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Simple Summary: Understanding the effects of the tumor microenvironment is an essential step
to advance treatments for cancer, but it is also one that is problematic to reproduce in vitro or
study in vivo. When such approaches are difficult to implement, in silico methods are often able to
help surmount these barriers. Network models of biological systems focus on the interactions of
components (such as proteins or genes) and use available data about the parts of a system to predict
emergent qualities. We focused our study on macrophages and how their environment affects their
polarization. Thus, we built a Boolean control network model of the early response events going on
in macrophages by collating information from a manual search of the literature that interprets the
changes in the inner state of the cell. We used this model to simulate combinatorial treatment options
that target multiple targets at the same time and have synergistic effects on macrophage polarization.

Abstract: Background: The function and polarization of macrophages has a significant impact on the
outcome of many diseases. Targeting tumor-associated macrophages (TAMs) is among the greatest
challenges to solve because of the low in vitro reproducibility of the heterogeneous tumor microenvi-
ronment (TME). To create a more comprehensive model and to understand the inner workings of the
macrophage and its dependence on extracellular signals driving polarization, we propose an in silico
approach. Methods: A Boolean control network was built based on systematic manual curation of the
scientific literature to model the early response events of macrophages by connecting extracellular
signals (input) with gene transcription (output). The network consists of 106 nodes, classified as
9 input, 75 inner and 22 output nodes, that are connected by 217 edges. The direction and polarity of
edges were manually verified and only included in the model if the literature plainly supported these
parameters. Single or combinatory inhibitions were simulated mimicking therapeutic interventions,
and output patterns were analyzed to interpret changes in polarization and cell function. Results:
We show that inhibiting a single target is inadequate to modify an established polarization, and that
in combination therapy, inhibiting numerous targets with individually small effects is frequently
required. Our findings show the importance of JAK1, JAK3 and STAT6, and to a lesser extent STK4,
Sp1 and Tyk2, in establishing an M1-like pro-inflammatory polarization, and NFAT5 in creating an
anti-inflammatory M2-like phenotype. Conclusions: Here, we demonstrate a protein–protein interac-
tion (PPI) network modeling the intracellular signalization driving macrophage polarization, offering
the possibility of therapeutic repolarization and demonstrating evidence for multi-target methods.

Keywords: macrophage polarization; protein–protein interaction network; Boolean control network;
tumor microenvironment; combination therapy; drug target selection
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1. Introduction

The immune system has to react to a variety of threats in a localized and targeted
manner. To accomplish this, immune cells go through various changes that define their
function in response to external stimuli. As part of this process, identical groups of T
lymphocytes and macrophages can either drive regenerative, wound healing events or
trigger inflammation and an aggressive response to detrimental agents. Disruption of
this finely regulated equilibrium plays an essential role in several pathologies, causing
excessive inflammation [1–4] or hampering immune surveillance and activation, which can
be responsible for cancer formation [5,6]. Immune cells, and in particular, tumor-associated
macrophages (TAMs), are essential components of the tumor microenvironment (TME) [7,8].
Still, even though their therapeutic potential is gaining traction [9–13], both in vitro assays
and experimentation on murine models face significant hurdles in accurately reproducing
the TME and macrophage function [14–16].

Macrophages go through a process called polarization when exposed to certain stimuli,
giving rise to a broad spectrum of effector cells [17]. This functional change is supported,
and to an extent defined, by an extensive change in the cell’s transcriptome [18,19]. To avoid
being targeted by the immune system, cancerous cells often develop an ability to influence
these changes by modulating the TME [20]. By expressing and secreting immunomodu-
lating agents, they can drive a shift in function from tumoricidal to regenerative, tissue-
protective, and even tumorigenic responses in TAMs [21,22]. M1-polarized macrophages
represent a tumoricidal phenotype and secrete reactive oxygen species (ROS) and cy-
tokines, including IL-1 and TNF-α, associated with microbicidal and pro-inflammatory
activities [23]. M2-polarized macrophages express the CD163 antigen, are regulated by IL-4
and -13, and are described as tumorigenic [24,25].

