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Simple Summary: Well-balanced mitochondrial respiration and function are crucial for human
health. Altered mitochondrial function underlies the pathogenesis of both Alzheimer’s disease (AD)
and cancer. Elevated mitochondrial respiration supports cancer development, while reduced levels
contribute to AD. Lung cancer particularly depends on mitochondrial respiration. Heme, essential
for mitochondrial respiration, influences both diseases. Shared biological mechanisms like Pin1, Wnt,
or p53 signaling operate differently in cancer and AD. In cancer, they lead to excessive cell growth
and survival, whereas in AD, they induce cell death and neurodegeneration. Moreover, common risk
factors like aging, obesity, diabetes, and tobacco usage impact the development of both conditions.

Abstract: Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of ox-
idative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more
reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed
in Alzheimer’s disease (AD). Well-balanced mitochondrial respiration is important for the proper
functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial
respiration underlies the development and therapy resistance of many types of cancer, whereas di-
minished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several
activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality
worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration,
numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung
cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS),
and its association with cancer is the subject of increased research in recent years. In neural cells,
heme is a key component in mitochondrial respiration and the production of ATP. Here, we review
the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial
effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme
in the development of both AD and cancer, this review also identifies some possible biological
connections between the development of the two diseases. This review explores shared biological
mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive
cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding
these mechanisms may help advance treatments for both conditions. This review discusses precise
information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.

Keywords: Alzheimer’s disease; cancer; mitochondria; heme; heme oxygenase

1. Introduction

Alzheimer’s disease (AD) and cancer have emerged as significant global public health
challenges. Despite substantial advancements in both practical and theoretical medicine,
the effective treatment and prevention of these conditions remain elusive [1]. AD is the
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most frequent neurodegenerative disease impacting a total of 24 million individuals world-
wide [2,3]. Furthermore, cancer, another health issue, stands as one of the primary con-
tributors to mortality. In 2020, approximately 19.3 million new cancer cases and 10 million
cancer-related deaths were recorded worldwide [1,4]. Lung cancer stands as the leading
factor for cancer-related deaths, causing almost 1.4 million fatalities annually [5].

Studies suggest a lower occurrence of AD in individuals with a history of cancer
compared to a control group without cancer [6,7]. Disease etiology presents opposite
biological pathways: cancer is characterized by the uncontrolled growth of tumor cells,
while AD is linked to neuronal cell death [8]. Both groups of individuals with cancer
and those with AD could be thoroughly investigated for genes upregulated in one set of
conditions and downregulated in the other. Examples include Pin1, p53, and Wnt [9]. P53 is
upregulated in neurodegenerative diseases but downregulated in cancer. Pin1 is primarily
elevated in cancer but downregulated in AD [10]. WNT signaling is downregulated in
AD [11]. Wnt is upregulated in various cancer types [12–14]. Pin1 is a unique protein
that establishes a direct link between the pathophysiology of AD and several cancer
types. The enzyme Pin1 illustrates potential mechanisms, being upregulated in numerous
human cancers while downregulated in AD [6,15]. Moreover, p53, a tumor suppressor
protein, becomes inactive in numerous cancer cells. Conversely, heightened p53 activity is
associated with neurodegeneration in individuals affected by dementia [8]. The inverse
relationship between AD and cancer suggests that susceptibility to one condition may
protect the other [1]. One possible explanation for the inverse association between cancer
and AD is that the individuals who live long enough to experience cancer may belong to a
specific group of healthy individuals. The same factors that promote cancer survival may
also protect against AD [6,9]. Another potential explanation to consider is survival bias.
Developing cancer decreases the likelihood of living long enough to develop dementia [9].

Cancer and AD share some common risk factors including aging, obesity, diabetes,
and tobacco [1,9,16–18]. Aging, possibly due to inflammaging, is associated with the
development of chronic diseases, including neurodegenerative disorders, cancer, and type 2
diabetes (T2D) [19]. Approximately two-thirds of cancer cases occur after the age of 70.
Likewise, advancing in age is a predominant risk factor for AD. After the age of 65, the risk
of developing AD approximately doubles every five years [16]. Obesity, reduced physical
activity, and a high-cholesterol diet are significant risk factors for both cancer and AD [1].
T2D is suggested to elevate the risk of AD and dementia by a factor ranging from 1.3
to 5.5 times [20]. In the USA, between 1988–1994 and 2010–2015, cancer mortality rates
decreased but remained about 30% higher in adults with diabetes compared to those
without [21]. Both type 1 and type 2 diabetes mellitus (DM) ultimately lead to abnormal
insulin signaling [22]. Impaired insulin signaling exacerbates mitochondrial dysfunction
and worsens oxidative stress [23]. Moreover, tobacco smoking induces mitochondrial
oxidative stress. Cigarette smoke exposure triggers mitochondrial dysfunction through
Sirt3 depletion, SOD2 hyperacetylation, and cardiolipin oxidation [24].

Mitochondria are vital cellular organelles that provide energy to support cell life.
They also play a critical role in the process of cell death [25]. Some studies have reported
mitochondrial dysfunction in AD and cancer [1,16,26–28]. The moderate generation of
reactive oxygen species (ROS) by mitochondria in cancer cells contributes to cancer cell
growth and proliferation [1,29]. Heme plays a pivotal role in oxidative metabolism and the
production of adenosine triphosphate (ATP) through mitochondrial oxidative phospho-
rylation (OXPHOS) [30]. Heme metabolism has been linked to non-small cell lung cancer
(NSCLC) [30–33]. Rates of oxygen consumption and heme biosynthesis were increased in
NSCLC cells. Enhanced heme function and mitochondrial respiration contribute to the pro-
gression of lung cancer cells [34]. Mitochondrial flaws harm cells through heightened ROS
production, leading to damage and eventual death. They also disrupt OXPHOS, resulting
in energy depletion in AD [28]. Studies have reported dysregulated heme metabolism,
and elevated levels of free heme (or iron) in the brain in AD [26,35,36]. The accumula-
tion of iron in the brain might promote neurodegeneration through oxidative damage in
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AD [37,38]. In AD patients, excessive iron in the inferior temporal cortex may hasten cogni-
tive decline [26,39]. Furthermore, heme binds to amyloid beta (Aβ), creating complexes
with increased peroxidase and superoxide activities, which further exacerbate oxidative
stress [26,35,36].

This review thoroughly explores how mitochondrial respiration and heme function
affect both lung cancer and AD. It discusses common risk factors, including obesity, diabetes,
tobacco use, and aging in both conditions. Moreover, it examines the specific roles of Pin1,
Wnt, and p53 concerning these disorders. The aim is to deepen our understanding of both
AD and cancer by combining these findings, thereby opening doors for further investigation.
Ultimately, it aims to identify heme and mitochondria as potential therapeutic targets,
which could lead to effective treatments for both AD and cancer.

2. The Role of Heme and Heme Oxygenase in Cancer and AD

Iron is the fourth richest element in Earth’s crust. It is also essential to cell survival
because it is a part of the Heme molecule of haemoglobin and myoglobin, as well as the
Fe–S cluster proteins [40]. Heme, a complex of iron with protoporphyrin IX, is essential for
the function of all aerobic cells [41]. Heme is an essential prosthetic group or cofactor in
many proteins and enzymes that are involved in the binding and usage of oxygen, such
as nitric oxide synthases and cytochrome P450. Furthermore, heme is involved in the
detoxification of ROS such as peroxidases and catalase. Mitochondrial heme is crucial
for OXPHOS formation and function [30]. Heme metabolism has been associated with
NSCLC [30–33]. Increased heme synthesis and uptake in NSCLC cells result in elevated
mitochondrial heme levels and OXPHOS subunits. Consequently, this enhances oxygen
consumption, ATP production, and tumorigenic capabilities in NSCLC cells [30]. Accord-
ing to Hooda et al. [34] cancer cells display elevated levels of the rate-limiting heme
biosynthetic enzyme, 5-aminolevulinic acid synthase (ALAS), and heme uptake proteins
HCP1 and HRG1, resulting in increased heme availability. This boosts the production of
oxygen-utilizing hemoproteins such as cytochrome c, cytoglobin, Cox-2, and cytochrome
P450. Consequently, oxygen consumption intensifies, and cellular energy is generated
through respiration. This heightened cellular energy production, cell proliferation, migra-
tion, and colony formation. Considering the significance of elevated heme metabolism in
NSCLC tumorigenesis, limiting heme availability could potentially represent an effective
strategy to hinder lung tumor progression [31]. According to Sohoni et al. [30] Engineered
heme-sequestering peptides (HSPs) decreased heme uptake and inhibited tumorigenic
functions in NSCLC cells. HSP2 notably slowed the growth of NSCLC xenograft tumors in
mice, accompanied by decreased oxygen consumption rates and ATP levels in the tumors.
Moreover, reducing heme biosynthesis and uptake, such as lowering mitochondrial res-
piration, effectively decreased oxygen consumption, cancer cell migration, proliferation,
and colony formation [34].

Aβ peptides, the primary components of plaques, are produced by sequential pro-
teolytic cleavage of the amyloid precursor protein (APP) via β-secretase (BACE1) and
the γ-secretase complex [42]. Levels of BACE1 and its activity are elevated in the brains
and bodily fluids of individuals with AD [43]. Although BACE1 inhibitors reduce Aβ
deposition, they do not improve cognitive function in patients, because of their impact on
synaptic function [44]. Aβ and APP are present within mitochondrial membranes, interact-
ing with mitochondrial proteins, thereby amplifying ROS generation. This process leads to
structural and functional impairment within the mitochondria, disrupting normal neural
function [26,45]. Multiple molecular mechanisms have been suggested in AD [42,46–48].
Heme metabolism has undergone alteration within the brain of AD patients [36,46]. Direct
evidence of altered heme metabolism in AD brain was demonstrated by the increase in
heme synthesis and heme levels [36,46]. AD patients and mice exhibit a decrease in the
expression levels of the rate-limiting heme synthesis enzyme ALAS1 and heme degrada-
tion enzyme HO-2. Aβ lowers heme degradation and HO-2 levels, which are raised to
support neuronal functions. Reduced heme metabolism, particularly reduced HO-2 and
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heme degradation levels, is probably a very early event in AD [49]. Aβ binds to both
heme and heme-a to generate a complex known as Aβ-heme [36,46,48]. Heme-a may bind
to Aβ with a higher affinity than heme-b, due to its hydrophobic farnesyl group, which
is capable of binding with the hydrophobic regions of Aβ. This interaction could lead
to an augmentation in absorbance within the visible spectrum range of the heme-a–Aβ
complex [36]. Heme inhibited the aggregation of Aβ by forming Aβ-heme, indicating
that Aβ-heme may impede Aβ aggregation in vivio. Moreover, the overproduction of
Aβ in the AD brain may associate with and limit the bioavailability of regulatory heme,
leading to a state of heme deficiency [36,46,48]. Heme deficiency in brain cells dimin-
ishes mitochondrial complex IV, triggers nitric oxide synthase activation, modifies APP,
and disrupts iron and zinc homeostasis. The metabolic impacts of heme deficiency are
identical to AD patients’ dysfunctional neurons [50]. Elevated heme synthesis might act
as a compensatory mechanism in response to a decrease in free heme [36]. The activity
and protein content of mitochondrial complex IV (cytochrome c oxidase) were reduced
by 95% in heme deficiency. In heme-deficient circumstances, complexes I–III and catalase
remained unchanged, while ferrochelatase was elevated. Notably, complex IV is the sole
hemeprotein in the cell containing heme-a, potentially explaining its heightened suscep-
tibility [51]. Aβ-heme complexes with heightened peroxidase and superoxide activities,
intensifying oxidative stress [35,48]. Heme deficiency and heightened peroxidase activity
from Aβ–heme establishes a vicious cycle amplifying oxidative damage. Heme deficiency
induces an elevation in H2O2 production, which may act as a substrate for the peroxidase
Aβ-heme [48]. The effects of heme on lung cancer and AD are summarized in Figure 1.
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Figure 1. Heme’s effects in Lung Cancer and AD. In this figure, ↑ represents an increase, while ↓
indicates a decrease.
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2.1. Ferroptosis in Cancer and AD

