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Simple Summary: Recently, it has become increasingly clear that ketone bodies have several func-
tions, such as extending longevity, improving memory, increasing susceptibility to certain cancer
therapies, and improving metabolic diseases such as obesity, hypertension, kidney disease, dys-
lipidemia, and non-alcoholic fatty liver disease. In addition, ketone bodies play a distinctive role
in the intestinal epithelium, such as stem cell maintenance, cell proliferation and differentiation,
and cancer growth. Through the present study, we found that SLC16a6, mTORC1, and autophagy
involve ketone body excretion in the intestinal cells. A better understanding of the ketone body
regulatory systems will facilitate the fine-tuning of normal and abnormal intestinal cell adaptation in
homeostasis and injury.

Abstract: Ketone bodies serve several functions in the intestinal epithelium, such as stem cell
maintenance, cell proliferation and differentiation, and cancer growth. Nevertheless, there is limited
understanding of the mechanisms governing the regulation of intestinal ketone body concentration.
In this study, we elucidated the factors responsible for ketone body production and excretion using
shRNA-mediated or pharmacological inhibition of specific genes or functions in the intestinal cells.
We revealed that a fasting-mimicked culture medium, which excluded glucose, pyruvate, and
glutamine, augmented ketone body production and excretion in the Caco2 and HT29 colorectal
cells. This effect was attenuated by glucose or glutamine supplementation. On the other hand,
the inhibition of the mammalian target of rapamycin complex1 (mTORC1) recovered a fraction of
the excreted ketone bodies. In addition, the pharmacological or shbeclin1-mediated inhibition of
autophagy suppressed ketone body excretion. The knockdown of basigin, a transmembrane protein
responsible for targeting monocarboxylate transporters (MCTs), such as MCT1 and MCT4, suppressed
lactic acid and pyruvic acid excretion but increased ketone body excretion. Finally, we found that
MCT7 (SLC16a6) knockdown suppressed ketone body excretion. Our findings indicate that the
mTORC1–autophagy axis and MCT7 are potential targets to regulate ketone body excretion from the
intestinal epithelium.

Keywords: ketone body; solute carrier family 16 member 6: SLC16a6 (MCT7); mTORC1; autophagy;
intestinal cell

1. Introduction

Ketone bodies, such as β-hydroxybutyrate (β-OHB), acetoacetic acid, and acetone, are
produced during starvation, long-term exercise, or carbohydrate-restricted diet feeding
and are used as an alternative energy source of glucose. When liver and muscle glycogens
are depleted during starvation, fatty acids are transported from adipose tissue to the liver,
where they are oxidized to produce acetyl CoA and ketone bodies [1]. The rate-limiting
enzyme for ketone body synthesis is hydroxymethylglutaryl-CoA (HMG-CoA) synthase 2
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(HMGCS2), which condenses acetoacetyl CoA and acetyl CoA to form HMG-CoA [2].
Ketone bodies produced in the liver are transported to the muscles, brain, and other tissues
where they are converted to acetyl CoA and used as an energy source.

Recently, it has become clear that ketone bodies have roles other than an alternative en-
ergy source [3–8]. For example, it has been reported that β-OHB regulates the expression of
genes involved in suppressing oxidative stress by inhibiting the class 1 histone deacetylase
complex (HDAC) [4]. Other reports indicate that β-OHB regulates G protein-coupled recep-
tor (GPR) 41 and GPR109A [5–7]. In addition, β-OHB inhibits the activation of NOD-like
receptor protein 3 (NLRP3) inflammasome in macrophages [8]. Thus, β-OHB is assumed
to have a specific role in local tissues and maintain systemic metabolic homeostasis as an
energy source.

