeds may show differences in skin structure
and composition. In cattle, ‘looseness’ is a known problem in leather processing which
results from differences in collagen fibril alignment [45]. These compositional and collagen
structural differences have to potential to affect ease of extraction.

3. Collagen Extraction Process

The collagen extraction process depends on the source material. The aim is to remove
all the non-collagenous matter and recover collagen as the final product. The recovery
process typically involves pretreatment of the source tissue, collagen extraction, and further
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purification [46]. For recovery from skin, the pretreatment steps are generally preceded by
washing the skin by soaking in cold water for a few days while replacing the water every
few hours. This is followed by cutting the skin into more manageable pieces. Typically,
skin is cut into small 1 cm2 pieces [47].

3.1. Pretreatment

Pretreatment is intended to break the covalent intermolecular crosslinks between
collagen molecules. In vivo, these crosslinks facilitate collagen’s structural and mechanical
functions in tissues and organs [33]. These crosslinks breakdown very slowly even in boiling
water. Various mild chemical treatments are used for breaking the covalent links [37]. Dilute
acids and alkalis are typically used for partial hydrolysis of the collagen. This cleaves the
crosslinks, while leaving the collagen chains intact [48]. Certain enzymes may also be used
for the pretreatment step [37].

3.1.1. Acid Pretreatment

For acid pretreatment, washed and chopped skin pieces are immersed in dilute acid at
a controlled temperature. The acid permeates the skin causing it to swell to between two-
to three-times its initial volume and hydrolyzes the crosslinks [38,49,50]. Acid pretreatment
is suitable for relatively fragile skins [50] that have a lower degree of fibre intertwinement,
such as porcine and fish skins [38].

3.1.2. Alkaline Pretreatment

Dilute alkalis such as sodium hydroxide (NaOH) and calcium hydroxide (Ca(OH)2)
are used for pretreament. The duration of pretreatment depends on the thickness of the
material being treated [49]. Alkalis are particularly effective in extracting collagen from
thick and hard materials [8,38]. Pretreatment with NaOH may take from a few days to
weeks to complete [48]. The lengthy treatment notwithstanding, alkaline treatment with
NaOH is often preferred as it swells the skin substantially ensuring diffusion of the alkali
deep into the tissue matrix [51]. Alkalis hydrolyze the unwanted non-collagenous proteins,
lipids, pigments, and other organic material [52]. The treatment conditions such as the
temperature, duration and the concentration of alkali significantly impact the efficacy of
removal of the unwanted non-collagen material [53]. A NaOH concentration ranging from
0.05 to 0.10 kmol m−3 is sufficient for the pretreatment [38]. Within this concentration
range, much of the acid soluble collagen and its native structure are retained in the tissue so
long as the treatment temperature is between 4 and 20 ◦C. A high concentration of NaOH
(e.g., ≥0.2 kmol m−3) can lead to a substantial loss of acid soluble collagen. A 0.5 kmol m−3

NaOH concentration may degrade the native structure of acid soluble collagen [38].

3.1.3. Skin-Specific Pretreatments

The source, or the nature of the skin, may necessitate skin-specific pretreatments
including soaking, fleshing, dehairing, and cutting [46]. For example, skins with fur and
feathers may require different pretreatments. Mechanical slicing may be used to remove
some of the fat adhering to the hide [20,54–58]. Alcohols such as butyl alcohol may be used
to solubilize fat and pigments from chicken [55,56] and bovine skins [52,53,59,60]. Other
pretreatment steps may use heating [61,62], detergents [63], solvents such as petroleum
ether [64,65], hexane [66], and hot water rinses [67]. A demineralization step may involve
the use of the chelating agents such as ethylene diamine tetra acetic acid (EDTA) [68,69].