Ferroptosis is an iron-dependent form of nonapoptotic cell death [52]. Ferroptosis is
characterized by the fatal formation of lipid peroxidation products catalyzed by iron [53].
Ferroptosis is gaining attention due to its role in disease pathology and the possibility
that this mechanism could be activated to eliminate cancer cells [54,55]. According to
Dixon et al. [54], there is no singular universally applicable ferroptosis pathway. Numer-
ous distinct metabolites and proteins can independently initiate, promote, and regulate
ferroptosis, without any being obligatory. Sensitivity to ferroptosis can be modified by
various signaling and transcriptional networks within the cell. Ferroptosis inducers can
bind to membrane pore protein 2 and membrane pore protein 3 on the outer membrane
of mitochondria. This interaction alters the permeability of the mitochondrial membrane,
lessens the sensitivity of channels to iron ions, restricts the outflow of substances from
mitochondria, induces mitochondrial dysfunction, releases a substantial quantity of oxidiz-
ing substances, and ultimately causes ferroptosis [56,57]. Dihydroorotate dehydrogenase
(DHODH) inactivation triggers significant mitochondrial lipid peroxidation and ferroptosis
in cancer cells with low expression of glutathione peroxidase 4 (GPX4low). Additionally,
it synergizes with ferroptosis inducers to amplify these effects in cancer cells with high
expression of GPX4 (GPX4high). The DHODH inhibitor brequinar selectively suppresses
GPX4low tumor growth by inducing ferroptosis. Furthermore, combined treatment with
sulfasalazine—a ferroptosis inducer— effectively suppresses GPX4high tumor growth [58].
The mitochondrial tricarboxylic acid (TCA) cycle and electron transport chain promote
cysteine-deprivation-induced ferroptosis by serving as the main source of cellular lipid
peroxide production [59].

Ferroptosis has been implicated in a variety of neurodegenerative diseases, including
AD [55,60–64]. The significant degeneration of motor neurons and subsequent paralysis
induced by the ablation of Gpx4 indicates that the prevention of ferroptosis by GPX4 is im-
perative for the health and survival of motor neurons in vivio [61]. Through the imaging of
cell fate conversion, Gascón et al. [62] observed that heightened oxidative stress hinders the
effective direct reprogramming of neurons, leading to considerable cell death. They identify
inhibitors of ferroptosis, antioxidants, and Bcl-2 as pivotal metabolic agents in enhancing
the generation of induced neurons from a range of somatic cells and in vivo after brain
injury. Hambright et al. [63] studied a mouse model with a conditional deletion in forebrain
neurons of Gpx4, a key regulator of ferroptosis. The mouse exhibited pronounced deficits
in spatial learning, memory function, and hippocampal neurodegeneration. The findings
suggest ferroptosis plays a significant role in neurodegenerative diseases such as AD.

2.2. P53, Ferroptosis, and Heme

The tumor suppressor p53 controls the expression of a wide range of proteins crucial
for various cellular processes, such as apoptosis, cell cycle arrest, DNA repair, metabolism,
and even autophagy and ferroptosis [65]. Studies have indicated that p53 plays a sig-
nificant role in regulating ferroptotic responses [66–68]. While ferroptosis is primarily
controlled by GPX4, p53 activation can modulate it without apparently affecting GPX4
function. P53 can indirectly activate the function of ALOX12 through the transcriptional
repression of SLC7A11, leading to ALOX12-dependent ferroptosis upon ROS stress [66].
P53 restricts cystine uptake and sensitizes cells to ferroptosis, via repressing expression of
SLC7A11 expression, a pivotal element of the cystine/glutamate antiporter. Remarkably,
the acetylation-defective mutant p533KR, which fails to induce cell-cycle arrest, senescence,
and apoptosis, fully preserves its ability to regulate SLC7A11 expression and trigger fer-
roptosis upon ROS-induced stress [67]. Regulation of SLC7A11 gene expression and the
response to ferroptosis is maintained by p533KR but is absent in p534KR98 [68].

It has been demonstrated that p53 interacts with heme [65,69–71]. P53’s interaction
with heme was studied using various spectroscopic methods. Despite increased confor-
mational flexibility in p53, its oligomeric state and zinc-binding ability remain unchanged.
However, heme binding reduces its affinity to a specific DNA sequence, and the inhibitory
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effect on DNA binding is partially reversible [65]. Numerous epidemiological and experi-
mental studies conducted over decades have demonstrated the association between iron
excess, resulting from genetic factors or excessive dietary intake, and the development
of various human cancers [69,72,73]. The stability of P53, a tumor suppressor protein, is
directly regulated by heme. A positive correlation between iron and heme levels in vivo
suggests that excess iron in cancer may sustain heme synthesis, thereby directly impacting
P53 stability and function [32,69]. Shen et al.’ study [69] suggests that p53 is downregulated
during iron excess. Heme binding with p53 interferes with p53’s DNA interactions, causing
nuclear export and cytosolic degradation of p53. Furthermore, iron deprivation hinders
tumor growth dependent on wild-type p53, indicating an association between iron/heme
balance and p53 signaling regulation. Apoptosis is induced in diverse cancer cell types
by dual inhibition of MDM2 and PPM1D by amplifying the p53 transcriptional program
through the eIF2α-ATF4 pathway. PPM1D inhibition induces eIF2α phosphorylation, ATF4
accumulation, and enhanced p53-dependent transactivation upon MDM2 inhibition. HRI-
dependent eIF2α phosphorylation and heme depletion are caused by dual inhibition of p53
repressors [74].

2.3. Heme Oxygenase in Cancer and AD

Mammals have three different isoforms of heme oxygenase (HO): HO-1, HO-2, and HO-
3 [75]. Among these, HO-3 is rarely studied [76]. The reaction products of HO include
carbon monoxide (CO), biliverdin, and ferrous iron (Fe2+) [75,77,78]. Heme catabolism and
several physiological functions are linked to HO enzymes [79]. The majority of the CO in
our bodies comes from heme metabolism, and it serves as a crucial signaling molecule [80].

Some studies have identified elevated levels of HO-1 expression in various malignant
tumors, including lung cancer [80–82]. In human tumors, both primary and metastatic,
HO-1 expression was higher compared to noncancerous tissue. Furthermore, increased
HO-1 expression correlated with lower overall survival rates in patients with lung ade-
nocarcinoma [81]. In colorectal cancer, HO-1 overexpression decreases cell proliferation,
promotes cell cycle arrest and apoptosis, and reduces cell migration. These effects rely on
the presence of wild-type p53, as p53 knock-out HCT116 and p53-mutated HT29 colorectal
cancer cell lines did not exhibit these effects [83,84]. P53 knockout embryonic stem cells
demonstrate heightened levels of the HO-1 protein in comparison to the wild-type cell
line. There exists a p53-dependent negative modulation of HO-1 protein stability and
that p53 null phenotype is correlated with an altered ROS homeostasis in embryonic stem
cells [85]. In lung carcinogenesis, elevated HO-1 is mostly localized in the cytoplasm of
tumor cells, while non-cancerous tissue shows nuclear localization. HO-1 exhibited a
positive correlation with both tumor stage and lymph node metastasis, indicating its asso-
ciation with the progression of NSCLC [86]. Moreover, HO-1 interacts with signal peptide
peptidase (SPP), leading to the cleavage of HO-1 at its transmembrane portion [84,87]. The
expression level of SPP exhibited notably higher in breast, colon, and lung cancer tissues
compared to their normal counterparts [88]. This elevation is associated with poorer overall
survival rates [84,87,88]. SPP promotes tumor progression, at least in part, by facilitating
the degradation of mTOR inhibitor FKBP8. Lowering SPP levels in these cancers’ cell
lines reduces cell growth and migration/invasion abilities [88]. Independently from HO-1
enzymatic activity, SPP-mediated intramembrane cleavage of HO-1 enhances HO-1 nuclear
localization and cancer progression [87]. Due to the intramembrane cleavage of HO-1 by
SPP, a t-HO-1 form was produced and underwent nuclear translocation [84]. Moreover,
nuclear HO-1 promotes tumor cell invasion and proliferation both in vitro and in vivo
without requiring its enzymatic activity [87,89]. For nuclear HO-1-enhanced tumor cell
growth, migration, and invasion in vitro, acetylation is necessary [89]. The expression
of HO-1 may be negatively regulated by CO, either to halt further activity in the tumor
microenvironment or by changing the phenotype of macrophages from M2 to M1, resulting
in fewer HO-1 expressing cells within the tumor [90]. CO and biliverdin protect normal
cells from transformation in the early phase of tumorigenesis. However, as cancer pro-



Biology 2024, 13, 185 7 of 41

gresses, they promote the growth and survival of tumor cells [91]. CO treatment in the form
of CO-releasing molecules- 2 (CORM-2), induced apoptosis in NSCLC cells. This effect
was achieved by down-regulating the anti-apoptotic molecule Bcl-2 and up-regulating the
pro-apoptotic molecule Bax, as well as subsequent apoptosis-related molecules caspase-3
and cyto-c [92,93]. In the A549 cell line of NSCLC, treatment with the HO-1 activity in-
hibitor VP13/47 led to decreased HO-1 expression. This resulted in notable declines in cell
viability, proliferation and heightened apoptosis, mitochondrial dysfunction, and oxidative
stress levels [94]. Conversely, HO-1 plays an anti-tumor role in certain cancers, including
lung cancer [84,95]. HO-1 has distinct functions at various stages of tumor formation.
Preceding tumor formation, it serves to eliminate aging and dead cells, inhibit tumors,
and safeguard normal cells [80]. The overexpression of HO-1 in NSCLC NCI-H292 cells led
to a decrease in their proliferation, migration, and angiogenic potential, as well as inhibition
of tumor growth [95,96]. In non-cancerous cells, excessive production of iron resulting from
chronic HO-1 overexpression can potentially contribute to intracellular toxicity and cell
death (ferroptosis) [39]. HO-1 is encoded by the HMOX1 gene with a molecular weight
of 32kDa [97]. Cells that have high levels of HMOX1 show reduced levels of intracellular
ROS [95,98]. HMOX1 attenuates cell proliferation and metastasis, with notable effects on
miRNAs. In vitro and in vivo data indicate that the interplay between HMOX1 and miR-378
significantly modulates NSCLC progression and angiogenesis, suggesting miR-378 as a new
therapeutic target [95]. HO-1 catalyzes the degradation of heme in its oxidized form, hemin
(Fe3+ protoporphyrin) [99]. Hemin induces a stress-inducible protein Sestrin2 (SESN2)
through ROS, which serves as a protective mechanism suppressing oxidative stress [80,100].
When comparing NSCLC tissues to corresponding non-cancerous lung tissues, a significant
decrease in SESN2 expression was observed [101]. Knockdown of SESN2 in lung cancer
cells decreases both cancer cell survival and migration, while leading to overproduction
of ROS by blocking the oxidative stress response. Additionally, numerous lung cancer
expression datasets indicate a negative correlation between SESN2 expression and patient
survival [102].