It has been reported that HMGCS2 mRNA and protein expressions are observed in the
intestinal mucosal cells [9,10]. Recently, Wang Q et al. found that ketone bodies produced
in the intestinal tract are involved in the differentiation of intestinal cells [11]. β-OHB
stimulation or the overexpression of HMGCS2 induces Caco2 intestinal cell differentiation
as noted by the increased expression of differentiation markers, such as cytokeratin 20
(KRT20) and p21Waf1. Conversely, the siRNA of HMGCS2 suppresses the differentiation
of those cells. The knockdown of mammalian targets of rapamycin complex (mTORC) or
the inhibition of mTORC by rapamycin upregulates protein expression of HMGCS2. In
addition, HMGCS2 enriches intestinal stem cells and produces β-OHB. Moreover, HMGCS2
knockout to deplete β-OHB has been reported to reduce stemness, alter differentiation,
and hamper regeneration of intestinal cells in mice [12]. These findings suggest that
ketone bodies produced in intestinal epithelial cells may regulate nutrient metabolism and
differentiation of intestinal epithelial cells or surrounding cells. However, the regulatory
mechanism of ketone body concentration in intestinal epithelial cells remains unclear.

The intracellular and extracellular transport of monocarboxylic acids, such as β-OHB,
is regulated by monocarboxylic acid transporters (MCTs). So far, fourteen MCTs and two
sodium-dependent MCTs (SMCTs) have been identified [13–16]. Among them, MCT1,
MCT2, MCT4, MCT7, and SMCT1 have been reported to transport β-OHB [13,15,17–19].
For example, it was reported that the Km values of MCT1, MCT2, MCT4, and SMCT1
expressed in Xenopus laevis oocytes for D-β-hydroxybutyrate are 10.1 mM, 1.2 mM, 130
mM, and 1.4 mM [13,17]. However, relative β-OHB levels in flow-sorted intestinal cells
were around 20 to 125 nM/250,000 cells [12]; these concentrations might be pretty low
compared with the Km value of the MCTs. Moreover, each MCT should competitively
transport varieties of monocarboxylate that exist in different concentrations in cells [13,17].
Finally, the interaction between the production and transport of ketone bodies in intestinal
cells is also unclear.

In the present study, we investigated the regulatory mechanism of ketone body con-
centration in intestinal epithelial cells. A better understanding of ketone body regulatory
systems will facilitate the fine-tuning of normal and abnormal intestinal cell adaptation in
homeostasis and injury.

2. Materials and Methods
2.1. Animals

Male C57BL/6J mice (8 weeks old) were purchased from a local breeding colony
(Charles River Japan, Yokohama, Japan). The mice were housed in cages maintained at a
constant temperature (23 ± 2 ◦C) with a 12 h light–dark cycle (8:00–20:00) and acclimatized
for one week before experiment use. For the fasted sample collection, the mice fasted
for 16 h (17:00 to 9:00). After exsanguination under anesthesia, mice tissue samples were
harvested. The University of Tokushima Animal Use Committee approved the study (T28-
84 and T2019-75), and the mice were maintained according to the National Institutes of
Health guidelines for the care and use of laboratory animals.
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2.2. Reagents

DMEM (GIBCO-A14430-01, phenol-red free, glucose free, pyruvate free, glutamine
free) (DMEM(−/−)) was used as a fasting-mimicked reference medium for the stimulation
of Caco2 and HT29 cells. Glucose (Nacalai tesque, Kyoto, Japan, 16806-25), sodium pyruvate
(Tokyo Kasei Industry, Tokyo, Japan, P-5082), L-glutamine (Sigma-Aldrich, St. Louis, MO,
USA, G7513), sodium octanoate (Sigma-Aldrich C5038), wy-14643 (Sigma-Aldrich C7081),
torin1 (R and D Systems, Minneapolis, MN, USA, 4247/10), bafilomycin A (Cayman
Chemical, Ann Arbor, MI, USA, 11038), chloroquine (Sigma-Aldrich 6628), torin2 (Selleck,
Kanagawa, Japan, S2817), JR-AB2-011 (Med Chem Express, Monmouth Junction, NJ, USA,
HY-122022), and 5-Aza-2’-deoxycytidine (Fujifilm Wako Pure Chemical Industries, Tokyo,
Japan, 014-20943) were added to the medium at the indicated concentrations, and cells
were stimulated for the indicated times.