Drug and therapy design has always been an arduous task: partly due to the daunting
amount of options for possible targets and drug molecules; partly due to technical issues
inherent in creating physiologically adequate circumstances in vitro or interpreting the
results of in vivo tests. While we still cannot wholly replace these steps, computationally
based in silico technologies can expedite them and make systematic searches practically
feasible. Developing a mathematical model of a system allows us to create predictions
for a host of scenarios and combinations of circumstances [26,27]. To derive meaningful
information about perturbations on the cellular level, the model needs to incorporate
proteins and genes. The direct biochemical modeling of intracellular events is beyond the
current state of computing, but modeling the interactions of these elements and the flow
of information through their network has proven to be a successful approach [28]. Based
on publicly available data, network models of different complexities can be constructed.
Reducing the information stored about individual components to a binary (on/off) state
and building what is known as a Boolean network might seem deceptively simple, but
it still allows for meaningful deductions about the system, while also enabling the use of
diverse resources to build it [29]. This reduction in the number of parameters included also
allows for the examination of more complex scenarios, especially a systematic study of
multi-target therapies or drugs [30].

In the current work, we present a detailed in silico model of the intracellular processes
leading to the polarization of macrophages in response to their environment, relying pri-
marily on direct interactions between components and with a particular focus on the TME.
The system is stimulated with physiologically relevant external stimuli and its polarization
status is inferred from changes in the transcriptome of the macrophage. Exploring pertur-
bations that represent therapeutic action, we show the effect of single and combinatory
inhibitions of crucial protein targets in the signal transduction of macrophage polarization
in a presumptive TME.
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2. Materials and Methods
2.1. Network

In this model, the intracellular signaling pathways of a macrophage are represented
with a Boolean control network (BCN) with a synchronous update scheme. The system
receives input in the form of small molecule transmitters from extracellular space, and
the transcriptional pattern of selected genes relevant to polarization is considered the
output. The activation status of all elements (represented as nodes) is registered, and the
spread of signals via their interactions (represented as edges) is tracked from receptors to
transcription factors and genes (Figure 1).
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Figure 1. Network overview. A summary image showing all 106 nodes and 217 edges of the model.
Input nodes are teal, transcription factors are yellow and output nodes (genes) are green. The grey
nodes are complexes or alternative states, represented as separate nodes for technical reasons. Grey
edges are stimulatory; red ones are inhibitory. Major signaling pathways are indicated with colored
boxes. Edge weight is not indicated here. The base image was created with Cytoscape.

We focused on the early response of the cell, meaning that effects that require de novo
protein synthesis (including auto/paracrine effects, e.g., in the case of IFNβ) and feedback
loops (e.g., in the case of SOCS3) were excluded. Our model abstracts the passage of time
to an extent that these effects would mask the initial response of the cell. Moreover, our aim
was to examine the fundamental decision the cell makes about its state. Without a change
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in the environment, all these later responses are fully dependent on the early response.
They either reinforce or hold in check a primary decision already made by the system.

Being a Boolean model, each node has two states: active and inactive. The behavior
of the network is evaluated in subsequent steps. In each step, all nodes simultaneously
update their state based on the states of the source nodes of all incoming edges and the
weight of those edges. The state of input nodes (small molecule transmitters) is fixed in
each run and is used to represent the microenvironment of the cell. Steps are taken until an
attractor is reached (a stable cycle of network states, possibly consisting of only one state),
at which point the state of output nodes is examined. Attractors are recognized with our
implementation of Brent’s cycle detection algorithm [31]. The mathematical formulation of
model state progression is based on the one presented in [32]. The state of the system is
calculated from its state in the previous step as follows:

St+1 = thr(W·St − θ) (1)

where Sx is the state of the system at step x, represented as a binary column vector; W is a
square weight matrix containing all edge weights (with nonexistent edges having a weight
of 0); Θ is a vector of threshold values for each node; and thr is a threshold function defined
as: [if x ≥ 0: thr(x) = 1, otherwise thr(x) = 0].