The role of HO-1 as a pivotal molecule in the nervous system’s reaction to damage
is highly complex and not yet fully understood [103]. The beneficial and detrimental
roles of HO-1 in the brains of individuals with AD are widely acknowledged [39,104–107].
HO-1 plays a neuroprotective role in animal models of AD by providing defense against
oxidative damage [104,108,109]. HO-1 protects against Aβ1−42-induced toxicity through
the generation of CO in AD [110,111]. Both HO-1 induction and CO donors appear to be
promising potential strategies for protecting AD’s degenerative effects on both neuronal
and non-neuronal cell types in the central nervous system (CNS) [111]. CO improves
memory impairments in mice with AD. Additionally, it inhibits the cleavage of APP
by decreasing BACE1 expression through the upregulation of SIRT1 expression and the
inhibition of NF-κB signaling. Consequently, CO controls Aβ levels and provides the
molecular mechanisms contributing to the suppression of Aβ formation [42]. CO can
protect neurons from apoptosis induced by oxidative stress. The protection is not rooted
in the inhibition of apoptosis-associated K+ efflux. Rather, it stems from the inhibition
of AMP-dependent protein kinase (AMPK) activation, a factor implicated in the harmful
effects of Aβ [110]. CO and iron modulate plasmatic coagulation in AD [112]. At low
levels and brief durations, HO metabolites may lack function. In moderate quantities
and exposure durations, they offer advantages such as anti-inflammatory effects, reduced
oxidative stress, and protection of the blood–neural barrier [39]. Prolonged overexpression
of HO-1 presents drawbacks in AD [39,105–107,113].

Overexpression of HO-1 levels within the brain led to an increase in tau aggregation by
inducing tau phosphorylation [105,106]. Prolonged HO-1 overexpression led to cognitive
decline in transgenic mice, assessed by the water maze test. HO-1 impacts tauopathy
via two pathways: Firstly, it promotes CDK5 expression by accumulating ROS, produced
by HO-1 downstream products of iron in neuro2a cell lines and mouse brain. Secondly,
HO-1 triggers tau truncation at D421 both in vivo and in vitro [105]. HO-1 concurrently
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co-expresses and induces the aggregation of Aβ42 and Aβ oligomers in the hippocampus
area. It also modifies the morphology of the synapse, impairing the neural circuit. Overex-
pression of HO-1 potentially damages synaptic plasticity in the early stages of the disease,
leading to AD-like pathology and cognitive abnormalities [107]. Prolonged overexpression
of HO-1 within astrocytes results in abnormal iron buildup and impaired mitochondrial
function in the brain, leading to reduced cognitive ability [39,113]. The Nrf2/HO-1 sig-
naling pathway is activated by the microinjection of cocaine- and amphetamine-regulated
transcript peptide into the rat’s hippocampus, which attenuates the oxidative stress dam-
age [104,109]. When HO-1 levels are appropriately induced by Nrf2, shield the cells from
iron-dependent toxicity [39]. HO-2 contributes to the maintenance of heme homeosta-
sis [114]. It has demonstrated neuroprotective effects both in vivo and in vitro. By reducing
the levels of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in macrophages,
HO-2 can inhibit inflammatory pathways [79,108,115]. Table 1 summarizes the effects of
heme oxygenase on AD and cancer.

Table 1. Effects of Heme Oxygenase on AD and Cancer pathology.

Effects References

Cancer

• shows a positive correlation with lymph node metastasis
in NSCLC

• promotes tumor cell invasion and proliferation

HMOX1 in NSCLC:

• attenuates cell proliferation,
• modulates angiogenesis,
• attenuates metastasis.

HSPs in NSCLC cells:

• decreases heme uptake,
• inhibits tumorigenic functions,
• slows the growth of NSCLC,
• decreases oxygen consumption rates,
• decreases ATP levels.

Degese et al., 2012, [86]
Hsu et al., 2015, [87]
Hsu et al., 2017, [89]

Skrzypek et al., 2013, [95]

Sohoni et al., 2019, [30]

AD

• reduces pro-inflammatory cytokines: IL-1β, TNF-α, IL-6
• maintenance of heme homeostasis
• protects against Aβ toxicity
• protects cells from iron-dependent toxicity

long-term HO overexpression:

• induces tau phosphorylation,
• damages synaptic plasticity,
• abnormal iron buildup,
• impair mitochondrial function,
• reduces cognitive ability,
• induces ferroptosis.

moderate duration and levels of HO:

• has anti-inflammatory effects,
• reduces oxidative stress,
• protects the blood–neural barrier.

Intagliata et al., 2019, [79]
Chen et al., 2018, [115]
Liu et al., 2020, [114]
Hettiarachchi et al., 2014, [110]
Hettiarachchi et al., 2017, [111]
Choi et al., 2022, [39]

Wang et al., 2015, [105]
Hui et al., 2011, [106]
Li et al., 2015, [107]
Schipper et al., 2019, [113]
Choi et al., 2022, [39]

3. Common Risk Factors in Cancer and AD

Risk factors for both cancer and AD include aging, obesity, diabetes, and tobacco
use [1,9,16–18]. As individuals age, crucial intracellular processes governing cell survival,



Biology 2024, 13, 185 9 of 41

growth, and function become disrupted [1]. Obesity and T2D can harm the brain, increasing
the risk of cognitive decline and AD [116]. Increased aerobic glycolysis promotes cell
proliferation, potentially increasing the likelihood of cancer development. Conversely,
decreased glycolysis observed with aging hinders cell survival mechanisms and advances
neurodegenerative processes [1,29].

3.1. Aging, Cancer, and AD: Unraveling the Connection

As individuals age, the functioning and development of the immune system are
adversely affected [1]. The main contributors to aging include the organs’ inability to
repair DNA damage caused by oxidative stress (non-programmed aging) and the telomere
shortening due to repeated cell division (programmed aging). Both factors are observed
in individuals with chronic obstructive pulmonary disease (COPD), an independent risk
factor for lung carcinoma [117]. Telomeres are comprised of repeating DNA sequences
at chromosome ends. They are bound by a protective protein complex called shelterin,
which inhibits them from eliciting a DNA damage response (DDR) [118]. The telomere
function is impaired in both cancer and aging [118,119]. Telomeres progressively shorten
with age, both in vitro and in vivo. Telomeres shorten with each cell division [120,121].
Cells that express telomerase do not experience telomere shortening. The majority of cancer
cells are telomerase-positive [120]. Although telomere shortening restricts a cell’s ability
to proliferate, it is also linked to higher tumor initiation rates [122,123]. In vivo research
has demonstrated that transient telomere dysfunction in early or late stages of cancer de-
velopment promotes chromosomal instability and carcinogenesis in telomerase-proficient
mice [123]. In experiments conducted on zebrafish, shorter telomeres led to more frequent,
faster-growing, and more invasive tumors. Additionally, shortened telomeres increased
senescence and systemic inflammation. Zebrafish larvae with very short telomeres exhib-
ited increased melanoma dissemination, indicating that telomere shortening, similar to
human aging, promotes a chronic inflammatory environment that elevates cancer risk [122].
A recent two-sample Mendelian randomization investigation reevaluated the impact of
telomere length (TL) on the etiology of lung cancer, confirming that longer TL significantly
increases the likelihood of lung cancer in the Asian population [124]. Senescent cells (SCs)
alter their metabolic activity but remain viable and resilient to cell death [125,126]. Upon
becoming senescent, cancer cells are taken out of the cell cycle, potentially inhibiting fur-
ther cancer growth. Additionally, these SCs, through their senescence-associated secretory
phenotype (SASP), can kill nearby cancer cells and attract immune cells that aid in the
removal of more cancerous cells [127]. Prolonged inflammation may result in DNA dam-
age, contributing to cancer development [1]. The generation and release of SASP factors,
capable of inducing inflammation, serve as a powerful method for recruiting immune cells
such as macrophages, natural killer (NK) cells, neutrophils, and T lymphocytes, which are
responsible for removing them. However, SCs can also interact with immune cells to evade
elimination [128,129]. Chemotherapy leads to an accumulation of SCs in both cancerous
and normal tissues. paradoxically, SCs within tumors can induce tumor relapse, metastasis,
and resistance to treatment, partly through SASP expression [130]. Cellular senescence
and its SASP contribute to age-related diseases. Targeting SCs through removal, SASP
modulation, or cellular reprogramming offers a promising therapy for conditions such as
cancer and neurodegeneration disease [131].

During aging, vital intracellular mechanisms governing cell survival, proliferation,
and function become dysregulated [1]. AD affects one in ten people over 65 and becomes
more prevalent with age. Aging leads to deteriorating functioning of brain mitochondria,
considered a significant early factor in aging [132]. Mitochondria likely influence the
aging process by accumulating mutations in mitochondrial DNA (mtDNA) and by the
net production of ROS [133]. Oxidative stress rises gradually in aging brains, leading to
mtDNA mutations [134]. Oxidative stress has the potential to trigger tau phosphorylation
and aggregation, as well as increase the construction and accumulation of Aβ [26,135]. The
accumulation of mtDNA mutations disrupts OXPHOS and an imbalance in antioxidant
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enzyme expression results in excessive ROS production during aging [135]. Brain insulin
receptors diminish with age, especially in AD [136,137]. Insulin and c-peptide concentration
within the brain are correlated and diminish as individuals age, just like the densities
of brain insulin receptors. In individuals with sporadic AD, brain insulin receptor (IR)
densities are lower compared to middle-aged controls but higher compared to age-matched
controls [137]. Aging is associated with diminished insulin activity in peripheral tissues
and potentially within the brain. The decline in brain insulin action might contribute to
age-related cognitive impairments, disruptions in metabolic balance, and an accelerated
pace of aging [138,139]. In a study comparing intranasal insulin’s effect on cerebral blood
flow (CBF) between younger (20–26 years, n = 8) and older (60–69 years, n = 11) adults,
older participants showed increased perfusion in the occipital cortical brain region and
thalamus with intranasal insulin compared to a placebo. However, total flow through major
cerebropetal arteries remained unchanged for both age groups [139]. Additionally, glucose
metabolism parameters from the oral glucose tolerance test (OGTT) are linked to reduced
microstructural brain parenchymal homogeneity in “younger” older adults, but this link
was less pronounced in older age groups. Overall, the correlation between reduced insulin
action and brain homogeneity seemed to weaken with age, showing more significance in
familial longevity [140]. Among older adults without T2D, lower microstructural brain
integrity is associated with elevated insulin levels and decreased peripheral insulin function
and sensitivity [138].

3.2. The Role of Obesity in Cancer and AD

Although cancer and AD are associated with aging, their simultaneous occurrence
in patients, regardless of age, is rare. The cause behind this unexpected clinical observa-
tion remains to be clarified, but obesity-related mechanisms could open new avenues for
preventing and treating these diseases [1,141]. Fat cells generate numerous active sub-
stances, including leptin and adiponectin. Leptin promotes cancer growth while hindering
AD development, whereas adiponectin can inhibit cancer progression but may advance
AD [141]. Leptin plays a significant role in controlling both appetite and the body’s energy
metabolism [142].