3.2. Extraction

Conventional extraction methods have typically relied on chemical hydrolysis using
acid, alkali or salt solubilization. In some cases, the chemical extraction may be aided by
ultrasound or microwaves, and enzymes [70]. Extraction temperature is controlled at a
relatively low value (4 ◦C) to minimize degradation of collagen [52].Extraction methods can
be tailored depending on the desired yield and the properties of the final product. Collagen
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properties such as the average length of the polypeptide chains, the solubility, the solution
viscosity, thermal stability, emulsifying capacity, and water retention are affected by the
specifics of the extraction method [57,70]. In addition, the specific processing conditions,
including the pretreatment used, the storage conditions for the hides, and their specifics (an-
imal type, age and gender) influence the quality of the extracted collagen [27]. For example,
breed and age of poultry affects the characteristics of the collage extracted [56,61]. Differ-
ences in collagen structure, for example the hydroxyproline content, can also affect the
extraction process.

3.2.1. Acid Hydrolysis

Collagen is most commonly extracted from skins by a hydrolysis treatment involv-
ing either acids or alkalis. Both inorganic and organic acids can effectively cleave bonds
in collagen to enable extraction of the fibrils [71]. Under acidic conditions the collagen
molecules have a net positive change and the resulting electrostatic repulsive force between
them facilitates molecular separation [52]. The organic acids commonly used are acetic,
chloroacetic, citric and lactic acids. Acetic acid has been widely reported for collagen
extraction [16,48,50,54–56,59,71,72]. Among inorganic acids, the commonly used ones in-
clude hydrochloric, sulfuric and nitric acids [8,38,72,73]. Organic acids are apparently more
effective for cleaving collagen crosslinks, and result in higher extraction yield [16,72,74]
compared to mineral acids. Organic acids also solubilize non-crosslinked collagens [73].
For extraction with acetic acid, a typical concentration is 0.5 kmol m−3 with contact time of
2472 h and continuous stirring [75].

3.2.2. Alkali Hydrolysis

Alkaline hydrolysis may also be used to extract collagen most commonly with aqueous
sodium hydroxide or potassium hydroxide [52] although calcium oxide, calcium hydroxide,
and sodium carbonate can also be used as extractants [76]. Alkalis have a tendency to
hydrolyze collagen fibrils [71] and the amino acids cysteine, histidine, serine, and threonine
may be destroyed in the process [52,76]. The use of alkali hydrolysis appears to be mostly
confined to extracting collagen from leather processing waste [71,77], however, a collagen-
based flame retardant has been produced from collagen obtained by alkaline extraction of
otherwise untreated cattle skin [78].

3.2.3. Salt Solubilization

Solubilization with salts is used less commonly [38,52]. Solutions of neutral salts
are effective in solubilizing collagen and are commonly used in extraction. Examples
of the salts used are citrates, phosphates, sodium chloride, and Tris-HCl [38]. Collagen
type I dissolves at salt concentrations of <1.0 kmol m−3 but precipitates at concentrations
exceeding 1.0 kmol m−3 [71]. This limitation on salt concentration requires careful control
when extracting with salts compared to alkaline and acid hydrolysis [70].

3.2.4. Enzyme Hydrolysis

Enzyme hydrolysis has been developed to address some of the shortcomings of the
more traditional methods [70]. Enzyme hydrolysis may be used in combination with
some of the traditional chemical methods [71]. Enzyme hydrolysis offers better reaction
selectivity and is less damaging to collagen. Therefore, it has the potential to maximize
collagen yield and purity of the extracted product [71]. Enzymes tend to be much more
expensive than acids, alkalis and salts, but they can be used under mild reaction conditions.
Compared to chemicals, enzymatic treatment is less corrosive to processing equipment,
consumes less energy, produces less waste, allows better control of degree of hydrolysis,
and the final hydrolysate has a lower salt content [70,71]. Hybrid methods involving
chemicals as well as enzymes have been reported [71].