2.2. Nodes

We performed a systematic search of research articles describing the effects of ex-
tracellular stimuli on macrophage polarization in terms of changes in gene expression.
Receptors (to serve as input nodes) and genes (to serve as output nodes) that have multiple
available references with unprocessed raw data documenting their impact on macrophage
polarization, showing that they are often used to induce it or as markers of it, respectively,
were selected as the frame of the model [22,33,34] (see also the references in Supplementary
Table S3). This was carried out both to restrict the size of the model (compared to extracting
an extensive list from a database) and to make it feasible to verify the model based on pub-
lished research data. In addition, in order to incorporate a gene into the model, information
describing the transcription factors necessary and sufficient for its expression was necessary.
We are not aware of any large-scale database of this information and manually curated
all protein–gene interactions. Potential output nodes without sufficient support were ex-
cluded [22]. The nodes connecting the two sides of the model are identified using the KEGG
Pathway database [35]. We focused on pathways that we expected to be described in the
literature in sufficient detail to make the translation of their constituent processes into our
Boolean representation possible. We selected the MAPK, TLR, PI3K/AKT and Jak/STAT
pathways, as together they contain all the input and output nodes and establish signal
transductory linkages between them. As signaling often relies on combinatorial effects,
this core list was expanded with first neighbor nodes that create crosstalk amongst these
pathways through the edges found in the interaction databases (see Edges). In addition,
in some cases we were unable to satisfy the verification criteria with the nodes identified
systematically, and hypothesized that an element missing from the model is responsible for
the discrepancy. We performed a manual search of the literature to reveal proteins with
considerable impact on these processes that were not included or sufficiently connected in
the databases (e.g., STK4 has no outgoing edge in KEGG and no link to any other part of
our model in STRING). These were included if by doing so the criterion in question could
be satisfied.

Input nodes represent signaling molecules in extracellular space, output nodes repre-
sent the transcriptional activation of genes, and most inner nodes represent signal trans-
ducer proteins. In addition, some inner nodes represent a group or complex of proteins
based on functional considerations, e.g., the components of the PI3K complex are separate
proteins, but they function as subunits forming a functional unit and are thus assigned to a
single node. In these cases, interactions of the parts were considered to be interactions of
the group.



Biology 2023, 12, 376 5 of 17

Proteins that are not expressed in monocytes or macrophages were also excluded
(e.g., T cell-specific proteins). The expression profile of CD14+ monocytes was checked in
the database presented in [36], accessed through biogps.org. Similarly, proteins with consti-
tutive activity in monocytes or macrophages (e.g., the transcription factor PU.1) were also
excluded, as their inactivation would likely cause a deviation from the macrophage pheno-
type and constantly active nodes would hold no information. The complete list of nodes,
including classification and expression data, can be found in Supplementary Table S1.

2.3. Edges

Edges represent functional interactions and the flow of information in the signal-
ing network. Interactions are based on the SignaLink2 [37], STRING [38] (accessed on
26 March 2021) and HPRD [39] databases. Due to efficiency considerations, we filtered the
STRING database for physical interactions (tagged as ”binding”). Connections based only
on in silico predictions (reasonably common in SignaLink2) or merely on involvement in
the same pathway (often referenced in STRING) were not included, meaning that edges
connecting genes (i.e., output nodes) to the network are all based on a systematic search of
the literature.

All the edges identified in these datasets were then manually curated to determine
their direction and sign (i.e., whether they are stimulatory or inhibitory), and they were
only included in the model if these parameters were clearly supported by the literature
(preferring primary research articles). Edges without direct evidence for their function in
human macrophages were added or removed during the verification process if there was
substantial evidence in other cell types and the change improved the model’s adherence to
the verification criteria.

It should be noted that not all edges represent direct physical interaction (e.g., PI3K
that acts through PIP3). Moreover, not all physical interactions are included as edges.
MyD88 and TRAF6 bind each other in a larger complex, but the flow of activation goes
through IRAK1. While complex formation and scaffold proteins are certainly an essential
factor to consider in general, the effects of these binding events are too subtle from the
viewpoint of our relatively coarse Boolean system and are, thus, excluded.