2.3. Cell Culture

Caco2, HEK293, and HT29 cells were maintained and cultured in DMEM (Sigma-
Aldrich D6429) containing 10% (v/v) fetal bovine serum (FBS, Thermo Fisher Scientific,
Waltham, MA, USA, Gibco BRL) and 50 µg/mL gentamycin (Fujifilm Wako Pure Chemical
Industries, 078-06061). The cells were passaged every 3–4 days in a CO2 incubator (5%
CO2, 37 ◦C). For the experiments, cells were seeded in 60 mm dishes with 4 mL of a
culture medium and 0.4 × 106 cells, 35 mm dishes with 2 mL of a culture medium and
0.2 × 106 cells, and 12 well dishes with 1 mL of a culture medium and 0.1 × 106 cells. The
ingredients of the reconstructed medium are shown in Supplementary Materials, Table S1.

2.4. Preparation of shRNA Constitutively Expressing Cell Lines

The oligonucleotide containing shRNA target sequences was determined by searching
the Applied Biosystems website (Supplementary Materials, Table S2). The target sequence
was cloned into a modified pEnter/U6 plasmid vector (Invitrogen, California, USA) contain-
ing the neomycin resistance gene from the pcDNA 3.1 plasmid vector (Invitrogen). After 1
day of passaging cells in 35 mm dishes, Caco2, HT29, or HEK293 cells were transfected
with 2 µg of plasmid DNA and 2 µL of Lipofectamine 2000 (Invitrogen) in Opti-MEM
(Thermo Fisher Scientific, GIBCO 31985062). After 4 h, 10% (v/v) of FBS was added. The
medium was replaced with DMEM after 24 h, and the effect of the shRNA on the mRNA
expression of each target gene was validated at 48 h post-transfection (Supplementary
Materials, Figure S1). The effect of shRNA was confirmed in more than two cell lines,
including HEK293, HT29, and Caco2. After 24 h of transfection, Caco2 or HT29 cells were
then transferred into a 10 cm dish at 2 days post-transfection, and plasmid integrated cells
were selected by adding 1 mg/mL of G418 (Fujifilm 078-05961). The cells were cultured for
21 to 28 days, and single-cell-derived colonies were stored. shLacZ-transfected cells were
used as a control and confirmed mRNA or protein expression of the targeted gene.

2.5. mRNA Expression Analysis

Total RNA was extracted using standard methods as previously reported [20,21]. Total
RNA from each sample was reverse transcribed into cDNA, and real-time quantitative PCR
was performed to measure mRNA expression levels with a specific primer set (Supplemen-
tary Materials, Table S2). The mRNA expression levels were normalized with respect to
expression levels of 18 s or β-actin.

2.6. Protein Extraction

Cultured cells were washed with ice-cold phosphate-buffered saline (PBS) and col-
lected in a 1.5 mL tube. Cells were centrifuged at 5000× g for 1 min, and then the cell pellets
were resuspended in a RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% sodium
deoxycholate, 0.1% sodium dodecyl sulfate (SDS)) with a protease inhibitor cocktail (PIC)
(Nacalai 04080). Tissues were homogenized in a 10-fold volume of a RIPA buffer with a
PIC. The resuspended cells or tissue homogenate were disrupted using a sonicator, and



Biology 2023, 12, 1467 4 of 12

the samples were centrifuged at 12,000 rpm for 15 min at 4 ◦C. The supernatant was used
for total cell fraction. To obtain cytosolic and membrane fractions, we used the Subcellular
Protein Fractionation Kit (Thermo Fisher 78840) according to the manufacturer’s protocol.
Samples were stored at −30 or −80 ◦C until use.