3.2.1. Leptin in Cancer

Leptin levels among cancer patients can vary depending on canctypes and locations.
For instance, elevated leptin levels correlate with breast, and lung cancers, while lower
levels of leptin are associated with pancreatic cancer. However, the relationship between
leptin levels and cancer risk remains ambiguous [143–146]. Several studies have investi-
gated the role of leptin in cases of NSCLC [147–150]. According to Song et al. [147], leptin
levels were markedly higher in lung cancer patients in both serum and tissue samples
compared to controls. Notably, leptin showed a strong correlation with gender but not
with other tumor-related factors. Moreover, serum leptin levels were significantly higher in
NSCLC adenocarcinoma patients compared to those with squamous cell carcinoma [148].
Conversely, other studies reported reduced serum leptin levels in lung cancer patients com-
pared to the control group [151,152]. Additionally, some investigations found similar leptin
concentrations between cancer and control groups [153]. Furthermore, research involv-
ing 66 NSCLC cases and 132 healthy controls revealed that increased serum leptin levels
were an independent risk factor for NSCLC, regardless of central obesity [149]. Although
Du et al. [150] suggested leptin’s potential as a biomarker for NSCLC screening, its diag-
nostic performance is inconvincible compared to combined detection with more effective
biomarkers. Moreover, in a meta-analysis, Tong et al. [152] discovered lower serum leptin
levels in the weight-loss group compared to the group with sustained weight. However,
leptin might not seem to play a significant role in the development of cancer cachexia. More
thorough and consistent studies are suggested in the future to verify these results.

The leptin receptor (LepR) exists throughout the immune system, with studies demon-
strating its involvement in regulating both innate and adaptive immune responses [154,155].
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T cells, one component of the adaptive immune system, are created in the thymus. Upon en-
countering specific antigens, they activate and secrete growth cytokines. Regulatory T cells
(Tregs), a subset of T cells, have immune suppressive function [108,156–159]. Activated
effector T cells migrate towards and infiltrate the tumor site, identifying and attaching
to cancer cells via the interaction between their T cell receptor (TCR) and their cognate
antigen bound to major histocompatibility class I (MHCI). Subsequently, they eliminate the
targeted cancer cells [160]. Observations have shown that leptin triggers the activation and
proliferation of T cells [145,161]. Leptin also modulates CD4+ T cells activation toward a
Th1 phenotype by stimulating the synthesis of IL-2 and IFN-γ, indicating its role in modu-
lating a Th1 cytokine-production profile in these cells [161]. Additionally, leptin promotes
the transition towards a pro-inflammatory type 1 T helper cells, secreting IFNγ, rather
than an anti-inflammatory type 2 T helper cells phenotype, secreting IL-4. Additionally,
it also encourages Th17 responses [155]. CD4+CD25+ T cells within lung tumors play a
role in suppressing the host’s immune response, potentially contributing to lung cancer
progression [162]. Moreover, leptin seems to decrease the development of Tregs, which are
associated with poorer outcomes and lower survival rates in various cancers, including
lung cancer [154,155,162]. Leptin also enhances the cytotoxicity of NK cells [154,155], which
develop strong cytolytic activity against tumors [154,163].

3.2.2. Leptin in AD

Controversial evidence exists regarding how leptin levels are affected in AD [164].
Some studies indicate reduced levels of leptin in both cerebrospinal fluid (CSF) and
plasma among individuals with AD [164–166], while others report elevated levels of
leptin [142,164,167]. Additionally, some studies show unaffected leptin levels in CSF and
cerebral tissue [164,168]. These discrepancies could arise from various factors such as
limited sample sizes, unconsidered confounding elements such as exercise or diet, and the
potential misclassification of AD. Moreover, reliance solely on clinical criteria without
confirmation from neuropathology or newer AD neuroimaging or CSF biomarkers may
contribute to these conflicting findings [169]. These discrepancies might arise due to various
factors, such as limited sample sizes, overlooked confounding elements such as exercise or
diet, and the potential misclassification of AD. Reliance solely on clinical criteria without
confirmation from neuropathology or advanced AD neuroimaging or CSF biomarkers
could also contribute to these conflicting findings [169]. Studies have reported the dis-
ruption of leptin signaling in AD [142,164,170]. Aβ oligomers directly target the LepR,
dampening leptin transmission through negative allosteric regulation after binding to LepR.
This eventually affects the responsiveness of hypothalamic neurons to this hormone [170].
Leptin, through its signaling pathways, can alter the levels of Aβ by blocking β-secretase
activity and increasing ApoE-dependent Aβ uptake. Furthermore, it can enhance Aβ
clearance and degradation [171,172]. Research demonstrates leptin’s impact on neuropro-
tection [143,164,167,173,174], including various mechanisms such as the suppression of Aβ
accumulation, removal of phosphorylated tau protein, protection against oxidative stress,
and attenuation of apoptotic cell death [164,167]. Additionally, leptin’s effect on hyperphos-
phorylated tau protein levels is attributed to its inhibition of glycogen synthase kinase-3
beta (GSK-3β), reducing tau protein phosphorylation [165,172]. It modulates tau phospho-
rylation through pathways involving AMPK, Akt protein, and p38 protein [169,172,175].
Moreover, leptin prevents synaptic disruption [173]. Some studies in animal models and
human research suggest a potential link between leptin and AD, due to its beneficial impact
on the modulation of cognition and neuroprotection [143,174]. Leptin decreases Aβ levels
via AMPK activation in vitro and alleviates memory loss in vivo AD models [175,176].
Together, the studies mentioned offer initial validation for the possible therapeutic uses of
leptin signaling enhancement in AD brains [164]. In rat models, leptin treatment improves
memory and long-term learning performance while also modulating hippocampal synaptic
plasticity [167,177]. Blocking Aβ and LepR interaction could potentially improve both
metabolic and cognitive impairments in AD [170]. However, despite the connections be-
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tween leptin and AD, the data does not support leptin as an indicator for cognitive decline
onset [178]. Plasma leptin levels did not predict cognitive decline or cortical thinning,
irrespective of participants having Aβ (+) or Aβ (–) status [179].

3.2.3. Adiponectin in Cancer

Adiponectin plays a crucial role in both energy metabolism and inflammation. Studies
suggest a correlation between serum adiponectin levels and susceptibility to various cancer
types, including lung cancer, in vivo [180]. Adiponectin receptors 1 and 2 directly affect
tumor cells by binding and activating adiponectin receptors and downstream signaling
pathways [181,182]. This may restrict cancer cell proliferation (i.e., activating AMPK).
Additionally, it may directly impact tumor vessels by activating the caspase cascade and
inhibiting the NF-κB pathway in endothelial cells, leading to endothelial cell apoptosis
and suppression of tumor angiogenesis. It also boosts insulin sensitivity and has anti-
inflammatory effects [182]. Several studies have investigated the role of adiponectin in
cases of lung cancer [151,153,183–185]. While some studies noted no discernible difference
in serum adiponectin levels between lung cancer patients and controls [185], others re-
ported lower adiponectin concentrations in lung cancer cases [153]. Nevertheless, a single
study found higher adiponectin levels among lung cancer patients in comparison to the
control group [151]. NSCLC patients demonstrate a notable decrease in total adiponectin
levels compared to healthy individuals, with a specific down-regulation of high molec-
ular weight (HMW) oligomers. Furthermore, adiponectin expression is lower in lung
adenocarcinoma compared to other subtypes, regardless of other factors [186]. Therefore,
the precise role of adiponectin in lung cancer remains elusive [183]. Genetically increased
circulating adiponectin offers protection against lung cancer but poses a potential risk for
colorectal cancer [187]. Adiponectin hinders migration and invasion by reversing epithelial-
mesenchymal transition in NSCLC carcinoma, presenting its promise as a therapeutic
strategy for addressing NSCLC [188]. Furthermore, adiponectin decreases cell viability
and duplication, while elevating cell apoptosis. Additionally, it induces heightened lipid
peroxidation, assessed via TBARS assay, and simultaneously decreases nitric oxide release,
both markers of cellular oxidative stress [180].

3.2.4. Adiponectin in AD

Adiponectin crosses the blood-brain barrier (BBB) and reaches the brain
parenchyma [189,190]. Studies relating adiponectin levels to AD are controversial [164,178,
191–195]. While AD patients exhibited notably lower levels of CSF adiponectin compared
to those with mild cognitive impairment (MCI) and normal controls. However, serum
adiponectin levels were higher in both MCI and AD patients than in the control group [191].
Another study found AD patients had 33% higher serum adiponectin than MCI patients.
While the levels of adiponectin in CSF remained similar between both groups, they exhib-
ited a positive correlation with Aβ42 and cognitive function, particularly in women [192].
Conversely, both MCI and AD patients exhibited considerably lower serum adiponectin
levels compared to controls [193]. However, no observed link exists between adiponectin
levels and AD or vascular dementia, whether considering the entire group or analyzing
men and women separately. The likelihood of dementia in individuals with high and
low levels of HMW adiponectin was nearly the same [194]. Although HMW adiponectin
may have a positive association with general cognitive functioning in women but not
in men [195]. Adiponectin serum levels exhibited a significant increase in sporadic AD
subjects compared to controls, utilizing commercially available immuno-assay kit [166].
Although there is an association between adiponectin and AD, as well as AD-related
disorders, the available data does not support the idea that adiponectin might serve as
an indicator of cognitive decline development [178]. Significantly, only participants ex-
hibiting Aβ (+) status demonstrated a substantial correlation between plasma adiponectin
levels and cognitive as well as brain structural changes over time. In this Aβ (+) condi-
tion, higher plasma adiponectin levels predicted a faster cognitive decline [179]. Due to
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conflicting data, further research is imperative to determine the potential diagnostic and
clinical significance of measuring adiponectin levels in both blood and CSF for MCI and
AD [164]. The roles of adiponectin within the brain are remarkably diverse. Evidence
indicates its involvement in fundamental processes of brain physiology, including the regu-
lation of neuronal excitability, synaptic plasticity, neuroprotection, neurogenesis, and the
modulation of glial cell activation [164,176,190,196]. An enriched environment induces
anti-inflammatory responses in the brain by targeting the activation profile of microglia
through an adiponectin-dependent manner [196]. Globular adiponectin (gApN) demon-
strates direct anti-inflammatory effects on microglia in vivo by decreasing the synthesis of
IL-1β, IL-6, and TNFα. Additionally, gApN inhibits nitrosative and oxidative stress caused
by lipopolysaccharide in microglia. These anti-inflammatory and antioxidant effects of
gApN on microglia are mediated through the AdipoR1/NF-κB signaling pathway [190,196].
Adiponectin-homolog osmotin has demonstrated improvements in AD-like neuropatholog-
ical features, including Aβ production and aggregation, synaptic dysfunction, and cognitive
deficits. Silencing AdipoR1 reversed osmotin’s benefits and exacerbated brain pathology
in AD mice [164,176]. Aged mice lacking adiponectin exhibited impairments in spatial
memory and learning. These mice developed AD pathologies, such as elevated Aβ42, tau
phosphorylation, microgliosis, hippocampal atrophy, and astrogliosis, along with increased
levels of IL-1β and TNFα. This suggests a potential contribution of adiponectin to neuronal
and synaptic loss in AD [164,191,197]. The observed increase in serum Adiponectin levels in
AD might reflect systemic and compensatory mechanisms against neurodegeneration [191].
Decreased levels of adiponectin are associated with deregulated cerebral insulin signaling
and AD pathogenesis in aged individuals or those with T2D mellitus (T2DM), particularly
among those with decreased CNS adiponectin levels [197,198]. AdipoR1 and AdipoR2, two
high-affinity adiponectin receptors in the brain, may make up for low levels of adiponectin
in the CSF [199]. The suppression of adiponectin receptor 1 may lead to metabolic dis-
orders such as obesity and diabetes, which further exacerbate spatial learning deficits,
memory impairments, and AD pathologies [199,200]. In obesity, decreased adiponectin
levels fail to trigger 5’–AMP-activated protein kinase AMPK-mediated signaling. This
leads to the phosphorylation of IR substrate 1 at serine residues, consequently blocking the
insulin-degrading enzyme-mediated Aβ clearance. This inhibition results in increased Aβ
accumulation in the brain [201].

