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Simple Summary: It is evident that microplastics can enter the human body via dermal contact,
inhalation, and food intake and pose a significant threat to human health. Therefore, understanding
microplastics is essential for protecting the environment and human health. This study identified
48.7 MPs on average in each fish of king mackerel, with varying concentrations in different tissues,
such as the digestive tract, gills, and muscle. The size and characteristics of these MPs varied but
many were <0.5 mm in size (97.74%) and fiber-like, with a lot in the muscle tissue, which raises
concerns for human consumption. Three types of plastic polymers were identified in the MPs,
likely from things like food packaging and plastic waste. The fish’s muscle and digestive tract were
significantly contaminated with MPs, indicating a high level of pollution.

Abstract: Microplastics (MPs) ingestion by fish signifies a worldwide threat to human health but
limited research has examined their existence within the consumable portions (muscle) of fish. Thus,
this study was undertaken to unveil the prevalence, characterization, and contamination extent of
MPs across various body tissues, including the muscle of the king mackerel (S. guttatus) from the
lower Meghna estuary in Bangladesh—a pioneering investigation in this region. In our analysis,
we identified a total of 487 MPs, with an average abundance of 48.7 ± 20.3 MPs/individual. These
MPs were distributed across different tissues, with respective concentrations of 0.84 ± 0.45 items/g
in the digestive tract, 2.56 ± 0.73 items/g in the gills, and 0.3 ± 1.72 items/g in the muscle tissue.
The observed variations among these tissue types were statistically significant (p < 0.05). Moreover, a
significant positive correlation indicated that fish with higher weight had higher MPs in their gills
and DT (digestive tract). The majority were <0.5 mm in size (97.74%) and exhibited a fiber-like
shape (97.74%), with a notable prevalence of transparent (25.87%) and a pink coloration (27.92%).
Remarkably, the majority of MPs were discovered within the size range of <0.5–1 mm (100%),
particularly in the muscle tissue, signifying a substantial transfer of MPs into the human diet.
Besides, we discovered only three polymer types of microplastics which could be attributed to the
extensive use of food packaging, plastic containers, wrapping plastics, residential garbage, and
plastic pipes that end up in the aquatic environment via river discharges. The contamination factor
(CF) values of fish muscle (5.75) and the digestive tract (5.50) indicated that these fish organs were
considerably contaminated (3 < CF < 6) with MPs. The pollution index of MPs (PLI > 1) indicated a
high contamination level for MPs pollution of S. guttatus in the lower Meghna River estuary.
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1. Introduction

Microplastics (MPs) (<5 mm in size), made of a synthetic polymeric matrix, sig-
nificantly contribute to ocean plastic pollution by quantity due to their wide range of
applications, including in medical devices, electrical safety materials, clothing and textiles,
fisheries equipment, packaging, thermal insulation, and solid and water soluble parti-
cles [1–3]. More than five trillion plastic particles, totaling over 250,000 tons in mass, have
been estimated to be floating in the surface ocean alone where more than 90% of these
particles are classified as MPs [4]. The amounts are increasing every year with the increased
population size globally and mismanagement of plastic waste. These plastics or MPs pose
a global threat to aquatic ecosystems and animal and human health because they contain
a variety of chemical additives, including polythene (PE), polypropylene (PP), polythene
terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) [5]. They also act as
carriers of pathogens that cause disease, heavy metals, and other life-threatening toxins [6].

Based on sources, MPs are categorized into two types: primary MPs (granules, pellets,
and microspheres) manufactured for use in cleaning, personal care, and cosmetic products
and secondary MPs, created when larger particles are broken down or fragmented by
mechanical abrasion and photochemical oxidation in the environment and are thought to
be readily bioavailable to organisms worldwide [7]. According to recent research, MPs can
fragment in the environment, becoming progressively smaller and lower in density before
finally forming nanoplastics (≤1 µm in size) [8].