2.7. Protein Concentration Measurement and Western Blotting

The protein concentration of each sample was determined according to the method of
the BCA protein assay kit (Thermo Fisher 23225). Protein samples were heated at 95 ◦C
for 5 min in a sample buffer (200 mM Tris-HCl (pH 6.8), 2% SDS, 5% 2-mercaptoethanol,
10% glycerol) and subjected to SDS/PAGE. The proteins were separated via electrophoresis
and transferred onto PVDF membranes (Immobilon-P, Merk Millipore, Massachusetts,
USA). The membranes were blocked with a 1% skim milk TBS-T solution (20 mM Tris-HCl,
pH 7.4, 150 mM NaCl, 0.05% Tween20) for 30 min and washed with TBS-T for 10 min
3 times and incubated with primary antibody (rabbit anti-HMGCS2 antibody (Abcam,
Cambridge, UK, 137043), rabbit anti-phospho-p70 S6 kinase (T389) antibody (Cell signaling,
Massachusetts, USA 9234), rabbit anti-EGF receptor antibody (Cell signaling 2232), rabbit
anti-p70 S6 kinase antibody (Cell signaling 2708), rabbit anti-HSP90 antibody (Cell signal-
ing 4877), rabbit anti-MCT1 antibody (Proteintech, Rosemont, IL, USA, 22787-1-AP), rabbit
anti-MCT4 antibody (Proteintech 20139-1-AP), rabbit anti-basigin antibody (Proteintech
11989-1-AP), and mouse anti-β-actin antibody (Santa Cruz Biotechnology, Dallas, TX, USA,
H1914) overnight at 4 ◦C. After the reaction was completed, the membranes were washed
with TBS-T for 10 min × 3 times, and secondary antibodies (anti-IgG mouse-HRP MBL
(458) and anti-IgG rabbit-HRP MBL (330)) were incubated for 1 h at room temperature.
The membranes were then washed with TBS-T for 10 min 3 times and incubated with an
enhanced chemiluminescence solution (GE Healthcare, Chicago, IL, USA), and chemilumi-
nescence was detected using a LAS-3000UVmini (Fujifilm Wako Pure Chemical Industries).
The band image was analyzed using Image J (version 1.53a).

2.8. Measurement of Ketone Body Concentration

After each experiment, the culture supernatant of cells was collected, and the extra-
cellular ketone body concentration was measured. Cellular proteins were extracted with
100 µL of a RIPA buffer, and protein concentration was measured. Cell protein extracts were
heated at 95 ◦C for 1 min and centrifuged at 12,000 rpm for 15 min. Intracellular ketone
body concentration was measured in the supernatants of protein extracts. Ketone body
concentration was determined using the Total Ketone body assay kit (Fujifilm) according to
the manufacturer’s instructions. Extracellular and intracellular ketone body concentration
was adjusted via protein concentration.

2.9. Capillary Electrophoresis (CE)–Mass Spectrometry (MS) and pH Analysis

Metabolite concentrations were measured via capillary electrophoresis (CE)–mass
spectrometry as previously described [20,21]. The pH of the medium was determined using
a pH meter (Horiba, Kyoto, Japan, D-51).

2.10. Statistical Analysis

All results are presented as mean ± standard error. A t-test or a Mann–Whitney U test
was used for comparisons between two groups, the analysis of variance method was used
for comparisons between four groups, and Tukey’s multiple comparisons were used to test
for two-factor interaction. The significance level was set at p < 0.05. Excel-Tokei 2010 or
SPSS (Statistics 25) were used for statistical analysis.

3. Results
3.1. HMGCS2 Expression and Ketone Body Concentration in Mouse Colons

To confirm physiological changes in ketone body metabolism, we first compared the
expression of the rate-limiting enzyme of ketogenesis in the colon. HMGCS2 expression
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was higher in the colon than in other tissues, except for the liver (Figure 1A). β-OHB concen-
tration in the colon was increased by fasting for 16 h (Figure 1B). These results suggest that
ketone body metabolism in the colon was actively regulated in physiological conditions.
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Figure 1. HMGCS2 expression and ketone body concentration in mouse colons. (A) Relative HMGCS2
mRNA expression levels adjusted by β-actin mRNA expression in indicated tissues. WAT: white
adipose tissue, SK muscle: skeletal muscle, BAT: brown adipose tissue, Deu: duodenum, Jej: jejunum,
Ile: ileum. (B) β-hydroxybutyrate (β-OHB) concentration in the colon at fed and fasted states. A
t-test was used for comparisons between the two groups. (B) n = 3, *: p < 0.05.