3.3. Understanding the Link between Diabetes, Cancer, and AD
3.3.1. Diabetes in Lung Cancer

T2D is an independent risk factor in the onset of several cancers [202–205]. Among
lung cancer patients, those with DM showed decreased survival compared to non-diabetic
counterparts [204,206]. A meta-analysis by Yi et al. [207] indicated a correlation between
DM and a higher occurrence of lung cancer in women, although no such association was
observed in men. The presence of preexisting diabetes is linked to the overall mortality
risk in women diagnosed with lung cancer [206]. While preexisting T2DM might facilitate
distant metastasis in small cell lung cancer (SCLC), it is the use of insulin therapy, not solely
preexisting T2DM, that adversely impacts the prognosis of SCLC patients. These findings
suggest that enhancing blood glucose control and reducing insulin analog use may be
crucial for improving the long-term survival of individuals with diabetes and SCLC [203].
Lactate dehydrogenase (LDH), carcinoembryonic antigen (CEA), and C-reactive protein
(CRP) are biomarkers in routine patient assessments. They may predict cancer in diabetic
patients, aiding oncologists in terms of patient prognosis at the onset of treatment. Addi-
tionally, these markers can assist diabetes specialists in suspecting cancer, particularly when
unexplained glycemic occur [205]. In geriatric patients with metastatic colorectal cancer,
CEA, carbohydrate antigen 19-9 (CA 19-9), LDH, CRP, and neutrophil-to-lymphocyte ratio
(NLR) are associated with overall survival [208]. Cancer patients with diabetes often receive
less aggressive treatment and face a poorer prognosis when compared to those without
diabetes [209]. Hyperinsulinemia, by activating the IR on tumor cells, might promote tumor
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growth and advancement [210]. In the context of lung cancer, hyperglycemia is thought to
stimulate the growth and invasiveness of lung tumor cells [211,212]. Despite these findings,
the relationship between T2DM and NSCLC prognosis remains unclear and contradictory,
necessitating more research. Notably, individuals with NSCLC and T2DM have shown a
tendency toward extended overall survival [202]. This could, in part, be credited to the
use of the antidiabetic medication metformin [202,213,214]. Metformin’s impact on lung
cancer risk and survival rates in T2DM patients is notably associated with reduced risk and
enhanced survival in lung cancer cases [213].

The selective toxicity of metformin on cancer stem cells (CSCs) suggests that CSCs
exhibit a reverse Warburg effect (i.e., the shift from OXPHOS to aerobic glycolysis), relying
heavily on OXPHOS [215–218]. In a situation where there is a high OXPHOS profile, met-
formin’s inhibition of the mitochondrial respiratory chain disrupts metabolic requirements
leading to the apoptosis of cancer cells [215,219]. Both metastatic and CSCs maintain
elevated mitochondrial OXPHOS. It is conceivable that during a metastatic surge, benign
cells augment the expression of OXPHOS subunits to promote greater ATP generation [220].
Unlike T2D, type 1 diabetes (T1D) does not exhibit the same heightened cancer risk [210]. If
hyperinsulinemia is the key link between increased cancer risk and T2D, individuals with
T1D, who receive less exogenously administered insulin, might exhibit a different cancer
risk pattern [210,221]. T1D is linked to a modest overall excess cancer risk, with specific
cancers differing from those associated with T2D [221,222]. Specifically, T1D is correlated
with a higher likelihood of developing stomach, cervical, and endometrial cancers [210,221].

3.3.2. Diabetes in AD

Several studies suggest that T2D is a considerable vascular risk factor and contributes
to the development of AD [26,223–228]. The likelihood of developing AD is twice as high
in individuals with T2DM compared to healthy individuals [26,224,227,229]. Insulin’s
diminished impact on its target tissues is known as insulin resistance [136]. T2DM is associ-
ated with brain changes through mechanisms such as vascular inflammation, oxidative
stress, impaired insulin transport, insulin resistance, reduced insulin transport across the
BBB, and glial cells [116,136,223,226]. Moreover, T2DM exacerbates Aβ and tau pathology
through aberrant insulin signaling, causing neurodegeneration [22]. Impaired insulin
signaling, which correlates with reduced cerebral energy metabolism, renders neurons
increasingly vulnerable to the adverse effects of ROS, exacerbating mitochondrial dysfunc-
tion and worsening oxidative stress [23]. Insulin crosses the BBB through an IR-specific,
vesicle-mediated transport process in the brain endothelial cells (BECs). Factors such as
high-fat diet (HFD) consumption, nitric oxide inhibition, and astrocyte stimulation can reg-
ulate insulin uptake and transcytosis in BECs [230]. Stanley et al. [228] reported changes in
insulin signaling in the AD brain. In humans, a decrease in the ratio of insulin levels in CSF
compared to serum is noticed in cases of whole-body insulin resistance [226,231]. In older
individuals, cerebral insulin resistance may partly be due to impaired insulin transport into
the CNS, affecting brain neuronal function [232]. Elevated blood insulin before early AD
may contribute to both AD pathology and insulin resistance, although human data is lim-
ited. Another perspective suggests initial Aβ buildup causing neuronal insulin resistance,
followed by secondary hyperinsulinemia, exacerbating AD progression [228]. Brain insulin
resistance, coupled with oxidative stress and neuro-inflammation, promotes Aβ accumula-
tion and toxicity. Furthermore, Aβ toxicity leads to brain insulin resistance [233]. Cognitive
decline, especially concerning memory function, and peripheral metabolic dysfunctions are
both correlated with brain insulin resistance [136]. The use of peripheral insulin administra-
tion for diabetes treatment can potentially cause hypoglycemia in non-diabetic individuals
and may be ineffective due to impaired insulin transport across BBB. Therefore, research
has concentrated on intranasal insulin administration, where insulin travels via bulk flow
to the brain along olfactory nerve channels and trigeminal perivascular channels, bypassing
the BBB [234,235]. Intranasal insulin has an impact on CNS indicators such as functional
MRI, EEG, or MEG [136,234,235]. Administering intranasal insulin, both acutely and over
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21 days, improves episodic memory in individuals diagnosed with MCI or AD [235,236],
and regulates Aβ levels in the early stages of AD [237].

3.4. The Link between Tobacco and the Onset of Cancer and AD
3.4.1. Tobacco in Lung Cancer

Tobacco use is regarded as one of the greatest health concerns worldwide [238]. For-
mer or current tobacco use stands as the primary factor contributing to the onset of COPD,
which is widely recognized as a risk factor for lung cancer. Exposure to cigarette smoke is
a shared cause of both conditions and is responsible for nearly 90% of cases [239]. Those
exposed to secondhand smoke face a 25% higher risk of developing lung cancer [238,240].
The adverse effects linked to e-cigarette use are associated with heightened oxidative
stress. Human bronchial and pulmonary epithelial cells exposed to e-cigarettes experi-
ence oxidative stress, leading to inflammation, cytotoxicity, and increased endothelial
cell permeability [238,241]. Smoking stands as the primary cause behind most cases of
COPD and lung cancer. Cigarettes contain stable free radicals and reactive nitrogen oxygen
species (RNOS) [117,242,243]. Aqueous cigarette tar produces hydroxyl radicals, resulting
in oxidative DNA damage. Additionally, cigarette smoke, along with inhalable fibers and
dust, amplifies the production of these damaging hydroxyl radicals [243]. RNOS damages
DNA, hindering DNA repair and apoptosis. When lung damage occurs, RNOS disrupts
the protective mechanisms, promoting cell proliferation and ultimately leading to cancer
development [117,242]. Oxidative stress resulting from RNOS in COPD can trigger lung
cancer through DNA damage mechanisms such as point mutations, single-strand breaks
(SSBs), double-strand breaks (DSBs), and DNA cross-linking [117,238,244]. Serum samples
from individuals with COPD exhibit elevated markers indicating inflammation, endothe-
lial activation, and extracellular matrix remodeling compared to those with lung cancer.
COPD presence may affect these circulating biomarkers levels, some of which are linked to
prognosis [245]. The inflammatory system associated with COPD includes various immune
cells such as neutrophils, alveolar macrophages, CD8+ T cytotoxic cells, and CD4+ T lym-
phocytes, activated and recruited through chemotactic mediators released upon exposure
to cigarette smoke [246,247]. There is a rise in innate lymphoid cells (ILCs), notably ILC1
and ILC3 cells. These lymphocytes are likely to collaborate in sustaining the neutrophilic
inflammation observed in the lungs of COPD patients. This may explain why inflammation
persists even after smoking cessation [247,248]. The inflammatory conditions in COPD
lung may impact lung cancer development by inducing epigenetic changes, including DNA
methylation, miRNA expression, and histone acetylation [117,247]. Nicotine binding to
brain nicotinic acetylcholine receptors, alters gene expression, receptor expression, and neu-
rotransmitter levels, fostering dependence. Tobacco combustion produces carcinogens such
as polycyclic aromatic hydrocarbons (PAH) and N-nitrosamines, causing DNA damage
and cancer risk for years after use [249]. Cigarette smoke exposure in MRC5 cells results
in telomere problems, potentially due to elevated oxidative stress, leading to senescence
induction and SASP activation [250]. A significant intake of fruits and vegetables correlates
with a decreased occurrence of COPD in current or former smokers, though this association
is not observed in non-smokers [251]. Notably, the use of β-carotene supplements raises the
likelihood of lung cancer among smokers, regardless of the tar or nicotine content in the
cigarettes. Therefore, smokers are advised to refrain from β-carotene supplements [252].