A variety of organisms can ingest MPs since they are small and persistent in the
ecosystem [9]. Fish, birds, invertebrates, and marine mammals have all been found to
consume MPs [10,11]. Once MPs are consumed, they build up in body tissue and are likely
to have adverse effects in fish, including decreased feeding and growth, low fecundity,
and low survival rates [12]. In addition, fish, as sources of human food, have recently
received significant attention because of the risks associated with the bioaccumulation of
MPs and possible biomagnification for a variety of hydrocarbons, heavy metals, dyes, and
other contaminants in it [13]. By realizing the facts, the detection of MPs in the gills and
digestive tracts of fish in marine environments from neighboring countries, e.g., India and
China, has received a great attention in earlier research [11,14–16]. In Bangladesh, despite
several studies [17–19] that looked at the intake of plastics by various fish species from
the marine environment, to our knowledge, there are no published documents detailing
the consumption of MPs by king mackerel fish, S. guttatus. This migratory fish is found
throughout the Indo-West Pacific, Bangladesh, India, and Sri Lanka as far as southeast
Asia and is popularly eaten in Bangladesh [15,18]. Earlier studies did not focus on MPs
levels in the muscle of any marine fish [15,18]. Given that the most edible part of fish is
the muscle and that people are highly concerned about the potential risks of pollutants in
muscles, it is imperative to examine the contaminants present in fish muscle [20]. Therefore,
this study aimed to assess the prevalence, characterize and identify the polymer types
of MPs in different body tissues including the muscle of S. guttatus fish, and assess their
contamination level in a sub-tropical estuary of Bangladesh for the first time. The results
will indicate the MPs contamination status of the Meghna Estuary and will be useful in
determining any potential risks to human health from consuming this fish.

2. Materials and Methods
2.1. Study Area

The Meghna River Estuary, one of the largest, stretches for 160 km from Chandpur
in the south to Tetulia. It is, however, spreading between the Tetulia and Shahbazpur
rivers, both of which have a sea-face width of about 40 km. It has a noteworthy and
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varied ecosystem that contributes to the region’s socioeconomic well-being in a number
of areas, including farmland, industrial use, drinking water sources for the millions of
residents who live nearby, and fisheries. Fisheries’ resources serve as spawning, feeding,
and nursery grounds for both freshwater and marine fish species; their availability changes
according to the river’s water discharge volume and tidal range. The greatest effect on the
environment in coastal zones around the globe comes from pollution caused by numerous
small- and large-scale industrialization, modernized urbanization, and newly adopted
farming techniques. Numerous types of agricultural waste, excrement and faces, oil spills
from passenger and fishing vessels, and various minor industrial effluents are infiltrating
estuarine systems which are home to enormous amounts of synthetic wastes like plastic and
other wastes [21]. The highest concentrations of specific water parameters in comparison
to the RPI index clearly show that the lower Meghna River Estuary has been chosen as a
polluted estuary.

2.2. Fish Sample Collection and Preparation

The king mackerel, locally known as Surma (S. guttatus), one of the most edible
estuarine fish in Bangladesh, was selected for this study. Samples were taken using the
estuarine set bag net (ESBN or Behundi jal) which was used in the lower Meghna river in
shallow littoral waters between 2–3 m deep . Between March and April 2022, a total of
10 S. guttatus fish specimens were collected for this research. Then, the fish were kept in an
icebox and transported to the laboratory of Coastal and Marine Science, Noakhali, where
they were kept in a −20 ◦C refrigerator for further MP analysis. After the fish samples had
thawed at room temperature in a laboratory container, blood, debris, and sediments were
washed away using Mill-Q distilled water. A digital weighing scale (BSA224S, Sartorius,
Shanghai, China) was used to weigh the body weight [22] and a measuring tap or ruler
was used to assess the standard length (SL), total length (TL), and fork length (FL). Then,
the fish specimens were dissected using sharp clean scissors. The dissection was performed
in a clean and controlled environment such as a laboratory with laminar flow hoods to
minimize the introduction of external contaminants. Personnel involved in the dissection
should wear appropriate personal protective equipment, including gloves and lab coats.
The whole digestive tract (DT), gills, and only 5 g of fish muscle tissue were removed from
each specimen independently, weighed, and then transferred to a Petri dish in order to
determine the concentration of MPs ingestion in fish [18,23]. To minimize the chance of
contamination for peroxide digestion, all the fish tissues were transferred into a 1 L glass
beaker and wrapped in aluminum foil after dissection [15].