3.2. Ketone Body Production in Colorectal Cells

To analyze the effect of starvation on ketone body metabolism in intestinal epithelial
cells, Caco2 and HT29 cells were cultured in a fasting-mimicked medium without glucose,
pyruvate, and glutamine. When Caco2 cells were incubated in this medium, extracellular
ketone body concentration increased over time (Figure 2A). This increase was suppressed
by the addition of glucose (Glc), pyruvate (Pyr), or glutamine (Gln) without changes in
HMGCS2 expression (Figure 2B, Supplementary Materials, Figure S2A–C). In contrast,
previously reported ketogenic media containing octanoate or peroxisome proliferator-
activated receptor α (PPARα) agonist wy-14643 alone and a combination of those did
not affect extracellular ketone body concentration and HMGCS2 expression (Supplemen-
tary Materials, Figure S2D,E) [22]. To clarify the differences in the intracellular metabolic
state caused by a fasting-mimicked medium or glucose, pyruvate, and glutamine stimuli,
102 metabolites were comprehensively measured via CE-MS analysis. Principal component
analysis showed that fasting, glucose, pyruvate, and glutamine stimulation had different
metabolic states (Supplementary Materials, Figure S2F). In particular, glucose and glu-
tamine stimulation showed similar trends in extracellular ketone body concentrations,
whereas the metabolic states did not. Among the metabolites measured, an increased ATP
concentration and a decreased AMP/ATP ratio, an energy status indicator was observed in
the addition of glucose or glutamine compared with fasting-mimicked medium (Figure 2C
and Supplementary Materials, Figure S2G). We also found that cellular ATP levels were
negatively correlated with intracellular ketone body concentration (Figure 2D). From these
results, we focused on the mammalian target of the rapamycin complex (mTORC), which
reflects cellular energy status, and examined the relationship between mTORC and ketone
body metabolism. Protein expression of the phosphorylation of S6 kinase (p-S6K), which
reflects mTORC activation, was increased by glucose and glutamine stimulation, similar
to the extracellular ketone body concentration (Figure 2E). The link between ketone body
production and mTORC activation was confirmed in HT29 cells (Supplementary Materials,
Figure S2H,I). We also confirmed that non-metabolizable glucose analog 2-deoxyglucose
(2-DG) did not suppress ketone body excretion (Supplementary Materials, Figure S2J).
To examine mTORC and ketone body metabolism in detail, we tested intracellular and
extracellular ketone body concentrations following mTORC inhibition. Extracellular but
not intracellular ketone body concentration was increased in intestinal cells treated with
glucose and the mTORC inhibitor torin1 compared with glucose alone, suggesting that
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mTORC suppressed ketone body excretion (Figure 2B,D and Supplementary Materials,
Figure S2H). Because torin1 inhibits both mTORC1 and mTORC2, to investigate the involve-
ment of mTORC1 and mTORC2 in ketone body metabolism, Caco2 cells were stimulated
with glucose, the mTORC1 inhibitor torin2, and the mTORC2 inhibitor JR-AB2-011. The
extracellular ketone body concentration was increased in the torin2 treatment similar to the
torin1 treatment, whereas it did not increase in the JR-AB2-011 treatment (Supplementary
Materials, Figure S2K). These results indicate that ketone body production linked with
cellular energy status and the export of ketone bodies are regulated at least in part in an
mTORC1-dependent manner.
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Figure 2. Ketone body production and excretion were regulated by energy status in Caco2 cells.
(A) Changes in total ketone body concentration in the medium incubated with a fasting-mimicked
medium for the indicated time. (B,D) Changes in total ketone body concentration in the medium (B)
or cells (D) incubated with a fasting-mimicked medium (NT) with 20 mM of glucose (Glc), 2 mM of
glutamine (Gln), 20 mM of glucose and 0.1% DMSO (Glc + D), or 20 mM of glucose and 1 µM of torin1
(Glc + T) for 12 h. (C) Changes in the cellular ATP level of a fasting-mimicked medium (NT), NT
with 20 mM of glucose (Glc) or 2 mM of glutamine (Gln)-treated cells (NT as 1.0). (E) Band pattern of
p70-S6 kinase, phosphorylated p-70 S6 kinase, and β-actin of cells treated with a fasting-mimicked
medium (NT), NT with 20 mM of glucose (Glc) or 2 mM of glutamine (Gln) with or without 1 µM
of torin1 for 12 h. The analysis of variance method was used for comparisons among groups, and
Tukey’s multiple comparisons were used to determine which groups differed. (A–D) n = 3. The
different letters indicate significant differences (p < 0.05).