3.4.2. Tobacco in AD

Tobacco smoke, beyond nicotine, contains components capable of causing direct
neurotoxic effects [253,254]. CSF indicators of neurodegeneration, neuroinflammation,
and oxidation are associated with smoking and an increased risk of AD [255]. Former or
current smoking increases the risk of developing AD, linking smoking to AD neuropathol-
ogy in both humans and preclinical models. Smoking-related cerebral oxidative stress
might contribute to AD pathogenesis and an increased likelihood of AD development [256].
Smoking could potentially affect neurodegeneration in cognitively healthy men, rather
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than primarily contributing to cerebrovascular burdens. This suggests that smoking could
be a significant risk factor for AD development [257]. Exposure to secondhand smoke
(SHS) exhibited a significant relationship with memory decline among individuals aged
55–64 years. For each additional year of SHS exposure in this age group, there was an
additional 0.01 decline in memory test results [258]. Environmental tobacco smoke (ETS)
exposure raises the risk of dementia and AD. Implementing smoking cessation in public
places could potentially slow down the global dementia epidemic [259]. A history of
smoking is associated with a more rapid decline in function and reduced volume of the
entorhinal cortex in individuals with MCI [260]. Individuals identified with MCI typically
advance to more severe stages of dementia, with the progression rate linked to their initial
cognitive impairment level. Nearly all of these individuals exhibit the neuropathological
features of AD. Hence, MCI generally represents early-stage AD [261]. Nicotine may impact
the phosphorylation of tau [262,263]. Nicotine elevates phosphorylated tau protein levels
in neurons with low levels of BAG2 This increase occurs due to stimulation of p38 and
ERK1/2 kinase activity, accompanied by elevated expression of p38 and MAPKAPK2 ex-
pression. Conversely, when BAG2 levels are higher, they reverse nicotine’s effects toward a
reduction in phosphorylated tau protein levels. This reversal may occur as a result of BAG2
inhibition of ERK1/2 through Hsp90 association, which is crucial for ERK1/2 function.
Additionally, it may occur via BAG2-mediated degradation of phosphorylated tau as a
result of BAG2 phosphorylation by p38/MAPKAPK2 [263]. Nicotine reduces the toxicity of
Aβ via regulating the homeostasis of metals [262,264]. Elevated concentrations of iron, zinc,
aluminum, and lead in the CSF of smokers could potentially indicate that cigarette smok-
ing is accelerating the onset of cognitive decline [265]. Copper and zinc levels modulate
Aβ aggregation and AD progression. Nicotine regulates metal balance by reducing ROS,
down-regulating APP via copper homeostasis, and decreasing free intracellular copper
ions via increased expression of copper chaperone for superoxide dismutase [264]. The
aggregation mechanism of the Aβ40 peptide appears to be influenced by four metal ions
and five aromatic compounds commonly present in cigarette smoke. Metal ions such as
Pb(IV), affect the formation of Aβ dimers and trimers. Meanwhile, hydrocarbons such
as toluene impact larger, more hydrophobic structures like tetramers. Certain metal ions
and hydrocarbons seem to counteract each other’s effects. Notably, the uncharged and
hydrophilic nicotine molecule does not directly impact Aβ or its aggregation process [262].
A decrease in smoking rates could likely lead to a decrease in future AD prevalence [256].
Prevention of AD involves managing modifiable risk factors in terms of treatable medical
conditions and lifestyle choices such as diabetes, physical activity, sleep, diet, and use of
tobacco [20].

4. Common Signaling Pathways in Both Cancer and AD: P53, Wnt, Pin1

Biological mechanisms shared between these two conditions, such as Pin1, Wnt,
or p53 signaling, function in opposite ways. In cancer, they result in uncontrolled cell
proliferation and survival, while in AD they cause cell death and neurodegeneration [1,9].
The genes Pin1, P53, and Wnt show upregulation in one context and downregulation in
the other [9]. In neurodegenerative diseases, p53 is upregulated, while in cancer, it is
downregulated. Similarly, Pin1 exhibits higher levels primarily in cancer but lower levels
in AD [10]. Additionally, WNT signaling is downregulated in AD [11]. On the contrary,
Wnt shows upregulation in various cancer types [12–14]. Notably, the protein Pin1 serves a
significant dual function in cancer and neurodegeneration. It regulates oncogenic signaling
pathways, such as cyclin D1 and p53, and exhibits heightened expression in human cancers.
Interestingly, when Pin1 is deleted in mice, it correlates with neurodegeneration similar to
AD [15,266,267].

4.1. P53 in Lung Cancer

The most frequent lesions found in human cancers are p53 tumor-suppressor gene
mutations [268]. Somatic p53 mutations are highly prevalent in various tumors colon, lung,
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pancreas, and ovarian endodermal tumors. Notably, the impact of a p53 mutation acquired
through inheritance differs from a somatic mutation, even though the same mutant alleles
are present in both inherited and somatic p53 mutations [269]. Understanding why an
inherited TP53 mutation reproducibly leads to tumors in various tissues at different ages
suggests that an initial or truncal TP53 mutation in certain tissue-specific stem cells might
initiate a benign tumor. However, in other tissue-specific stem cells, TP53 mutations do not
result in a phenotype or any impact upon cell division until additional mutations happen,
which can takes a long time [270]. Mehta et al. [271] examined TP53 transcript variants
in 10,310 human tumors spanning 32 types from The Cancer Genome Atlas (TCGA) data.
TP53 was highly expressed in most tumors (99% above the median and 75% above the 75th
percentile). They identified only two variants, FL/∆40TP53αT1 and an uncharacterized
variant (uc010cne.1), while other TP53 transcripts were not detected. Kazantseva et al. [272]
reported that elevated ∆133p53β on a wild-type TP53 background might contribute to
glioblastoma’s tumor-promoting pathways by contributing to the immunosuppressive and
chemoresistant environment. Understanding how ∆133p53β becomes prevalent in cancer,
possibly through hypoxia, is crucial for understanding disease progression. Elevating
∆133p53 levels aids normal human somatic cells to be reprogrammed to a pluripotent stem
cell state, potentially offering a non- or less oncogenic and mutagenic method to enhance
the reprogramming process [273]. Autocrined leptin is prevalent in most NSCLC tissues,
potentially offering an additional prognostic factor for patients. Autocrined leptin seems
to promote NSCLC cell growth by positively regulating the PI3K/AKT/mTOR signaling
pathway while negatively regulating the P53 pathway [274]. The p53-deficient mouse could
serve as a valuable model for investigating the involvement of the p53 tumor-suppressor
gene in tumorigenesis [268].

4.2. P53 in AD

Under stressful conditions, p53 has the potential to disturb the regulation of mito-
chondrial function, contributing to abnormal neuronal conditions and the occurrence of
some neurological disorders [275,276]. Aβ directly activates the tumor suppressor gene
p53, resulting in p53-dependent apoptosis, while presenilin (PSEN) mutations have also
been observed to initiate cell death dependent on p53 [266,267,277]. Oxidative DNA dam-
age led to the nuclear translocation of Aβ42 and elevated p53 mRNA levels in guinea
pig primary neurons. Increased p53 expression was observed in sporadic AD brains and
transgenic mice carrying mutant AD genes. Degenerating neurons in both models exhib-
ited accumulation of Aβ42 and p53, suggesting their involvement in AD-related neuronal
loss. Therefore, the intracellular Aβ42/p53 pathway may be associated with neuronal loss
in AD [277]. In AD, cellular stress activates p53 to address DNA damage and oxidative
stress. However, microtubule network breakdown and tau oligomer pathology lead to
p53 accumulation outside of the nucleus, causing dysfunction and impacting vital cell
functions such as DNA repair and apoptosis [278]. Astrocytes are vital for assisting motor
neurons in both health and disease. Rat astrocytes exhibit age-dependent senescence and a
marked decline in their capacity to support motor neurons [279]. P53 isoforms ∆133p53
and p53β in astrocytes regulate their toxic and protective effects on neurons. The down-
regulation of ∆133p53 or overexpression of p53 in astrocytes enhances SASP and non-cell
autonomous neurotoxicity in a neuron-astrocyte co-culture system. Additionally, reconsti-
tuted expression of ∆133p53 in neurotoxic astrocytes prevents SASP and transforms them
into neuroprotective astrocytes [280–282]. Restoring expression of the endogenous p53
isoform, ∆133p53, shields astrocytes against radiation-induced senescence, supports DNA
repair, and prevents astrocyte-mediated neuroinflammation [283]. As oxidative stress and
chronic inflammation are prevalent in neurodegenerative disorders, astrocyte senescence
could be a common underlying factor. Potential treatments might involve lowering SASP
factor levels or adding young astrocytes into the motor neuron environment using neural
progenitor cell transplants [279].
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4.3. Wnt in Cancer and AD

Wnt proteins, originating from the Wnt gene family, play crucial roles in cell processes
such as proliferation and differentiation [1,141,284,285]. Mutated Wnt genes and abnormal
Wnt signaling are associated with various types of cancer, while Wnt signaling also con-
tributes to the impact of Aβ in the brain [141]. When the Wnt pathway is upregulated, it
enhances the susceptibility to tumor development [1]. Wnt signaling is downregulated in
AD as a result of Aβ neurotoxicity [11]. Wnt signaling can be increased by leptin, which
promotes cancer cell growth. It may also have a protective role in AD by reducing Aβ
toxicity. Conversely, Wnt signaling is decreased by adiponectin, potentially inhibiting
cancer growth and promoting the progression of AD [141].

4.3.1. Wnt in Lung Cancer

In both cell lines and patient samples, the Wnt pathway signaling is elevated in cancer
compared to normal breast tissue [12]. Wnt signaling is increased under hypoxia aides
in the development of lung cancer [13]. Wnt pathway disruption in cancer cells reduces
their dependence on aerobic glycolysis, partly due to the Wnt-controlled enzyme pyruvate
dehydrogenase kinase (PDK1). PDK1 inhibits mitochondrial OXPHOS and maintains the
glycolysis-dependent nature of tumor cells [286,287]. Signal transducers in the canonical
Wnt pathway include Dsh, GSK-3β, adenomatous polyposis coli (APC), β-catenin, Axin,
and T-cell factor (TCF)/lymphoid enhancement factor (LEF). Among these, β-catenin acts
as a core molecule [285,288]. The dysregulation of Wnt/β-catenin signaling, critical for
embryonic development and tissue homeostasis, leads to β-catenin accumulation in the
nucleus and increased oncogene transcription. As a result, this contributes to the progres-
sion of cancers such as colon, liver, pancreas, and lung [288]. The co-receptors LRP5 and
LRP6 (LRP5/6) and the Wnt receptor Frizzled directly interact with one another. Direct
LRP5/6 binding to frizzled inhibits tumor metastasis that is frizzled-regulated [289]. The
canonical Wnt/β-catenin signaling cascade initiates when Wnts bind to frizzled and LRP5,
which, in turn, downregulates Glycogen synthase kinase 3 (GSK-3) activity [290,291]. LRP6,
linked to several cancer progressions including human triple-negative breast cancer, NSC,
and others, shares structural similarities with LRP5 [290]. The LRP6 rs6488507 polymor-
phism, combined with tobacco smoking, significantly elevates the likelihood of developing
NSCLC [290,292]. Blocking Wnt signaling through LRP6 decreased cancer cell self-renewal
ability and seed tumors in vivo [292,293]. APC, known beyond its role in the destruction
complex, is essential for Axin’s rapid transition following Wnt stimulation and its associa-
tion with LRP6/Arrow, a key early step in pathway activation. Axin phosphorylation in
both Wnt-off and Wnt-on states requires the tumor suppressor APC [11,294]. Alterations
in both Axin1 and Axin2 have been observed in various human cancers and cancer cell
lines [285,295,296]. Axin1 downregulation is common in lung cancer. X-ray-induced inhibi-
tion of lung cancer cells may be mediated by increasing the expression of Axin1 through
genomic DNA demethylation and histone acetylation [295]. Upregulation of Axin2 is found
in most colorectal cancers [296]. In NSCLC, promoter methylation is linked to reduced
Axin2 expression. This epigenetic silencing of Axin2 could lead to the nuclear accumulation
of wild-type β-catenin [297,298]. Low Axin1 expression in lung cancer patients correlates
with disease progression and a poor prognosis [295]. Axin2 functions as both a tumor
suppressor and an oncogene [11]. Changes in Axin2 are associated with poor survival in
patients with early-stage disease [298]. Individuals with elevated Axin2 expression may
experience a longer overall survival period compared to those with low expression levels in
lung cancer. The Axin2 rs2240308 C/T variant could potentially reduce the risk of both lung
and prostate cancer, especially in Asian descendants and population-based studies [299].
Axin2 downregulation is associated with worse overall survival in breast cancer patients.
Its rs11079571 and rs3923087 polymorphisms confer vulnerability to breast cancer [300].
Contrary to its expected role as a tumor suppressor, Axin2 acts as a potent promoter of
carcinoma behavior by enhancing the activity of the transcriptional repressor Snail1, trig-
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gering functional epithelial-mesenchymal transition (EMT) program and driving metastatic
activity [11,285,301]. Figure 2 provides a summary of Wnt signaling in lung cancer.