2.3. Digestion of Fish Tissue and Separation of MPs

Hydrogen peroxide (H2O2, Scharlab, Barcelona, Spain) was used to digest fish tissue,
including the gills, digestive system, and muscle, in a manner similar to that described
by Karami et al. [23] with a few minor adjustments (e.g., omitting density separation by
(1.2 g/mL) NaCl after digestion because of less amount of organic matter left). In order
to digest biogenic material, 30% hydrogen peroxide (H2O2) was added at a ratio of 1:20
(w/v) into a 1 L glass beaker containing fish tissue separately. This method is more efficient,
according to studies [24], than using sodium hydroxide (NaOH) or hydrochloric acid
(HCl) [25,26]. Before moving on to the next stage, the entire acid-tissue mixtures were left
on the lab bench at room temperature for a short while. The digestion combination was
warmed on a magnetic hotplate stirrer to a temperature of 55 to 65 ◦C at a speed of 75
rpm until H2O2 was evaporated [25]. If the organic substance had not been completely
digested by then, additional H2O2 (nearly 1 mL, 1–2 mL) was added [26,27]. Samples
were transferred to a density separator for 24 h with a NaCl (1.2 g/mL) solution after all
the tissue had been removed through digestion [28]. Then, 5.0 µm cellulose nitrate filter
paper (Minipore, Ghaziabad, India) with a 47 mm width was used to filter the supernatant
solution from the separator [4].
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2.4. Microscopic Analysis and Polymer Identification of MPs

A light stereomicroscope (Leica EZ4E, Leica Microsystems, Wetzlar, Germany) with 8×
to 35× magnification was used to identify and quantify MP particles from the filter [29–32].
The MPs were counted individually on each quadrate of filter paper. We used a quadrant
size of 47 mm × 47 mm (2209 square millimeters) for counting microplastics on filters. All
microplastics found within that grid were counted individually. Once microplastics had
been counted within the defined grid, the total number of microplastics on the entire filter
was extrapolated. Then, the count of microplastics within the grid by the extrapolation
factor was multiplied. (π × 0.02352)/(0.0472). Measurements were made using ImageJ
software (version 2.0.0) and the MP images were obtained using a high-resolution camera
(single-lens reflex digital camera, Nikkon D5600, The Nikon factory, Ayutthaya, Thailand)
attached to the microscope [32]. To find non-synthetic sources, a heated needle test was per-
formed [29]. The morphometric traits of MPs including type/shape, color, and sizes were
determined by Hossain et al. [32]. Out of 487 possible particles, 15 were chosen for polymer
detection. From filter papers, comparatively larger particles (seen 10× magnification under
the microscope) were chosen for the Petri dish in order to identify the different types of MP
polymers. The polymer type was determined using the potassium bromide (KBr) pellet
technique and the Fourier Transform Infrared (FTIR) of an 8400S made by Shimadzu Cor-
poration, Japan (wavenumber range of 4000–400 cm−1). For these, 200 mg of KBr powder
and 1–3 mg of an MP sample that had been finely crushed were combined and the mixture
was then compressed for 1 min under regular pressure of 10 tons in a pellet press, resulting
in a clear pellet that was made using a Shimadzu (IR Prestige-21) hydraulic press [33]. The
entire system was maintained under evacuation during the preparation of the pellet and
this pellet was almost completely analyzed using an FTIR spectrometer with a resolution
of 2 cm in 30 scans. The identification procedure involved an automated contrast with
the vast spectral databases. By comparing the FTIR spectra with the previously published
studies, the false identification relying only on automatic libraries can be eliminated [34,35].
In this case, the IRUG Spectral Database was used.

2.5. Contamination Assessment of MPs in Fish

Environmental danger is frequently measured using the pollutant load index (PLI) in
both terrestrial and aquatic environments [36]. In this research, the amount of MPs found
in fish from the lower Meghna River estuary was used to determine the environmental
risk. PLI at the study location is related to MP concentration factors (CFi). The formulas
mentioned below were used to create and categorize the PLI (Table S1) [36,37]. However,
no research was conducted to establish baseline readings for MP contamination in the
lower Meghna River estuary. Therefore, the background value for the corresponding fish
was determined as the minimum concentration of MPs in the DT, gill, and muscle.