The weight of the edges is used to create logic gates to represent the complex ways in
which the activation of these entities depends on each other. It is not supposed to represent
any measurable interaction parameter, such as binding affinity or reaction speed. For
example, if two nodes send edges of weight 0.5 to the same target node, it means that
they are both necessary for the activation of the downstream node (AND gate), not that
they each affect 50% partial activation by themselves (See Equation (1), above). Inhibitory
interactions are represented with a negative weight but otherwise follow the same rules as
stimulatory ones. The complete list of edges, including supporting references (PubMed
IDs), is presented in Supplementary Table S2.

2.4. Model Evaluation

At step 0, the system always starts with all nodes inactive. The constitutive activation
or inhibition of nodes is introduced by changing their threshold value for activation (in
Θ of Equation (1)). Once an attractor is reached, the state of the cell is characterized with
a polarization index (pI), following the spectrum model of macrophage polarization [17],
which is calculated as:

pI(i) =
A1(i)

T1
− A2(i)

T2
(2)

where Ax(i) is the number of active outputs of type x for input i and Tx is the total number
of such outputs. Type 1 is inflammatory (M1-like), and type 2 is tissue-protective (M2-like).
For designations, see Supplementary Table S1. In some cases, the role of specific genes
in polarization is ambiguous; in these cases, we focused on effects in the TME. When
evaluating a limit cycle, the ratio of states in which each node is active is summed for the
appropriate nodes to derive Ax(i). In this model, we consider the following outputs to
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be type 1 (inflammatory, M1-like): CD64, CD68, CIITA, CXCL10, IFNβ, IL-12A, IL-12B,
IL-1B, IL-6, iNOS, TNFα; and the following to be type 2 (tissue-protective, M2-like): CCL17,
CCL22, CCL24, CD209, MERTK, MRC1, TGFβ.

The synergistic action of two inhibitions is measured with a synergy index (synI),
defined as:

synI(A, B, i) =
|∆pI(AB, i)|

max(|∆pI(A, i)|+ |∆pI(B, i)|,τ) (3)

where ∆pI(X,i) is the change in the polarization index due to the inhibition of node(s) X
compared to no inhibition under the same input conditions, i. τ is an adjustment parameter
used to avoid excessive index values due to low ∆pI values for single inhibitions, as these
would be misleading. For our calculations we use τ = 0.1, but this is an arbitrary choice.
Calculations were performed using MATLAB (The MathWorks, Inc., Natick, MA, USA)
and code is available as Supplementary File S1.

3. Results
3.1. Network Characteristics

Our network consists of 106 nodes, divided into 9 input, 22 output and 75 inner
nodes, and 217 edges connecting them (Figure 1). Supplementary Tables S1 and S2 show
nodes and edges, respectively. Intracellular interaction networks are usually expected to
be scale-free [40]. Our model being a control network, its degree distribution is somewhat
distorted compared to other biological networks. Nodes with no output or input are only
those explicitly designated as inputs or outputs, respectively, with few exceptions for
technical reasons (JAK-s are constitutively active with no input but affect the network only
via receptor complexes). Thus, nodes with a degree of 1 are relatively underrepresented.
Compared to expectations, we also obtained an abundance of nodes with a degree of 4.
One factor is that technical nodes are overrepresented in this group (8 out of 11 have a
degree of 4), but even excluding them, the number remains above the expected value. If
we exclude degrees 1 and 4 as outliers, the network is scale-free, i.e., it shows a power law
distribution (R2 = 0.80) (Figure 2a).

Checking the betweenness centrality of nodes (Figure 2b), we can see that proteins
recognized as major actors retain this position in our network too, confirming that our
selection of nodes did not skew the pathways involved. As expected from our decision to
exclude feedback mechanisms, the network attractors are all steady-state with 0 or 1 nodes
inhibited. However, with two nodes inhibited, limit cycles do appear in a limited number of
cases (2894 or 0.26%). Network components are predominantly localized and are expected
to interact in the plasma membrane, cytosol, and the nucleus (Figure 2c).