Proteolytic enzymes are used in collagen extraction. These enzymes may be of animal
origin (e.g., trypsin, pepsin), plant origin (e.g., bromelain, papain, ficin), or microbially
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produced single or mixed enzymes (e.g., collagenase, proteinase K, Alcalase® (Novozymes,
Bagsværd, Denmark), Nutrase® (Nutrex, Hoogbuul, Belgium), Flavourzyme® (Novozymes,
Bagsværd, Denmark), and Protamex® (Novozymes, Bagsværd, Denmark)). Pepsin from
animal sources is most widely used in collagen extraction [8,16,52]. Pepsin, trypsin and
papain only act on the non-helix portion of the peptide chain of collagen (the ends) and
leave the structurally important helical portion intact [71]. Additionally, the extracted
pepsin-soluble collagen generally has a higher purity as the non-collagenous proteins
are efficiently hydrolyzed by the enzyme. Pepsin treatment also increases acid solubility
of collagen, which increases the extraction efficiency if used in combination with acid
extraction. The yield of pepsin soluble collagen is significantly affected by the degree of
crosslinking in the telopeptide region of the peptides [70]. The plant enzymes such as
papain, also allow good control of the extent of hydrolysis of the protein substrate [38].

A two-step extraction process without a preceding treatment has been reported for
recovery of collagen from sheepskin; an enzymatic step was used first and this was fol-
lowed by acid hydrolysis [79]. Another hybrid extraction procedure using acetic acid in
combination with pepsin has been described by several authors [55,56,59,60,62,68,80–84].

3.2.5. Ultrasound-Assisted Extraction

Application of ultrasound (frequency of ≥20 kHz) during collagen extraction improves
yield and reduces the time required for extraction [85]. Ultrasound generates intense
turbulence in a liquid resulting in enhancement of mass transfer and rates of chemical
reactions [38,86]. In ultrasound-assisted acid extraction of collagen from sea bass skin the
structure of the extracted collagen remained undamaged [87], although sufficiently intense
ultrasonic treatment has the potential to damage protein structure. The collagen yield is
influenced by the amplitude of ultrasound and the duration of the treatment. A higher
amplitude has been found to shorten extraction time and enhance yield [70]. Ultrasound
assistance has been found to damage collagen structure during alkali treatment because the
alkali may weaken hydrogen bonds and break parts of covalent bonds in collagen which
then facilitates damage by ultrasound [64]. However, with enzyme treatment, the yield
and collagen purity are improved using ultrasound and the extraction time is reduced.
In ultrasound-mediated pepsin-based extraction of collagen from cattle tendon, extraction
efficiency and the collagen quality were enhanced compared to a process involving only
the enzyme [75]. Use of sonication in combination with enzymes increases collagen yield
and shortens extraction time [88]. Ultrasound treatment is generally simple, reduces the
need for corrosive chemicals, and can be carried out economically and safely. Damage to
the structure of collagen has been observed in some cases [64]. Damage may be minimized
by optimization of the treatment (ultrasound amplitude, duration, concentration of enzyme
or other chemical, temperature) for the specific collagen source [38,52,88].

3.2.6. Other Extraction Methods

Microwave-assisted. Microwave-assisted extraction has been extensively described.
Microwaves, a form of electromagnetic radiation used in microwave cooking, disrupt
cell and tissue structure [89,90], facilitating extraction. Microwaves penetrate deeply in
tissue [90]. Microwave assistance has been found to speedup acid and enzyme action
compared to equivalent treatments without the microwaves [89].

Mechanical agitation. Tissue solubilization processes involving acids, alkalis and
enzymes are generally enhanced by mechanical agitation. Agitation improves hydrolysis by
improving mass transfer of enzymes and chemicals into tissue. Thus, it shortens extraction
time or enhances collagen yield in a given extraction time [91]. Agitation-assisted hydrolysis
for collagen recovery from jellyfish tissue was shown to enhance yield by at least 5-fold
compared to hydrolysis under static conditions using acid, or enzymes alone [92]. Similar
observations were reported by others [68].
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3.2.7. Precipitation of Solubilized Collagen

Once the collagen has been solubilized by the methods described above, it needs to
be precipitated from solution. Salts are most often used to achieve this, with a salt concen-
tration exceeding 1.0 kmol m−3. This treatment has been used for collagen from chicken
skin [62,63,80,93], sheep and goatskin [54,55,68,81], pigskin [82,94], and cattle skin [59,95].

3.3. Post Extraction: Purification

In addition to collagen, a crude collagen extract typically contains neutral salts and non-
collagen proteins [46]. Collagen can be purified from this extract to obtain collagen fractions
with different molecular weights. Purification processes use multiple steps [96] which may
include filtration and centrifugation [85]. Target protein, or unwanted proteins, may be
precipitated from solution by “salting out” (adding a high concentration of salt to extract).