2.6. Control of Contamination

All liquids such as distilled water and hydrogen peroxide were filtered using cellulose
nitrate filter paper with a 5 µm pore size and 47 mm diameter filters. All the laboratory
equipment associated with this study were cleaned and rinsed with filtered distilled water
before and after use. Necessary precautionary steps were taken to reduce all possible
contamination of samples. Moreover, special care was taken throughout the study basically
in the time of fish sample collection, transportation, and preservation as well as during
the dissection of fish tissue (gill, DT, and muscle). To remove possible contamination by
airborne fibers, all the dissecting tissues placed in Petri dishes were covered with aluminum
foil paper [29,30]. For a control, one fully blank sample without fish tissue was conducted
following the same protocol used to compare the present investigation. No MPs were
found in the blank samples [31].
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2.7. Statistical Analysis

Normality and homogeneity of the data were checked before doing descriptive statis-
tics, ANOVA, and Tukey’s test. Correlation and linear regression between microplastic
abundance and biological variables were analyzed [38]. The significance level was set at
p < 0.05 or p < 0.01 for each case. All the analyses were performed using the PAST (V. 4.03)
software, IBM SPSS statistics (V. 25), and R Studio (v. 3.5.1).

3. Results and Discussion
3.1. MPs Occurrence and Abundance in Fish

All 10 samples of fish specimens of S. guttatus contained MPs (Figure 1) with an
average number of 48.7 ± 20.3 MPs/individual (Table 1). In the present study, the total
number of microplastics in the gill, digestive tract (DT), and muscle were 152, 220, and 115,
respectively. MPs were identified in the digestive tract, gill, and muscle of this species as
0.84 ± 0.45 MPs/g, 2.56 ± 0.73 MPs/g, and 2.3 ± 1.72 MPs/g, respectively (Figure 2). The
output of one-way ANOVA demonstrated that the abundance of MPs significantly differed
(F = 13.65, p ≤ 0.0001) between the DT, gill, and muscle of investigated species. The results
of Tukey’s pairwise comparisons revealed that MPs/g BW highly significantly differed
from MPs/g gill (p = 0.0001) and MPs/g muscle (p = 0.0002) whereas MPs/g gill did not
differ significantly from MPs/g muscle (p = 0.9295). In contrast, MPs/g DT significantly
differed (p = 0.02) from MPs/g muscle (Table 2). Moreover, the amount of MP in fish
tissue was positively correlated with the body weight (r = 0.973, p < 0.001), muscle weight
(r = 0.810, p < 0.01), gill weight (r = 0.739, p < 0.01), and DT weight (r = 0.701, p = 0.05),
indicating that fish with a higher body weight will have higher MPs in their gill, DT, and
muscle (Figure 3).

In summary, the data show that when plastics are swallowed, the fish species is
harmful, with a maximum of 85 MPs being extracted from a single fish. Studies of fish
species that are targeted for commercial purposes have found similar levels of microplastic
ingestion in pelagic and demersal species from Turkey’s Mediterranean coast (34%) [39]
and benthopelagic fish from Portugal’s western center coast (73%) [40]. The sole previous
study in lower Meghna River estuarine waters revealed 100% of individuals ingesting
MPs [17]. Nonetheless, ingestion ranges vary greatly among studies, habitats, and sites.
The majority of these field studies have generally connected MP ingestion to various fish-
feeding techniques [38], vertical dispersion [41], or location, such as closeness to urban or
industrial zones [42].

The findings of the present study were compared with the other studies in Table 2.
These findings were consistent with microplastic pollution analysis of fish by Hossain
et al. [18] and Yagi et al. [43] The MPs concentration/g DT of S. guttatus was found to
be lower than Sciades sona, Setipinna tenuifilis, Priacanthus hamrur, Carangoides chrysophrys,
Otolithoides pama, Sardinella brachysoma, Harpadon nehereus, and Coilia neglecta fish from
the Bay of Bengal [15] and Zeus faber fish from the west coast of Kyushu, Japan [43]. In
contrast, Harpadon translucens and Harpadon nehereus from the Bay of Bengal had lower MP
contamination in the DT compared to the present outcomes [15].