3.3. Autophagy Regulates Ketone Body Excretion in Colorectal Cells

It has been reported that the activation of mTORC1 inhibits autophagy [23,24]. There-
fore, we next investigated whether autophagy is involved in ketone body metabolism in
intestinal epithelial cells. Treatment cells with the autophagy inhibitors bafilomycin A
(BafA) and chloroquine (CQ) suppressed the starvation-induced increase in extracellu-
lar ketone body concentration concomitant with accumulation of autophagy maker LC-3
(Figure 3A,B and Supplementary Materials, Figure S3A). We also found that the knockdown
of beclin1, a key molecule in the autophagic machinery, partially reduced extracellular
ketone body concentration in the starvation-mimicked medium with the accumulation of
autophagy substrate p62 and a reduction in LC3 but did not reach statistical significance
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(Figure 3C,E and Supplementary Materials, Figure S3B–E). In this situation, intracellular
ketone body concentration was not different between shLacZ cells and shBeclin1 cells (Sup-
plementary Materials, Figure S3F). In addition, extracellular ketone body concentration was
partially increased via the pharmacological inhibition of mTORC in beclin1 knockdown or
chloroquine treatment cells (Figure 3D and Supplementary Materials, Figure S3G). These
results suggest that the mTORC and autophagy pathways were additively associated with
ketone body excretion in intestinal cells.
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Figure 3. Effect of autophagy on ketone body excretion in Caco2 cells. (A) Changes in extracellular
ketone body concentration (A) and LC3 and β-actin protein expression (B) of Caco2 cells incubated
in a fasting-mimicked medium with 0.1% DMSO, 200 nM of bafilomycin A (Baf A), double distilled
water (water), or 50 nM of chloroquine (CQ) for 16 h. (C,D) Changes in ketone body concentration
of shLacZ or shBeclin1-transfected Caco2 cells incubated in a fasting-mimicked medium (NT) or
20 mM of glucose (Glc) and 20 mM of glucose with or without 1 µM of torin 2 for 16 h. (E) Changes in
protein expression in shLacZ- or shBeclin1-transfected Caco2 cells. T-tests were used for comparisons
between each vehicle control group (DMSO or water) and treated groups (BafA or CQ) (A). A t-
test was used for comparisons between shLacZ and shBeclin1 cells treated in the same medium.
(C,D) n = 3 *: p < 0.05.