Wnt signaling in Cancer

↑ β-catenin

cancer progression

↓ Axin1

X-ray inhibits LC via Axin1
disease progression

Axin2

Axin2’ changes links to poor survival
↑ Axin2 links to longer survival
↓ Axin2 links to worse survival

LRP5/6

Wnts bind to LRP5 leads to ↓ GSK-3
LRP6 rs6488507 developes NSCLC

Figure 2. Wnt Signaling in Lung Cancer (LC). Dysregulated Wnt/β-catenin signaling leads to
nuclear β-catenin accumulation (indicated by ↑), driving cancer progression. Axin1 downregulation
(indicated by ↓) is common in LC, potentially reversible with X-ray treatment, impacting patient
prognosis. High Axin2 expression (indicated by ↑) is linked to a longer survival period in LC, while
low Axin2 (indicated by ↓) is associated with worse survival. LRP5 downregulates GSK-3 activity
(indicated by ↓), while LRP6 rs6488507 polymorphism increases the risk of developing NSCLC.

4.3.2. Wnt in AD

Dysfunctional Wnt signaling is associated with several human diseases, including
AD [1,302,303]. In the aging brain, Wnt signaling decreases [304,305]. This signaling
holds significant importance at the synapse, essential for synaptic plasticity and mainte-
nance in the mature brain [304]. In the context of AD, deregulated Wnt signaling may
increase synaptic vulnerability. Synapses are affected directly by decreased Wnt signal-
ing [304,306]. Reactivation of the Wnt pathway can reverse synapse loss and memory
deficits [306]. Aβ-induced dysfunctional Wnt signaling is crucial in neuronal degeneration
and synapse impairment in AD [303]. Moreover, activating Wnt signaling can prevent
Aβ peptide aggregation formation, while Apolipoprotein E ϵ4, a primary risk factor for
AD, prevents Wnt signaling [305]. Furthermore, certain genes associated with the Wnt
signaling pathway are linked to AD pathology and cognitive function. These alterations
align with the elevated activity of GSK-3β, which is observed in AD and implicated in
other neurological disorders [302]. There is a suggested connection between Aβ-induced
neurotoxicity and decreased Wnt signaling activity, with lower cytoplasmic levels of β-
catenin. Notably, inhibiting GSK-3β, a pivotal Wnt pathway regulator, using lithium, serves
as a protective mechanism for rat hippocampal neurons against Aβ damage [307,308]. A
Constitutively active form of GSK-3β is involved in the abnormal tau phosphorylation and
the development of neurofibrillary tangles (NFTs), along with reduced β-catenin levels in
the hippocampus of individuals with AD [303]. Blocking GSK-3β promotes nuclear translo-
cation of β-catenin, triggering Wnt signaling activation [284]. Dickkopf-related protein 1
(DKK1) expression is increased in the AD brain [302,304,309]. Inducing DKK1 hinders the
Wnt’s inhibition of GSK3-β, promoting tau protein phosphorylation and NFTs creation in
neurons [309]. The expression of DKK1, a negative modulator of Wnt signaling, induced
by Aβ might heighten GSK-3β activity, subsequently increasing in tau hyperphosphory-
lation [1]. Consequently, silencing or neutralizing DKK1 can activate Wnt signaling and
offer neuronal protection [1,309]. Interestingly, Dkk1 is necessary for Aβ-mediated synapse
loss, as synapses are protected from Aβ insult when Dkk1 is inhibited [304]. Transgenic
murine models expressing familial AD mutations exhibit a marked decrease in β-catenin
translocation to the nucleus [303]. A notable reduction in β-catenin protein levels shows an
inverse relationship with elevated GSK3-β tyrosine activating phosphorylation, in addition
to downstream effects associated with disease progression and cognitive decline [302].
Wnt proteins, glycoproteins modified by palmitoylation, bind to a cell surface receptor
complex consisting of frizzled and low-density lipoprotein receptor-related proteins 5/6
(LRP5/6) [310]. By interacting with LRP5/6 Wnt coreceptors, Dkk1 impairs Wnt proteins’
ability to bind to Frizzled and LRP5/6, hence inhibiting canonical Wnt signaling. In AD
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patients, higher GSK-3β activity and decreased cytoplasmic β-catenin levels result from
Dkk1’s inhibition of Wnt signaling [304]. Overexpression of LRP5/6 in neuroblastoma
SH-SY5Y activates Wnt signaling, and increases the expression of proliferation-related
genes. LRP5/6 overexpression rescues cells from oxidative stress-induced cytotoxicity and
cell death. LRP5/6 overexpression inhibits GSK-3β activity and decreases tau phosphoryla-
tion [311]. Mutations in the TREM2 gene elevate AD risk. TREM2 boosts microglial survival
via activating the Wnt/β-catenin signaling pathway, offering a potential therapeutic target
for AD [312]. Figure 3 provides a summary of Wnt signaling in AD.

Wnt signaling in AD

↑ GSK-3β

tau phosphorylation

NFTs development

↓ β-catenin

↑ DKK1

Block Wnt’s GSK-3β inhibition

↓ β-catenin

AD progression
cognitive decline

impaired Wnt-LRP5/6 binding

↑ LRP5/6 activates Wnt signaling
↑ LRP5/6 shields against oxidative stress

↑ LRP5/6 inhibits GSK-3β activity
↑ LRP5/6 lowers tau phosphorylation

Figure 3. Wnt Signaling in AD. Increased activity of GSK-3β is indicated by ↑. A constitutively active
GSK-3β leads to abnormal tau phosphorylation, the development of NFTs, and reduced levels of
β-catenin (indicated by ↓). Increased DKK1 expression (indicated by ↑) in the AD brain hinders Wnt’s
inhibition of GSK3-β. Overexpressing LRP5/6 (indicated by ↑) activates Wnt signaling, protects
against oxidative stress, inhibits GSK-3β activity, and reduces tau phosphorylation.

4.4. Pin1 in Cancer and AD

Previous studies on Pin1 have concentrated on its twofold function concerning the
advancement of cancer (Pin1 activation) and AD (Pin1 inactivation) [18,313,314]. Pin1
is frequently overexpressed in various human cancers, such as prostate and lung can-
cers [15,315–318]. It promotes uncontrolled cell division and malignant cell transformation
in various cancer models [315]. Pin1 inhibition triggers apoptosis in cancer cells [15].
Through binding and isomerization, Pin1 modulates cell cycle progression by influencing
various regulatory proteins. It promotes G1 checkpoint progression and S phase progres-
sion, along with regulating mitotic proteins [315]. Abnormal Pin1 activation disturbs the
equilibrium between oncogenic and tumor-suppressing molecules, favoring oncogenesis.
This imbalance could potentially be restored using Pin1 inhibitors [318]. Pin1 contributes to
cancer development by upregulation of more than 50 oncogenes or proliferation-promoting
proteins while downregulating more than 20 tumor suppressors and proliferation-inhibitory
proteins [317]. Furthermore, Pin1 directly elevates various metabolic regulators such as
β-catenin, HIF-1α, and c-Myc. Targeting this metabolic reprogramming process has proven
effective in inhibiting cancer progression [319,320]. Recent advancements in creating Pin1
inhibitors through structure-based drug design and natural compounds, aiming to inhibit
cancer activities [316]. Pin1’s oncogenic functions make it a promising target for cancer ther-
apy, with inhibitors such as ATRA and KPT-6566 showing efficacy in vitro and in vivo [315].
However, it will take more research to identify when and in which patients targeting Pin1
would be therapeutically beneficial because the effects of Pin1-based therapies may vary
depending on the specific type of cancer or its history of development, as well as the
specifics of a person’s neurodegenerative disease or neural biochemistry [321].

Some studies show the involvement of Pin1 in AD [322–329]. Notably, a reduction
in Pin1 activity is observed in AD [322,323]. This decreased activity might hinder the
NMDA receptor-mediated turnover of Shank3 and PSD95 proteins, while also increasing
NMDA receptor- and Aβ oligomer-mediated degradation of Shank3 and PSD95 proteins.
This could contribute to synaptic loss during the progression of AD [323]. Pin1 can bind
to the phosphorylated tau on Thr 231 (pT231 tau). When incubating the Pin1 protein in
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sections of both normal and AD brain tissue, robust binding of Pin1 was observed within
the cytoplasm of neurons in the AD brain sections, but not in the healthy brain [324].
Hyperphosphorylated tau exists in both the physiological transform and the pathological
cis form [325–329]. The trans isoform is functional and subject to dephosphorylation
and degradation. In contrast, the non-functional cis hyperphosphorylated tau cannot be
dephosphorylated and degraded, tending to aggregate and form tangles [313,325]. Pin1
can speed up the conversion of the cis isoform to the trans isoform of pT231-Tau and
restore its normal functionality. Interestingly, cis pT231-Tau is notably elevated in the
brains of individuals with AD, and there is a notable connection with NFTs and decreased
Pin1 levels [325–327]. The emergence of cis pThr231-tau in neurons occurs early in MCI
and accumulates in degenerating neurons as AD progresses. It localizes specifically in
dystrophic neurites, contributing to memory decline [328]. An antibody targeting the initial
driver of neurodegeneration, cis P-tau, hinders brain damage and tauopathy [330]. The
interaction between Aβ and tau is thought to exacerbate AD progression [325,331,332]. Aβ
formation causes hyperphosphorylation of tau [26,331]. Pin1 overexpression decreases
Aβ secretion from cell cultures, while knockout of Pin1 increases Aβ secretion [333,334].
Pin1 binds to the phosphorylated Thr668-Pro motif of APP (pT668-APP) and catalyzes
pT668-APP from cis to trans transformation. The cis pT668-APP isoform promotes the
processing of Aβ. Pin1 could prevent Aβ processing by catalyzing from a cis to a trans
isoform [325,333,334]. Figure 4 provides a summary of the effects of pin1, p53, and Wnt.

Pin1
in LC:

favors oncogenesis;
Pin1 inhibition induces apoptosis;
Pin1 is overexpressed.

Pin1
in AD:

reduction in Pin1 activity;
speeds cis-to-trans conversion;
its overexpression lowers Aβ;
its knockout rises Aβ secretion.

p53
in LC

∆133p53β aids glioblastoma pro-
gression;
mutations in LC.

p53
in AD

heightened activity;
Aβ activates p53;
tau lead to p53 accumulation;
dysfunctional in DNA repair;
dysfunctional in apoptosis.