Previous studies showed that MPs were more common in certain fish organs than in
other parts; significant plastic abundance variations between fish’s stomachs and intestines
were found as a result of changes to the fish’s weights, structures, and morphologies [41].
However, the amount of plastic pollution in the environment and fish feeding patterns are
directly related to the presence of MPs in fish [22]. As a result, when fish feed from the
water column or sift through polluted sediment, MPs can be ingested directly (primary
ingestion) or indirectly (secondary ingestion via contaminated prey) [44]. In one study,
it was discovered that 500–20,000 MPs/km2 in the surface waters of the Bay of Bengal
could affect the translocation of MPs in fish, which has a discernible effect on coastal plastic
pollution [45]. The translocation of MPs from gut to muscle can occur through mechanisms
such as absorption through the intestinal walls, entry into the lymphatic system, and
distribution via the bloodstream. Factors such as the size and type of microplastics, the
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fish’s metabolism, and its feeding habits all influence the extent of translocation. Smaller
microplastics, such as nanoplastics, may have a higher potential to be absorbed and
distributed within the fish’s body due to their small size and ability to pass through
cell membranes. The permeability of the fish’s gut plays a role in whether they can cross
the gut barrier and enter the bloodstream. When they pass through the gut and enter the
bloodstream, they can be distributed throughout the fish’s body via its circulatory system.
As blood flows through various tissues, microplastics can become embedded in tissues,
including the muscle tissue.
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Figure 1. Occurrence of each type of microplastics in the fish examined under a stereomicroscope;
(a) violet fiber, (b) black fiber, (c) red fiber, (d) blue fiber, (e) pink fiber, and (f) pink fragment. These
particles were found in the gills, gut, and muscle of fish.
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Table 1. Fish morphometry and their corresponding levels of MP ingestion.

Scheme. TL (Range) cm BW (Range) g DT Weight
(Range) g

Gill Weight
(Range) g MPs/g DT MPs/g Gill MPs/g Muscle MPs/g BW MPs/ind.

S. guttatus 36.68 ± 1.53
(33.9–38.2)

325.22 ± 22.8
(269.3–342.8)

26.74 ± 4.26
(17.8–30.93)

6.0 ± 0.79
(4.9–7.2) 0.84 ± 0.45 2.56 ± 0.73 2.3 ± 1.72 0.15 ± 0.06 48.7 ± 20.27Biology 2023, 12, x FOR PEER REVIEW 7 of 16 

 

 

   

   

   
 

 

 

Figure 2. The abundance of MPs for each sample was analyzed by fish gill, muscle, and DT. 
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Figure 2. The abundance of MPs for each sample was analyzed by fish gill, muscle, and DT.
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Table 2. Comparisons of microplastics (MPs) levels in fish from other tropical areas.

Country Study Region Fish Species No. of Fish MPs/g DT MPs/g Gill MPs/g Muscle MPs/ind. References

Bangladesh

Meghna River
estuary S. guttatus 10 0.84 ± 0.45 2.56 ± 0.73 2.3 ± 1.72 48.7 ± 20.27 Present study

Karnafully
River

Setipinna phasa 30 8.29 ± 1.75 - - 13.17 ± 0.76

Hossain et al. [46]
Polynemus
Paradiseus 30 5.44 ± 0.51 - - 10.83 ± 0.81

Otolithoides
pama 15 1.65 ± 0.19 - - 5.93 ± 0.62
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Table 2. Cont.

Country Study Region Fish Species No. of Fish MPs/g DT MPs/g Gill MPs/g Muscle MPs/ind. References

Bangladesh

Bay of Bengal

Priacanthus
hamrur 10 2.53 - - 3.8

Ghosh et al. [15]

Setipinna
tenuifilis 10 6.45 - - 3.2

Sciades sona 10 1.67 - - 3

Carangoides
Chrysophrys 10 2.5 - - 2

Sardinella
brachysoma 10 1.82 - - 2

Harpadon
nehereus 10 1 - - 1.8

Otolithoides
pama 10 1.2 - - 1.8

Coilia neglecta 10 0.94 - - 1.5

Anodontostoma
chacunda 10 0.45 - - 1.4

Megalaspis
cordyla 10 0.63 - - 1

Bay of Bengal

Sardinella
gibbose 25 1.55 ± 0.48 - - 3.20 ± 1.16

Hossain et al. [18]
Harpadon

translucens 25 1.10 ± 0.30 - - 5.80 ± 1.41

Harpadon
nehereus 25 0.37 ± 0.10 - - 8.72 ± 1.54

India Gulf of
Mannar coast

Sufflamen
fraenatus 20 0.22 - 0.18 -

Selvam et al. [47]
Heniochus
acuminatus 25 0.10 - 0.06 -

Pseudotriacanthus 20 0.35 - 0.36 -

Leiognathus
brevirostris 15 0.12 - 0.10 -

Japan West coast of
Kyushu

Scomber
japonicus 40 38 - - 0.95

Yagi et al. [43]