3.4. Basigin-Associated MCT Involves Ketone Body Import in Colorectal Cells

To further explore reliable ketone body transporters, we focused on MCTs. Among ke-
tone transporters, we excluded SMCT1 (SLC5a8) and MCT2 (SLC16a2) because the gene ex-
pression of SLC5a8 and embigin, a binding partner of MCT2 [25], were suppressed by DNA
methylation (Supplementary Materials, Figure S4A). To investigate sodium-dependent
ketone body transport in colorectal cells, we reconstructed a starvation-modified medium
in which sodium was replaced by N-methyl-D(-)-glucamine (NMDG). In this reconstructed
medium, extracellular ketone body concentration did not change with the sodium-based
starvation medium (Supplementary Materials, Figure S4B), suggesting that the sodium-
dependent transporter did not involve ketone body transport. Next, we investigated the
knockdown of basigin, the binding partner for MCT1 and MCT4, on ketone body trans-
port [26]. Basigin and MCT4 expression were reduced in the membrane fraction of basigin
knockdown cells but not MCT1 protein expression (Figure 4A). Surprisingly, extracellular
but not intracellular ketone body concentration increased more in shBasigin cells than
shLacZ cells, both in starved and unstarved conditions (Figure 4B and Supplementary
Materials, Figure S4C,D). In addition to this, the knockdown of MCT1 did not affect ex-
tracellular ketone body concentration (Supplementary Materials, Figure S4E). In contrast,
extracellular lactate and pyruvate concentrations were lower in shBasigin cells concomitant
with a higher medium pH (Figure 4C–E and Supplementary Materials, Figure S4F). MCT4
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knockdown cells also showed higher pH in the medium compared with the medium of
shLacZ cells (Supplementary Materials, Figure S4G). These results suggest that basigin-
associated MCT accelerates lactate and pyruvate and suppresses ketone body export in
intestinal cells.
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Figure 4. Effect of a monocarboxylate transporter on ketone body excretion in intestinal cells.
(A–E): Changes in cytosolic (Cyto) and plasma membrane (Mem) protein expression (A); extracellular
ketone body concentration (B); extracellular lactic acid concentration (C); pyruvic acid concentra-
tion (D); and pH of the medium (E) in shLacZ and shBasigin-transfected cells. (F,G) Changes in
extracellular ketone body concentration in shLacZ- and shMCT7-transfected cells. Caco2 cells were
incubated in a fasting-mimicked medium (NT), 20 mM of glucose (Glc), and 20 mM of glucose with
or without 1 µM of torin 2 for 16 h. T-tests were used for comparisons between shLacZ and shBasigin
or shMCT7 cells treated in the same medium. (B–G) n = 3 *: p < 0.05.

3.5. MCT7 Involves Ketone Body Export in Colorectal Cells

Finally, we found that extracellular ketone body concentration was reduced in the
MCT7 knockdown of both Caco2 and HT29 cells without changing intracellular ketone
body concentration in the fasting-mimicked medium (Figure 4F, Supplementary Materials,
Figure S4H,I). Glucose supplementation additively reduced extracellular ketone body
concentration (Figure 4F, Supplementary Materials, Figure S4I). However, when cells were
treated with glucose and torin2, there was no difference in extracellular ketone body
concentration between MCT7 knockdown cells and control cells (Figure 4G). These results
suggest that the mTORC1 signal-mediated ketone body efflux partially associates with the
MCT7-mediated ketone body efflux.

4. Discussion

In the present study, we found that a major fraction of ketone body production and
excretion was independently regulated in intestinal cells (Figure 5). Ketone body production
was suppressed by the supplementation of energy sources, such as glucose or glutamine.
In addition, mTORC1 was activated by glucose-suppressed ketone body excretion. On the
other hand, the inhibition of mTORC1 recovered a fraction of the excreted ketone bodies
without changing ketone body production. Autophagy and MCT7 accelerated ketone body
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excretion. Unlike lactate or pyruvate, basigin-associated MCTs suppressed ketone body
excretion.
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continuous arrows and lines show our study’s results and methods, and the discontinuous arrows
and lines show unknown mechanisms that regulate ketone body transport in intestinal cells. Red
arrows show acceleration, and blue lines show suppression. KD: knockdown.