3.2. Verification

While the internal mechanisms of the cell are less frequently explored in detail,
numerous studies report changes in gene expression in response to external stimuli in
macrophages. We used these data to verify our model. Experimental results linking each of
our chosen inputs to our outputs were collected to create verification criteria. We gathered
55 single input-to-output references via a systematic search of the literature (Supplementary
Table S3). We then compared these data to the output of our model when only that single
input node was active. The results were used to expand our literature search, including
nodes not initially found in the databases to explain faulty input-to-output connections.
Edges representing fairly well-documented relationships but without direct evidence in
macrophages were also reviewed to minimize deviations. The presented model satisfies 52
of the 55 verification criteria (94.55% match).
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Figure 2. Network statistics. (a) Degree distribution of the network. The red line shows a power law
curve fitted to the data with degree = 1 and degree = 4 excluded as outliers (R2 = 0.80). (b) Betweenness
centrality plotted against degree. Some nodes of interest are labeled. (c) Cellular localization of
proteins represented in the model. Data are based on the Gene Ontology Database. As presented
here, terms contain all descendants reachable via “is_a” relations. In specific cases (marked with *),
terms with a “part_of” relation were also merged into their ancestors: namely “nucleoplasm” and
“nuclear body” were merged into “nucleus”; “external side of plasma membrane” was merged into
“cell surface”; and “extrinsic component of cytoplasmic side of plasma membrane” was merged into
“cytoplasmic side of plasma membrane”.

In addition, we examined how well our model fits the general understanding of the
function of the inputs and outputs. The polarization index was calculated for inputs in
the same way as for outputs (see Materials and Methods, Equation (2)), and we compared
the two for all input combinations (Figure 3). Although the correlation between the two is
moderate (Pearson r = 0.580), there is a clear tendency, as expected. The disappearance of
tissue-protective outputs (pI < −0.2) and the appearance of inflammatory ones (pI > 0.2)
happens around the same input pI, even though it is a little below 0. Nevertheless, there
is a fairly well defined switch, as input pI increases. While our polarization index is
close to continuous, we observed that outputs form three loose groups regarding polar-
ization: an M1-like, an M2-like, and a transitory or uncommitted (Figure 3). This is the
basis of setting the thresholds for repolarization at ±0.2 when examining the effects of
simulated interventions.

3.3. Single Inhibitions Versus Synergistic Combinations

We examined how the disruption of signal transduction would affect the position of
our network on the spectrum of polarization, in order to model the effects of small-molecule
inhibitors applied as drugs. We ran simulations with one or two of the inner nodes (except
receptors) inhibited (immutably set to inactive) for all input combinations. This shed light
on some properties of the system.
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the two, further supporting that our model is in line with our understanding of the effects of
these factors.

While there are a number of single node inhibitions that cause a considerable shift in
the polarization index (pI) of the final state of the model (Figure 4), these almost never cause
a change in polarization or what we refer to here as a “flip”. In more concrete terms, we say
that a perturbation causes a flip in the context of an input combination if, both with and
without the perturbation, the model converges on an attractor with abs(pI) > 0.2, but the
actual values in the two cases are of opposite signs. Of a total of 34,237 cases (67 targets ×
511 input combinations), 790(2.31%) cause a ∆pI over +0.4 (a shift towards an inflammatory
state) and 2210(6.46%) cause a ∆pI under −0.4 (a shift towards a tissue protective state);
however, out of those, only 4 and 0, respectively, cause a flip. Thus, if we wish to reeducate
the system, we require a different approach.

The simultaneous inhibition of two nodes is much more effective for these purposes.
Of the 1,129,821 cases (2211 target combinations × 511 input combinations), we found
326 that flip towards inflammation and 202 that flip towards tissue protection. While this
leaves a fair number of options when looking for therapeutic targets, it is important to
note that these comprise only a meager portion of all combinations showing an abs(pI)
of > 0.4, 0.79% and 0.16%, respectively. This means that the general trend that flipping is
considerably harder than strengthening an existing polarization or steering an unclearly
polarized system in one direction still holds, even with combinations of targets.