Trichiurus
japonicus 38 17 - - 0.45

D. tumifrons 15 1 - - 0.07

Z. faber 9 3 - - 0.33

M. scolopax 39 3 - - 0.08

C. equula 73 11 - - 0.15

3.2. Morphological Characteristics of Fish MPs

All fish samples contained MPs in various shapes, sizes, and colors (Figure 4). The
majority of the MPs (97.74 percent of all MPs recorded in this research) were in the
25–500 micron size range, with 0.5 mm and 1 mm accounting for the remaining 5%. In
addition, 98.2%, 98%, and 95.7% of the MPs in the DT, gill, and muscle samples, respectively,
were smaller than 0.5 mm in size (Figure 4a). A maximum of 0.5 mm to 1 mm (4.3%) was
discovered in muscle. The prevalences of the particle classes 0.5 mm and smaller, 0.5–1 mm,
and 1–5 mm were 98%, 1.3%, and 0.7% in the gill, respectively. In comparison, DT and
muscle did not exhibit any MPs in the 1–5 mm size range. This level is greater than the
percentage of small MPs discovered in the DT of fish harvested for commercial purposes
from the east Chinese coast and estuaries, which made up 40% of the total items [48]. Since
the gills are responsible for performing the functions of respiration, osmoregulation, and
excretion as well as providing fish with the ability to filter MP particles from the water [49],
relatively larger-sized MPs were detected in the gills in this study. However, the gills are
not as well protected as the skin and mouth [50]. According to Eriksen et al. [45], a large
percentage of marine plastic debris was composed of fragments smaller than a millimeter,
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many of which are comparable in size to the tested fish’s natural prey. Similar to this,
pelagic and demersal fish in the North Atlantic and the Baltic Sea consumed MPs that
were smaller (<0.5 mm) along with their usual prey species [51]. In recent research, the
muscles of commercial fish Serranus scriba from Tunisian coasts contained MPs that were
<100 microns or smaller [52]. The danger of MPs varies depending on their size [53]. We
have come to the conclusion that small MPs could pose a significant threat to fish if ingested
and that toxicology studies should take note of the negative effects of small microplastics
ingested by fish (including bathypelagic fish).
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In S. guttatus, nearly all of the MPs were fibers of various colors and sizes (Figure 4b).
In contrast to the decreasing order of MP types in fish gill, which were fiber (95.4%),
films (3.3%), fragment (1.3%) in DT, fiber (98.2%) and fragment (1.8%) kinds of MPs were
abundant. Additionally, the muscle of the experimental fish contained only fiber. Fibrous
microplastics, however, were common in other investigations as well [15,41,54]. The
fragmentation of fishing gear (such as ropes and nets) and recreational sailing gear are
the next two main sources of fiber in the marine environment that come from wastewater
treatment facilities [55]. MP fibers are more dangerous than other MP particle shapes and
prolong the time that fiber accumulates in the gastrointestinal systems [13,56,57].

Transparent, pink-, violet-, blue-, and red-colored MPs were common in the DT, gill,
and muscle samples of fish (Figure 4c). The total MPs’ color followed the decreasing order
of pink (27.93%), transparent (25.87%), violet (20.33%), blue (15.81%), red (6.16%), and
green (3.9%). Transparent MPs were more abundant than microplastics in other colors,
contributing for 36.2% of MPs in the gill samples and 27.8% of items found in muscle
samples. These proportions were in line with the results observed in fish from Chinese
coastal waters [41] and the South China Sea [58]. According to Roch et al. [59], foraging fish
were shown to consume MP particles of food-like hues more frequently than non-food-like
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colors. But the presence of colored MPs suggests that they could be caused by synthetic
and organic chemicals, necessitating advanced thorough research.