In the fasting-mimicked medium, ketone body production was increased, and it was
suppressed by the addition of glucose and glutamine but not 2-deoxy glucose, suggesting
that an increase in energy source in the cell suppressed ketone body production. In fact,
intracellular ketone body concentration was negatively associated with cellular ATP levels
(Figure 2C,D). In this context, octanoate and a PPARα agonist, a transcriptional regulator
of HMGCS2, did not suppress extracellular ketone body concentration. These results
suggest that the contribution of the octanoate to the energy source is negligible in Caco2
cells. In addition, HMGCS2 protein expression was not different among NT, Glc, Pyr, and
Gln groups, suggesting that HMGCS2 activity might be regulated by post-translational
modifications in our experiment (Supplementary Materials, Figure S2B) [27–29]. Moreover,
the inhibition of mTORC1 increased extracellular ketone body concentration but did not
increase intracellular ketone body concentration. These results indicate that mTORC1 sig-
nals may suppress ketone body export. Further studies are needed to reveal the regulatory
system of ketone body production.

Among ketone body transporters, such as MCT1, MCT2, MCT4, MCT7, and SMCT1,
SMCT1 (SLC5a8) and MCT2 chaperon embigin expression were turned off in intestinal
cells (Supplementary Materials, Figure S4A) [30,31]. In addition, basigin-associated MCTs
accelerated lactic acid and pyruvic acid excretion and suppressed ketone body excretion.
The transport of substrates by MCTs coupled with proton transport is driven by proton
gradients [13]. Therefore, the reduction in proton and lactic acid transport observed in
basigin and MCT4 knockdown cells could affect ketone body transport indirectly. In
addition, we found that ketone body excretion was reduced in the MCT7 knockdown
of both Caco2 and HT29 cells. This reduction was masked by mTORC1 inhibition. Two
possibilities for the masking effect of the mTORC1 signaling-mediated ketone efflux in
MCT7 knockdown cells are the unrevealed interaction between the mTORC1 pathway and
MCT7 or the complementary role of other transport carriers. Further studies are needed to
clarify the mechanism involving basigin-associated ketone body export and the regulatory
mechanism between mTORC1 and MCT7.

A recent study reported that β-OHB infused into the blood could detect cecum con-
tent [12]. This result indicates that an increased concentration of β-OHB should be derived
from not only colon tissue but also the liver through the blood. In addition, secreted
β-OHB from colonic epithelial cells potentially compromises gut microbiota composition
and function. Some bacteria produce Poly-(R)-3-hydroxybutyrate (PHB) as a biopolymer
consisting of linear chains of β-OHB and PHB, which is considered to serve as a carbon
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and energy store in these organisms [32]. These reports suggest that β-OHB excreted from
intestinal cells may have a role in gut microbiota.

There are some limitations in our study. For example, we mainly used Caco2 and
HT29 cells as a model of epithelial cells. Both cells are derived from colorectal cancer
cells and generally, cancer cells and normal cells have different properties, such as the
expression of genes involving a ketone body, fatty acid metabolism, and MCTs. In fact,
SMCT1 and embigin expression were suppressed in those cells. Nevertheless, we showed
the mTORC1–autophagy pathways and MCT7 regulating ketone body excretion, and these
results may help us understand the regulatory mechanism of ketone body metabolism to
fine-tune normal and abnormal intestinal cell homeostasis.

5. Conclusions

In the present study, we showed that ketone body production was increased by the
exclusion of glucose, pyruvate, and glutamine from the medium. It was suppressed by the
addition of glucose, pyruvate, or glutamine concomitant with an increase in ATP levels.
We also found that the mTORC1–autophagy axis and MCT7 are at least partly involved
in ketone body excretion in intestinal cells. In contrast, basigin-associated transporters
totally regulated lactate excretion and ketone body uptake. These results clearly indicate
that cellular ketone body concentration is regulated by several factors in intestinal cells
(Figure 5).

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biology12121467/s1, Figure S1: Effect of shRNA; Figure S2: Changes
in ketone body concentration, metabolites, and HMGCS2 expression in Caco2 cells in different
conditions; Figure S3: Effect of Beclin1 knockdown on autophagy-related protein and intracellular
ketone body concentration; Figure S4: Effect of monocarboxylate transporter on ketone body excretion
in colorectal cells; Figure S5: Full Western blots; Table S1: Ingredients of the reconstructed medium;
Table S2: Primers.
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