Th salting out of collagen, or other proteins, in a crude extract is influenced by several
factors, including temperature, pH, the ionic strength, the salt used, and the specifics of the
proteins involved. Generally, collagen is less soluble than the contaminating proteins and
may be precipitated by salting out. Salting out conditions must be selected to minimize
coprecipitation of the other proteins.

Lyotropic series can be used as a guide in selecting salts for salting-out [46,97]. Both
anions and cations in a salt are ranked in the order of their salting-out ability [46]. Anions
are more efficient in salting out than cations. For anions, the salting out efficiency decreases
in the following order: F− ≈ SO2−

4 > HPO2−
4 > CHCOO− > Cl− > NO−

3 > Br− > ClO−
3 >

I− > ClO−
4 > SCN−. For cations, the salting out performance decreases in the following

order: NH+
4 > K+ > Na+ > Li+ > Mg2+ > Ca2+. Neutral salts produced by combining

a strong anion and a cation from the above series, have a strong ability to precipitate
collagen from a solution. Sodium chloride is a neutral salt with a strong precipitating effect.
Although ammonium sulfate is generally the best for salting out proteins, it is not a neutral
salt and its constituent ions are often not acceptable in products intended for biomedical
applications [46]. Neutral salts have the advantage of not significantly affecting the pH of a
solution, as pH is also a factor in slating out.

For precipitation of collagen, a suitable mass of a neutral salt is added to a specific
volume of the collagen containing solution [46]. The pH is adjusted to 7 by adding sodium
hydroxide. The resulting solution is allowed to stand for 4–12 h. The collagen precipitate
is collected by centrifugation. The recovered precipitate may be dissolved and subjected
to a second round of salting-out. This procedure may be repeated twice or more for
further purification [46]. Refrigerated centrifuges (4 ◦C) are typically used in recovering
the precipitate.

The precipitated collagen contains a large amount of salt. This is removed by dialysis.
Precipitated collagen is placed in dialysis bag and dialysed against an acidic solution or
deionised water. During dialysis, the dialysate is periodically changed to increase the rate
of ion migration [96]. Various dialysis schemes have been reported [38,59]. A single or
multiple dialysis stages may be used. Dialysis may take 4 to 10 days to sufficiently remove
the salts [46]. This slow step contributes nearly 50% to the total time required for the entire
collage extraction process [46].

Purification methods may be customized to recover collagen of a certain molecular
weight range [70]. Various types of membrane filtrations and chromatographic separations
can be used to finetune the molecular weight of the collagen product [96,98].

4. Specific Extraction Methods

The collagen extraction methods that have been described in the literature are summa-
rized in Table 3.
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Table 3. Pretreatment, extraction and isolation methods for collagen production from skin.

Pretreatment Extraction and Isolation Reference

Chicken

Hot-water bath (40 and 60 ◦C, 1 h)

Multi-step extraction (4 ◦C): (1) Protease inhibitors solution: 1 kmol m−3

NaCl and 50 × 10−3 kmol m−3 Tris-HCl with PhCH2SO2F
(1 × 10−3 kmol m−3), MalNEt (10 × 10−3 kmol m−3) and EDTA

(20 × 10−3 kmol m−3) for 24 h; (2) Ethylene diamine dihydrochloride,
24 h; (3) 0.5 kmol m−3 acetic acid; (4) 0.5 kmol m−3 acetic acid with

pepsin (1 mg/mL). Followed by precipitation steps: Ammonium sulfate
(25% saturation) for precipitation in between extraction rounds. NaCl

(crystals) for collagen type-specific precipitation.