3.3. Polymer Characteristics of MPs

MP samples from the S. guttatus fish were subjected to FTIR analysis. The findings
revealed that PE was the most dominant polymer type (40%), followed by PP (20%), PET
(20%), PS (10%), and PVC (10%). The identified polymers of FTIR spectra are showed
in Figure 5 along with the respective MP. Previous studies also revealed these types of
polymers in riverine ecosystems and different marine fish [15,16,50,60]. Meanwhile, there
were some identical picks that were absent in the spectrum of the identified polymers
because of the effects of weathering and aging [4].

Biology 2023, 12, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 5. Polymer types identified MPs from the sampled fish; PE (A), PET (B), PP (C), PS (D) and 
PVC (E) 

3.4. Contamination Level Assessment  
The CF values of fish muscle (5.75) and the digestive tract (5.50) indicated that these 

fish organs were considerably contaminated (3 < CF < 6) with MPs whereas gill (1.69) had 
moderate contamination levels (1 < CF < 3). PLI is calculated to quantity the degree of MP 
pollution [16,62]. The PLI values of the fish organ samples were >1, indicating the contam-
inated condition of S. guttatus fish. The PLI values followed the decreasing order of the 
muscle (4.53), digestive tract (4.52), and gill (1.63). As PLI was calculated using the ratio 
of MP occurrence to background value, the polymer type of MPs appears to have no 

Figure 5. Polymer types identified MPs from the sampled fish; PE (A), PET (B), PP (C), PS (D) and
PVC (E).



Biology 2023, 12, 1422 12 of 15

The frequent occurrence of PE in the studied fish might originate from food packaging
and the containers of oil, shampoo, soap, and other cosmetic products for leveling [61].
PP is used all around the world for food and beverage packages, plastic containers, and
wrapping plastics. Furthermore, the potential sources of PET and PVC are domestic waste
and plastic pipes which might be driven to the aquatic systems through river discharge
and surface runoff. However, plastic debris deposited by tourists and locals also increases
the load of plastic in the sediment of the marine environment. On the other side, the main
potential source of PS is fishing activities in the river which are used by fishermen usually to
extrude polystyrene (XPS) and expanded polystyrene (EPS) as buoyant. Moreover, further
research is suggested to assess the point sources of MPs to prevent MP contamination in
the aquatic ecosystem.

3.4. Contamination Level Assessment

The CF values of fish muscle (5.75) and the digestive tract (5.50) indicated that these
fish organs were considerably contaminated (3 < CF < 6) with MPs whereas gill (1.69) had
moderate contamination levels (1 < CF < 3). PLI is calculated to quantity the degree of
MP pollution [16,62]. The PLI values of the fish organ samples were >1, indicating the
contaminated condition of S. guttatus fish. The PLI values followed the decreasing order
of the muscle (4.53), digestive tract (4.52), and gill (1.63). As PLI was calculated using the
ratio of MP occurrence to background value, the polymer type of MPs appears to have no
impact on PLI [63]. However, human activities such as industrialization, fishing, population
density, water transportation, etc., are what cause MPs to occur in seawater [16,64].

4. Conclusions

This study highlighted the ubiquitous presence of MPs in a commonly consumed fish,
S. guttatus, from a large subtropical estuary in Bangladesh for the first time. MPs were found
with an average abundance 48.7 ± 20.27 item/individual which was higher compared with
species from other estuarine environments. The abundance of MPs in gill was significantly
higher than that in the DT and muscles due to the continuous contact with water and first
reaction against any unfavorable conditions in an aquatic environment. Furthermore, MPs’
abundance was positively related to the body weight, DT weight, and gill weight of the
pelagic fish indicating that fish with a higher weight will have higher MPs in their gill, DT,
and muscles. The majority of the particles were of the fibrous type, transparent and pink in
color, and generated primarily from synthetic origin; the breakdown and degradation of
fishing equipment (plastic lines, ropes, and nets) as well as smaller size (<0.5 mm) plastics
were prevalent in DT, inferring that MPs could be actively uptaken by fish because of
their similarity with natural foods or by assuming plastics as prey or through trophic
transfer microplastics. Different types of polymers such as PP, PE, and PET were isolated
from the MPs. High PLI values (>1) indicated significant commination levels. Hence, the
possibility of human exposure to microplastics through ingestion raises concerns owing to
the probable transfer of smaller-sized MPs and hazardous contaminants into edible tissues.
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