To examine these in more depth, we calculated a synergy index (synI) that compares
the individual contributions of the two inhibited targets to their combined effect (Figure 5;
see also Equation (3) in Materials and Methods). A synI of 1 means that the two inhibitions
create their effects independently of each other. A synI under 1 usually results from the
targets being part of the same pathway, rendering their combination not as effective as
could be expected. (However, we have to note that we assume 100% inhibition efficiency.) A
synI over 1 means that the combination is more effective than just the sum of its parts. Most
of the cases (75.10%) show some overlap in function between the inhibited nodes, and the
rest mostly indicate involvement in parallel pathways (23.14%), with only a small portion
(1.76%) exhibiting true synergistic effects. Of the 202 that flip towards tissue protection,
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200 show a synI over 1. Most are a combination of the inhibition of NFAT5, a target of
negligible effect (∆pI > −0.1) with another target, that in itself would bring the system to a
pI around 0. This means that in almost all the cases, a target must be included for which
screening for individual targets would not identify as effective. It also reveals that there are
converging pathways that need to be blocked to achieve a flip in this direction.
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ciency.) A synI over 1 means that the combination is more effective than just the sum of 
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a small portion (1.76%) exhibiting true synergistic effects. Of the 202 that flip towards tis-
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a target of negligible effect (ΔpI > −0.1) with another target, that in itself would bring the 

Figure 4. Reactions of the system to single-target inhibition. The vertical axis shows all 511 input
combinations and the horizontal all 67 perturbed nodes (direct inhibition of input and output nodes
is not performed, extending to receptors with the exception of TLR2 and 4). Both axes are sorted for
presentation purposes based on the first principal component of the data. The highlighted areas show
the portion of instances that shift predominantly towards a regenerative function (ROI#1) or a more
inflammatory one (ROI#2). These only cover approximately 30% and 7% of targets, respectively, and
are not homogenous, showing that most inhibitions have a limited effect on the state of the cell.

The picture is not this clear in the other direction. Most of the effective combinations
(75.5%) involve STAT6, the only node that can flip as a single target. The most notable
increase in effectiveness here is from the fact that the combinations can affect a wider
range of input combinations. Combining STAT6 with STK4 increases the number of
affected inputs to 10 (45%), and pairing with the inhibition of Sp1 raises it to 14 (64%).
Combinations not including STAT6 also offer a way to impact the system in a wider variety
of environments, with only four (18%) input combinations lacking a target combination
that would create a flip. Another notable observation is of a combination that involves
two targets with a ∆pI close to 0 on their own that can cause a flip. Blocking both JAK1
(∆pI = + 0.05) and JAK3 (∆pI = 0) (or their complexes with IL4R) can cause a total ∆pI of
+0.57 (a synI of 5.71) in the case of certain input combinations (IL-4 combined with either of
IL-1 and IL-10).

We also see that the synI of the combinations is generally lower than what we observed
in the other direction. Only 38 (11.7%) have a synI over 1, with most (254 or 77.9%) having
a synI of 1. This shows that the pathways controlling anti-inflammatory genes are more
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independent of each other, running parallel in most cases. When viewed together with
the above observations about inflammatory signal transduction, it also indicates that the
pathways responsible for different aspects of polarization differ not only in the proteins
and genes utilized, but their signal transduction follows slightly different logic, resulting in
a dissimilar network architecture.

All instances of flips can be found in Supplementary Table S4.
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response to combined inhibition. Areas that shift predominantly towards one state are highlighted
(as ROI#1 and #2), similar to Figure 4. They are slightly larger, with approximately 37% of target
combinations mainly causing a shift in a regenerative direction and 11% towards an inflammatory
state (compared to 30 and 7% for individual target inhibition, see Figure 4.) (b) Synergy index in
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inert zone (marked) where the inhibition has little to no effect. High synergy spots appear scattered
compared to the ∆pI. The axes in (a,b) are sorted for presentation purposes, and the order is the same
in both, based on ∆pI. (c) Synergy index is achieved in relation to a shift in the polarization index.
Values are somewhat cropped due to the τ adjustment parameter (see Equation (3) in Materials and
Methods) capping synI at ∆pI/τ.

4. Discussion

Computational models have found widespread use in recent years in many disciplines
of biology. They can be used to examine an otherwise unmanageable number of options
and possibilities, and they enable us to focus on in vivo and in vitro experiments and
efficiently narrow down key targetable molecules. Protein–protein interaction (PPI) and
gene regulatory networks (GRN) organize and utilize our knowledge of intracellular events.
Due to their scale, they are of particular interest in cancer research and drug target selection.