[62]

Non-collagen removal (0.1 kmol m−3

NaOH, 6 h); fat removal (10% v/v butyl
alcohol, 24 h, 4 ◦C)

Acid hydrolysis (0.5 kmol m−3 acetic acid, 42 h, 4 ◦C); precipitation
(2 kmol m−3 NaCl); dialysis (water); centrifugation

[93]

Non-collagen removal (0.1 kmol m−3

NaOH, 6 h); fat removal (4% detergent,
Triton X-100 and 5% KCl, 12 h)

Acid hydrolysis (0.5 kmol m−3 acetic acid, 3 days at <10 ◦C);
precipitation (2.5 kmol m−3 NaCl and 0.05 kmol m−3

Tris-(hydroxymethyl)-aminomethane); centrifugation
[63]

Fat and pigment removal (centrifugation) Acid hydrolysis (0.5 kmol m−3 acetic acid, 72 h at 4 ◦C); centrifugation;
dialysis (distilled water)

[61]

Non-collagen removal (0.1 kmol m−3

NaOH, 24 h at 4 ◦C); fat removal (10%
butyl alcohol, 24 h at 4 ◦C)

Acid hydrolysis (0.5 kmol m−3 acetic acid, 24 h at 4 ◦C); vacuum
(varies depending on breed)

[99]

Fat and pigment removal (centrifugation);
non-collagen removal (2 kmol m−3

NaOH, 12 h)

Acid hydrolysis (0.5 kmol m−3 acetic acid, 24 h at 4 ◦C); precipitation
(0.9 kmol m−3 NaCl); for acid insoluble collagen: (1) heat soluble

collagen (95 ◦C), (2) enzyme hydrolysis (1% w/w pepsin; centrifugation;
dialysis (deionized water)

[80]

Sheep

Conducted at 4 ◦C. Non-collagen removal
(0.1 kmol m−3 NaOH, 6 h); demineralize

(0.5 kmol m−3 EDTA-2Na, 48 h)

Acid hydrolysis (0.5 kmol m−3 acetic acid, 3 h at 20 ◦C); enzyme addition
(pepsin 1 g L−1, 48 h); precipitation (2.6 kmol m−3 NaCl); centrifugation;
second hydrolysis (1 kmol m−3 NaCO3, trypsin 1:50 w/v at 60 ◦C from

10 min to 4 h)

[68]

Wash; dehair (deionized water)
Acid-enzyme hybrid (0.5 kmol m−3 acetic acid, 0.01 and 0.001 g g−1

trypsin, at 20 and 35 ◦C, pH 7 and 9 for 30–360 min); filtration
and centrifugation

[79]

Goat

Non-collagen removal (0.1 kmol m−3

NaOH, 0–48 h at 4 ◦C)

Conducted at 4 ◦C. Acid-enzyme hybrid (0.5 kmol m−3 acetic acid with
0.1% w/v pepsin, 24 h); precipitation (2.6 kmol m−3 NaCl, 12 h);

centrifugation (4500× g, 30 min)
[55]

Non-collagen removal (0.1 kmol m−3

NaOH, 24 h at 4 ◦C)

Acid hydrolysis (0.5 kmol m−3 acetic acid 24–72 h); precipitation
(2.6 kmol m−3 NaCl); centrifugation (7000× g); redissolution and dialysis

(acetic acid)
[54]

Non-collagen removal (0.1 kmol m−3

NaOH, 0–48 h at 4 ◦C)

Acid-enzyme hybrid (0.5 kmol m−3 acetic acid with 0.1% pepsin, 24–72h
at 38 ◦C); precipitation (2.6 kmol m−3 NaCl); centrifugation (7000× g,

30 min at 4 ◦C); redissolution and dialysis (acetic acid)
[81]

No pretreatment detailed
Enzyme hydrolysis (1 g pepsin in 100 mL buffer (pH 2.0) at 37 ◦C for

15 min); second enzyme addition (0.1 U pepsin, 1–120 min);
neutralization (1 kmol m−3 NaOH); centrifugation (1000× g, 15 min)

[100]

Pig

Degrease in ultrasonic bath (75% sodium
dodecylbenzene (SDBS)), skin to SDBS

1:2.5 volume ratio at 25 ◦C, 120 W);
non-collagen removal (1% NaCl for 6 h)

Conducted at 4 ◦C. Acid-enzyme hybrid (2000 U g−1 pepsin in
0.5 kmol m−3 acetic acid, 18 h); precipitation (NaCl, 8–12 h);

centrifugation; redissolution and dialysis (both acetic acid, and water for
second dialysis)

[56]
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Table 3. Cont.