Modulation of the immune response as antitumor therapy has proven effective,
and there is a significant amount of research expanding on the original idea [41,42].
Macrophages have both regulatory and effector functions and exhibit particular responses
to the TME; thus, they are valuable targets for such efforts. Moreover, they can adapt to
the needs of their particular circumstances via a process called polarization, allowing them
to play a role in both the promotion and quenching of inflammation, angiogenesis, tissue
repair, and more. The TME is able to exploit this plasticity, pushing macrophages towards
states that hinder immune responses and aid tumor survival [43]. Thus, therapeutic strate-
gies aiming to deplete or impede the recruitment of TAMs might negate their undesirable
effects. The ideal solution, however, would be to counteract the influence of the TME and
drive TAMs towards a state that aids the clearance of cancerous cells.

Here, we constructed an in silico model of the early events in macrophage polarization.
Based on PPI databases and then systematically checked and expanded, our model repli-
cates experimentally measured cellular responses to individual stimuli. Using this network,
we explored the effects of all possible combinations of our selected inputs and modeled
the impact of therapeutic interventions, including mono- and combination therapies. We
show that the inhibition of a single target protein has only a moderate effect on the cell’s
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polarization; in general, this is not capable of reeducating the macrophage and changing
an established polarization. However, while still rare, the simultaneous inhibition of two
targets can be sufficient, and our model reveals multiple potent combinations with different
effect profiles. In most cases, this favorable outcome results from synergistic action on the
part of the two simulated therapeutics.

Most methods based on PPI networks use undirected, unsigned interactions, as do
the most extensive databases, such as STRING [38] or HPRD [39]. Even though the
problem is recognized and systematic solutions are proposed [44], there seems to be
limited focus on this essential subject. Our model incorporates data describing both the
direction and sign of interactions, and thus, the flow of information in the system, allowing
us to characterize interactions to a more profound extent. While our scope is limited to
macrophages, our manually curated interaction dataset might be of interest to researchers
exploring immunosuppressive processes in the TME. We recommend using the model
before in vitro drug testing to accelerate studies and rule in or out molecules that potentially
target macrophage polarization in TME.

Our findings may highlight something more fundamental to cellular processes. Ex-
amining a different system with a similar method, Fumiã and Martins also found in their
cancer model that monotherapies are ineffective in changing cellular states, and that envi-
ronmental conditions affect the efficacy of treatment strategies [32]. In their system, the
accumulation of mutations in cancerous cells is an internal change, while it is external in
ours, but in both cases, it might lead to therapeutic interventions losing efficiency over time.
Options that show effectiveness in a larger portion of input combinations might mitigate
this to some degree and are, thus, of interest.

Models of cellular decisions usually define discrete choices as output nodes, with a
limited number of nodes sending edges to them [32,45,46]. In contrast, we aimed to keep
as wide a spectrum of output nodes as possible. Here, we present one possible method
of evaluation, but adapting it based on different points of view or correcting it based
on newly acquired information is easy to execute and does not require a review of the
non-output nodes. Researchers interested in a particular gene can explore upstream effects.
Supposing the gene in question is not currently included in the model, they can add it if the
transcription factors necessary and sufficient for its expression are known without changes
to current nodes or edges.

There have been previous computational models investigating macrophage function.
The work presented in [47], and [46] based on it, use a similar approach to the one presented
here but create much simpler models, with 14 and 21 inner nodes (not in- or output), respec-
tively, compared to our 64. This means that interactions are likely to be indirect and restricts
studies to more central nodes, creating an inherent bias. The more recent works seen
in [48,49] present comprehensive network structures but restrict themselves to single-node
inhibitions. This can mask more subtle effects that do not show notable potency in altering
outcomes by themselves and is conceptually farther from actual treatment practices.

Our results highlight the role of STAT6, JAK1 and JAK3, and to a lesser extent Tyk2,
STK4 and Sp1, when creating a flip towards a polarization status promoting inflammation
and NFAT5 when flipping toward a tissue-protective phenotype. None of these targets are
lethal or cytotoxic, according to the Essential Genes database of the International Mouse
Phenotyping Consortium (www.mousephenotype.org, accessed 3 January 2022) [50], and
thus, could be viable targets for drugs. Frequently administered oncotherapeutic substances
including Gefitinib [51] or Imatinib [13] impact STAT6 phosphorylation. The inhibition
of JAK1, JAK3, and Tyk2 could partially exert its effect via blocking STAT6 activation in
response to IL-4 or IL-13, as evidenced by a blockade of the IL-receptor/JAK complexes
with a near identical impact on pI in many cases.