Pretreatment Extraction and Isolation Reference

No pretreatment detailed
Alkaline treatment (3–7% NaOH in 6% NaCl solution, 24 h); neutral salt
wash (NaCl); neutralization (7% acetic acid); vacuum freeze dry (75–90%

moisture removal)
[94]

Fat removal (1:3 w/v petroleum ether at
30 ◦C, 1 h)

Enzyme hydrolysis (microfluidizer) (2400 U g−1 pepsin (pH 7, 50 ◦C)
and 3000 U g−1 Alcalase (pH 8.5, 60 ◦C)); centrifugation (10,000× g, 4 ◦C,

20 min); dialysis and freeze dry
[65]

Fat removal (hexane, 60 g skin per
400 mL); drying (24 h at 60 ◦C,

−76 mm Hg)

Hydrolysis with rotary evaporator (125 g L−1 of acid with pH 3 or alkali
with pH 12 at 60 ◦C for 1 h at rotary speed scale 6); centrifuge (8000× g,

10 min); freeze dry
[66]

Fat removal (petroleum ether);
non-collagen removal (1% w/v NaCl, 6 h);

alkali pretreatment (2% g g−1 NaOH
with 2:5 g skin mL−1 solution ratio, 1 h);
ultrasound (in alkali solution, at 25 kHz

at 290 W, 40 min)

Maintain basic pH (0.1 kmol m−3 phosphate buffer with pH 8.0);
enzyme hydrolysis (Alcalase 1:100 w/v at 55 ◦C, varying hydrolysis

times); centrifugation
[64]

Fat removal (10% Na2CO3; hot water
bath 45 ◦C)

pH adjustment (pH 8); enzyme hydrolysis (2 h at 40 ◦C, enzyme not
mentioned); filtration and centrifugation; freeze dry (supernatant) [20]

In a rotating drum: Wash (0.3% peregal at
30 ◦C for 3 h); fat removal (manual

defleshing; 300% float with 2.5% Na2CO3
and 0.5% peregal at 30 ◦C for 3 h); dehair

(2.5% trypsin (250 µ mg−1) coated on
flesh side at 25 ◦C overnight)

Alkali-enzyme hydrolysis (not detailed); freeze dry (−5 ◦C for 5 h)
(stirred at 4 ◦C); acid hydrolysis (2 kmol m−3 acetic acid with 1:50 w/v,
6 h) centrifugation (20,000× g, 30 min); neutralization (NaOH addition
until pH 7.5); precipitation (1.5 kmol m−3 NaCl, refrigerated desiccator

for 12 h); centrifugation; dialysis(water until neutral pH, 30 kDa
molecular weight cutoff membrane; freeze dry; acid-enzyme hybrid

(0.5 kmol m−3 acetic acid solution containing 1.5% pepsin with 1:20 w/v
ratio for 3 days); centrifugation and precipitation; dialysis (2×);

freeze dry

[82]
Based on

[101]
and

patent
CN1569260

Fat and flesh removal (mechanical
removal); wash (phosphate-buffered saline)

Decellularized collagen: Supercritical CO2 vessel system (75% ethanol,
30–50 ◦C and 200–350 bar for 40min); neutralization (0.1–1 kmol m−3

NaOH); drying and sterilization (γ-irradiation 25 kGy). Atelocollagen:
Milling (freeze milled with liquid nitrogen, 50–200 µm); acid and enzyme

digestion (0.01 kmol m−3 HCl containing 1 g L−1 pepsin, stirred for
16–18 h at 25 ◦C); filtration (1) 0.1–0.4 µm, (2) >150 kDa, (3) 0.2 µm;

fibrillogenesis (3 mg mL−1 acidic atelocollagen solution with
0.2 kmol m−3 phosphate buffer at a ratio of 9:1 v/v); centrifugation

(7000× g, 30 min at 4 ◦C); freeze dry (precipitate)

[102]

Hot water bath (1:9 w/v at 60 ◦C, 30 min)

Acid/alkali-enzyme hydrolysis ((1) 762 U g−1 pepsin, (2) trypsin and
(3) Alcalase with 1 kmol m−3 HCl or NaOH at their respective optimal
temperature and pH, 4 h); inactivate enzyme, neutralization, filtration,

dialysis and freeze dry

[103]

Alkali treatment (0.1 kmol m−3 NaOH at
1:5 volume ratio, 3 days)

Acid hydrolysis and filtration (0.5 kmol m−3 acetic acid for 3 days, 2×.
Filtrate was collected separately); freeze and precipitated (frozen 24 h;
added in 0.9 kmol m−3 NaCl for 12 h). Centrifugation; dissolution and

dialysis (acetic acid; dialysis at 1:10 for 2 days); freeze dry

[58]

Hot water bath (90 ◦C, 1 min)

Control mixture (5:100 volume ratio skin to solution (water)); enzyme
hydrolysis (1) Alcalase, (2) Flavorzyme, (3) Neutrase, (4) bromeline,

(5) Protamex, (6) papain-at 1:100 enzyme substrate ratio with hydrolysis
times 1–24 h at optimal temperature; inactivation and cooling;

centrifugation (4000× g, 15 min); filtration (3 kDa, 60 psi nitrogen gas at
20 ◦C); freeze dry

[67]

Cattle

No pretreatment detailed Alkali hydrolysis (3–5% NaOH, stirred at 60 ◦C); filtration
(filtrate collected); neutralization (acetic acid); dialysis [78]
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Table 3. Cont.

Pretreatment Extraction and Isolation Reference

Neutral salt wash (10 volumes (v/w)
0.5 kmol m−3 NaCl for 2 h); lime
treatment (dehair) (40 g L−1 lime

suspension at 1:10 w/v for 4 days);
non-collagen removal (2% NaOH at 1:10

w/v for 5 days)

Conducted at 4 ◦C, stirred. Acid-enzyme hybrid (0.5 kmol m−3 acetic
acid at 1:100 w/v with pepsin addition at 1:20 w/w, 2 days);

centrifugation (20,000× g, 20 min), precipitation (2 kmol m−3 NaCl, 6 h);
centrifugation (15 min); dialysis (14 kDa MW, deionized water for

4 days); freeze dry

[83]

Hair removal (1) sulfide solution [104];
(2) oxidative process [105]; relime [104];

acid pretreatment (0.5% acetic acid first at
pH 7.1 for 3 h and then at pH 5.4 for 4 h).
Neutral salt wash (400% water containing
4.35% NaCl for 2 h, twice); lime treatment
(400% water containing 0.3% lime for 2 h,
thrice); acetone treatment (400% acetone,

12 h repeated 5–7 times); air dry and
frozen; (pulverized)

Conducted at 4 ◦C. Acid hydrolysis (200–250 mg hide powder in 100 mL
0.5 kmol m−3 acetic acid, 3 days); centrifugation and freeze dry [106]

No pretreatment detailed

Skin-buffer mixture (100 g L−1 skin to solution, 0.1 kmol m−3 phosphate
buffer and 0.15 kmol m−3 NaCl with pH 7.5); alkali addition

(0.001 kmol m−3 NaOH and 3.5g NaBH4, incubated for 24 h at 25 ◦C);
acid addition (glacial acetic acid, adjusting pH to 3); centrifugation

(23,000× g for 30 min, pellet collected); freeze dry

[95]

Hair removal (0.5 kmol m−3 NaOH, 24 h);
non-collagen removal (3 different

samples prepared: (1) 1:10 w/v
0.1 kmol m−3 NaOH, 6 h; (2) 20 vol

0.1 kmol m−3 NaOH and 0.1 kmol m−3

NaCl, 24 h; (3) 1:20 w/v 0.1 kmol m−3

NaOH and 0.1 kmol m−3 NaCl, 6h); fat
removal/demineralization ((1) 1:10 w/v

10% butyl alcohol, 10 h; (2) 0.1 kmol m−3

HCl and 0.1 kmol m−3 NaCl 1:20 w/v,
24 h; (MAES) 0.1 kmol m−3 HCl and
0.1 kmol m−3 NaCl 1:20 w/v, 24 h)