Conversely, the inhibition of various JAKs is used to achieve anti-inflammatory effects.
Tofacitinib is used against rheumatoid arthritis and other inflammatory diseases and mainly
targets JAK1 and JAK3, with a lesser effect on JAK2 [52]. However, its anti-inflammatory
effects are most likely via disturbing the JAK1/STAT1 interaction and not through JAK3 [53].

www.mousephenotype.org
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Moreover, it has been shown to block STAT6 function in fibroblasts [54], and to have anti-
angiogenic effects [55], which would be more in line with a shift towards an M1-like state
in macrophages. The role of STK4 (also known as MST1) in therapeutic intervention is
unclear. Malibatol A inhibits this kinase and promotes an anti-inflammatory shift [56], while
treatment with Adapalene activates STK4 and pushes macrophages toward alternative
activation [57]. Sp1 is a known target in some forms of cancer, but the effects of such
inhibition on TAMs have not yet been explored [58–60]. NFAT5 is the target of Arctigenin,
a drug shown to drive macrophages towards an anti-inflammatory phenotype in mice [61].
While our results place NFAT5 in a central position when trying to create this shift, in our
model, it is only effective as part of a combination of targets. Arctigenin is also reported to
affect the phosphorylation status of JAK2 and STAT1 via its primary effect on NFAT5 [61].
Based on their relative position in the signaling network, this is likely to be an autocrine
effect or some other kind of feedback, which might be accountable for the difference.

All models necessarily involve simplifications. We focused on the early response
phase of polarization and representing its result as part of a continuous spectrum, and
did not consider the speed or timeframe of the events. It also means that we focused on
protein–protein interactions present in unpolarized cells and excluded pathways or parts
thereof that are dependent on changes in gene expression or feedback mechanisms. For
example, metabolomic changes are involved in polarization [62] and communication with
the TME [63], but they are directed by metabolites such as nitric oxide (NO) that are not
produced constitutionally, thus requiring the expression of enzymes (the inducible nitric
oxide synthase (iNOS) in the case of NO) to create a signal. Targeting these with outside
intervention could have an impact; thus, their inclusion would be a way to improve the
model. The Boolean nature of the model also hinders the inclusion of changes in intensity
(although some stochastic models could offer an alternative). This limits the model to
an output of a static expression pattern instead of a dynamic response and excludes
the detailed exploration of effects that would modulate the longevity or stability of the
resulting polarization. It also renders the model unable to deal with certain regulatory
constructs, e.g., the interplay of IL-6 and IL-10, in which information is encoded in signal
duration [64]. The verification of a network this size has other issues. Ideally, the output
generated by input combinations should also be considered, but there are not enough data
for this to be feasible. Other research groups faced with this problem have also resorted to
one-input–one-output verification [65]. A specifically designed high-throughput in vitro
test series could provide directly comparable data points, but there might be concerns
about the robustness of such methods.

5. Conclusions

The current work focuses on the initial intracellular events leading to macrophages
changing their phenotype on a continuous spectrum of polarization in response to extracel-
lular stimuli. Here, we presented that the early steps of macrophage polarization, and its
results viewed as a spectrum of phenotypes, can be represented with a Boolean network.
Moreover, using simulations, we showed that the inhibition of single targets is generally not
effective in changing the polarization of macrophages, whereas dual inhibitions can show
a synergistic effect and successfully shift macrophage polarization. Our model provides
information to accelerate in vitro research and testing, as well as a platform for revealing
aspects of macrophage polarization. This is useful for testing immunosuppressive mecha-
nisms and drugs in immunology and cancer research. Further studies are needed to expand
our model by including secondary, late-response mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12030376/s1, Table S1: Nodes; Table S2: Edges; Table S3:
Verification; Table S4: Flips; Supplementary File S1: MATLAB code.
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