Acid/acid-enzyme hydrolysis: (1) 30 vol. 0.5 kmol m−3 acetic acid, 24 h,
(2) 20 vol 0.5 kmol m−3 acetic acid with 1% w/w pepsin, 24 h, (3) 20 vol
0.7 M acetic acid with 1% w/w pepsin, 48 h; filtration (4 mm and 250 µm

filter); precipitation: (1) 2.5 kmol m−3 NaCl, (2) 2.5 kmol m−3 NaCl,
(3) 2.5 kmol m−3 NaCl; centrifugation (various times); dialysis

(14 kDa MW, acetic acid and water); freeze dry (−52 ◦C, 48–72 h)

[59]

Lime treatment (100 g hide in 1.5 g Na2S
and 5 g CaO solution, soaked for 2 days);
de-lime treatment (2 g NH4Cl and 4 mL
concentrated HCl); wash (rinsed with
water until neutral pH); fat removal
(10 volumes 10% butanol for 24 h)

Acid hydrolysis (30 volumes 0.5 kmol m−3 acetic acid solution containing
1% pepsin, 2 days stirred periodically); filtration and centrifugation
(2-layer cheesecloth; 10,000 g for 20 min). Precipitation (3 kmol m−3

NaCl); centrifugation and dissolution (acetic acid); dialysis (tris buffer)

[60]

Hot-water bath (70 ◦C for 15 min, dehair)

Solutions (500 g hide each sample, calcium hydroxide and acetic acid
solutions were added to each beaker). Samples and concentrations

(1) control, not pretreated; (2) 5% w/v Ca(OH)2; (3) 15% w/v Ca(OH)2;
(4) 5% w/v Ca(OH)2 and 5% v/v CH3COOH; (5) 15% w/v Ca(OH)2 and
5% v/v CH3COOH. Hydrolyzed for 4 days); hot water bath (60–70 ◦C for
24 h); filtration and dehydration (filtrate collected, 60 ◦C oven for 24 h)

[107]

De-lime treatment (2% NH4Cl and 0.5%
HCl, 60 min); neutralization (0.5% HCl

until pH 6–7; rinsed with distilled water

Acid-enzyme hybrid (30 volumes 0.5 kmol m−3 acetic acid containing 1%
pepsin, 48 h, 4 ◦C); centrifugation (10,000× g at 4 ◦C, 15 min);

precipitation (3 kmol m−3 NaCl); centrifugation; dissolution and
precipitation (0.5 kmol m−3 acetic acid and 0.7 kmol m−3 NaCl);

dissolution and dialysis (0.5 kmol m−3 and 0.1 kmol m−3

acetic acid, respectively)

[84]

The pretreatments listed in Table 3 usually have the purpose of removing some of the
non-collagenous material but also serve the important function of “opening up” the skin
to enable easier penetration of the reagents that are used to solubilize collagen. In some
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cases, the pretreatment might include similar chemistry to the subsequent treatment,
but generally with lower concentrations of reagents. The main options described in Table 3
may be summarized pictorially, as in Figure 4.
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Future Considerations

While a range of methods for extracting collagen from animal skins has been described,
these do not cover the skin from all commercially reared meat animals. Skin from some ani-
mal species have not been investigated in detail, notably sheep and goats, which represents
an opportunity for further study and exploitation. The nature of the collagen resulting from
the extraction processes has often not been well characterised. For example, do the collagen
fibrils remain intact, or do they reform spontaneously, or are they degraded partially? Also
what is the impact of these factors on the mechanical properties of materials manufactured
using the extracted collagen? This is an area where further knowledge would be useful.

5. Conclusions

A wide variety of collagen extraction and separation methods have been described
for animal skins from a number of meat-producing species. These have been categorized
and summarized here showing the options available to produce a collagen extract. Multi-
ple choices are clearly available for the commercial production of collagen from various
animal skins.

Author Contributions: A.M.E.M., Writing–Original Draft Preparation; Y.C., K.L.P. and R.G.H.,
Writing–Review and Editing. All authors have read and agreed to the published version of the manuscript.
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