Wnt
in LC

Wnt signaling is elevated;
leptin: ↑ Wnt signaling promotes
cancer growth;
adiponectin: ↓ Wnt signaling in-
hibits cancer growth.

Wnt
in AD

downregulated in AD;
increases synaptic vulnerability.

Figure 4. Common Signaling Pathways in Lung Cancer (LC) and AD.
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5. Mitochondria in Cancer and AD

Mitochondria, essential cellular organelles, supply the energy necessary to support
cell life and play a crucial role in the cell death process [25]. Some studies documented
altered mitochondrial function in both AD and cancer [1,16,26–28]. In cancer cells, the
moderate generation of ROS by mitochondria contributes to the growth and prolifera-
tion of cancer cells [1,29]. Dysfunctional mitochondria contribute to oxidative stress and
stimulate the activation of inflammasomes. The persisting impaired mitochondria may
initiate the NLRP3 inflammasome pathway and are a source of oxidants [335]. Certain
stimuli can cause chronic inflammation and carcinogenesis. For instance, the development
of lung cancer is linked to COPD resulting from damage to the lungs due to smoking,
inflammation, and consequent DNA damage [336,337]. Persistent inflammation can boost
cancer growth and progression, whereas, in AD, it potentiates neuronal cell death and
brain degeneration [1].

5.1. Mitochondrial Changes in Lung Cancer

Mitochondria interact with the endoplasmic reticulum (ER) at the level of membrane
contact sites known as (mitochondria-associated membranes) MAMs. This interplay sup-
ports essential functions of the two organelles in controlling cell proliferation/death, cell
metabolism, and Ca2+ homeostasis, in both normal and disease contexts, such as can-
cer [338–341]. HO-1, a 32kDa protein, predominantly localizes to the ER, but is also found
in mitochondria, caveolae, and the nucleus [84,342,343]. Calcium homeostasis is vital for
supporting cell survival. When there is a decrease in the flow of Ca2+ into the mitochondria,
it blunts OXPHOS activity, resulting in a decrease in ATP generation [339].

Disruptions in the mitochondrial Ca2+/ROS homeostasis are associated with impaired
respiration, mitochondrial fission, and mitophagy, which triggers cell death pathways
such as autophagy, apoptosis, and paraptosis in prostate cancer cells [338,344]. During
early apoptosis, an increase in C16-ceramide levels is observed, likely from the conver-
sion of mitochondrial sphinganine and sphingomyelin. Sphingosine, lactosyl-ceramide,
and glycosyl-ceramide levels remain stable. Ceramide production in mitochondria rises
when MAM sphingomyelin levels drop. These sphingolipid changes happen at MAMs, mi-
tochondria, and the ER during early apoptosis, a pathway avoided by cancer cells [339,345].
ER-mitochondria contact sites serve as a main platform for decoding danger signals, includ-
ing variations in Ca2+ homeostasis, affected by oncogenes and oncosuppressors, ultimately
influencing cancer development or progression [339,346]. Another critical tumor sup-
pressor gene, such as p53, is also found in MAMs. In this scenario, p53 associates with
the sarco/ER Ca2+ ATPase (SERCA) pump to fill Ca2+ stores in the ER. Antineoplastic
treatment or an apoptotic signal favors Ca2+ flow from ER to mitochondria, which enable
apoptosis [339,347]. Low levels of thioredoxin-related transmembrane protein 1 (TMX1)
in cancer cells elevate ER Ca2+, faster cytosolic Ca2+ clearance, and reduced Ca2+ trans-
fer to the mitochondria, reduce ER-mitochondria contact, shifts bioenergetics away from
mitochondria, and speeds up tumor growth. TMX1, with its thioredoxin motif and palmi-
toylation to target the MAM, plays a crucial role in ER-mitochondria Ca2+ flux. It acts as a
thiol-based tumor suppressor, enhancing mitochondrial ATP production and promoting
apoptosis [348]. Combretastatin A-4 phosphate (CA4P) reduces peripheral NSCLC tumor
vessel oxygenation, subsequently decreasing tumor core oxygenation and anoxia. CA4P
also elevated levels of enzymes involved in heme biosynthesis, uptake, and degradation,
as well as oxygen-utilizing hemoproteins. It did not diminish mitochondrial function
in resistant tumor cells, implying the role of increased heme flux and function in tumor
regrowth and resistance post-vascular disrupting agents (VDAs) treatment [349,350].

Fascin promotes lung cancer metastatic colonization by enhancing metabolic stress
resistance and mitochondrial OXPHOS. Fascin, along with mitochondrial filamentous actin
(mtF-actin), maintains the homeostasis of mtDNA to promote mitochondrial OXPHOS.
Disrupting mtF-actin abrogates fascin-mediated lung cancer metastasis while restoring
mitochondrial respiration can rescue metastasis. Targeting the altered actin cytoskeleton
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might rewire mitochondrial metabolism and prevent metastatic recurrence [339,351]. Vari-
ous natural compounds can induce paraptosis in diverse tumor cell lines [338,352–354]. An
α, β-unsaturated carbonyl compound of ginger, known as 6-Shogaol (6S), causes significant
cytoplasmic vacuolation and leads to cell death in both breast cancer cells (MDA-MB-231)
and NSCLC cells (A549) [352,353]. The application of plumbagin results in paraptosis
in triple-negative breast cancer cells (MDA-MB-231), NSCLC cells (A549), and cervical
cancer cells (HeLa) [352,354]. Plumbagin triggers paraptosis in cancer cells by covalently
altering newly synthesized proteins and blocking the proteasomal degradation of unfolded
proteins [354].

5.2. Mitochondrial Dysfunction in AD

A primary hallmark shared by both cancer and AD is mitochondrial dysfunction [16].
Mitochondria are the major source of oxidative stress. Defective mitochondria generate less
ATP but produce more ROS, which may be a significant contributor to the oxidative imbal-
ance observed in AD [26,355]. The emergence of ROS-induced mitochondrial dysfunction
elevates Aβ generation, creating a vicious cycle between mitochondrial dysfunction and
ROS, as well as, the harmful effects of Aβ [26]. The accumulation of Aβ peptide within
the brain triggers the formation of NFTs, inflammatory reactions, heightened oxidative
stress, and impaired mitochondrial function, which are the root causes of cell death and
dementia [26,135]. In AD, mitochondrial defects lead to increased ROS production, result-
ing in cellular damage, eventual cell death, and disruption of OXPHOS, which depletes
cellular energy [28]. Chronic inflammation seems to contribute to the development of
age-related diseases, such as AD, and cancer [1,15,337,356,357]. Elevated ROS levels pro-
mote the transcription of proinflammatory genes and the production of cytokines such as
IL-1, IL-6, and TNF-α, as well as chemokines, resulting in neuroinflammation [357]. Con-
versely, inflammatory responses stimulate microglia and astrocytes to produce high levels
of ROS, suggesting that neuroinflammation could act as both a cause and a consequence of
persistent oxidative stress [26,135].

Changes in MAMs implicate in the pathogenesis of AD [27,358–360]. Both β and
γ-secretases are found in MAMs and harbor Aβ protein precursor processing activities.
Enhanced accumulation of neutral lipids associated with Aβ production is reversed by
inhibiting β- or γ-secretases. A proteomic method revealed interactions between Aβ protein
precursor and its catabolites with essential proteins of MAMs regulating mitochondrial
and ER functions [358]. Significant Aβ production occurs at mitochondria-ER contact sites,
including the outer mitochondrial membrane and mitochondria-associated ER membranes.
This heightened production may disrupt ER, mitochondrial, and mitochondria-ER contact
site function, potentially serving as a key step in the neurodegeneration process in AD [361].
MAM dysregulation appears early in vivo based on the molecular alterations of MAM
components observed in the cerebral cortex of 3-month-old APP/PS1 mice [27,360]. C99,
the 99-aa C-terminal fragment of APP, is found in MAM along with endosomes, where it’s
typically processed quickly by gamma-secretase. In AD cell models, unprocessed C99 accu-
mulates in MAM, causing elevated sphingolipid turnover, and altered lipid composition in
MAM and mitochondrial membranes. This disruption affects mitochondrial respiratory su-
percomplexes assembly and activity, contributing to AD’s bioenergetic deficits [27,359,362].
Mitochondrial dysfunction, though an early disturbance in AD pathogenesis, is not the
primary driver [362]. There is a proposal that heightened levels of unprocessed C99,
rather than the presence of Aβ, are involved in the mitochondrial dysfunction observed in
AD [359]. Most cases of early-onset familial AD (FAD) experienced mutations in the PSEN
encoding genes (PSEN1 and PSEN2) [363–366]. The rate of mitochondrial respiration was
examined by assessing oxygen consumption in FAD and controlling fibroblasts. When com-
pared to control fibroblasts, FAD fibroblasts exhibit considerably higher basal and maximal
oxygen consumption rates (OCR) [363]. A study of the role of the PSEN homolog SEL-12 in
Caenorhabditis elegans revealed that mutations in sel-12 disrupt calcium homeostasis, leading
to mitochondrial dysfunction. In SEL-12-deficient animals, calcium transfer from the ER
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to the mitochondria results in mitochondrial fragmentation and dysfunction. Mutants
such as sel-12(ar131), sel-12(ty11), and sel-12(ok2078) exhibit 1.5, 2.9, and 2.1 times more
ROS signal than wild-type animals, respectively [364]. Mutations in PSEN2 associated
with FAD also disrupt autophagy through alterations in Ca2+ homeostasis [365]. In trans-
genic mouse models with a FAD-mutant PS2, enhanced ER–mitochondria juxtaposition
was noticed, indicating enhanced mitochondrial Ca2+ uptake upon ER Ca2+ release [366].
Moreover, mutations in the C. elegans gene encoding a PSEN homolog, sel-12, results in
mitochondrial metabolic issues contributing to neurodegeneration via oxidative stress.
In sel-12 mutants, elevated ER-mitochondrial Ca2+ signaling increases mitochondrial Ca2+

content, stimulating mitochondrial respiration and superoxide production [363]. Astrocytes
in AD display characteristic signs of disease pathology, such as elevated production of
Aβ, changes in cytokine release, and disrupted Ca2+ homeostasis. PSEN1 ∆E9 astrocytes
exhibit significantly higher intracellular ROS levels compared to isogenic control cells [367].
Furthermore, individuals with the ϵ4 allele of apolipoprotein E (ApoE4) are more likely
to AD development than those with ApoE3. In an astrocyte-conditioned media (ACM)
model, evidence demonstrates a significant increase in ER-mitochondrial communication
and MAM function. This increase is measured by the synthesis of phospholipids and
cholesteryl esters in cells treated with ApoE4-containing ACM compared to those treated
with ApoE3-containing ACM [368]. Mitochondria play a pivotal role in aging through the
accumulation of mutations in mtDNA and the increased production of ROS [133]. Some
studies have revealed the underlying molecular mechanisms and cellular effects of mito-
chondrial deficiencies, as well as the abnormalities of the mitochondria in AD [369,370].
Swerdlow and Khan [370] proposed “mitochondrial cascade hypothesis” comprehensively
explains various aspects of late-onset, sporadic AD. In this model, the inherited genetic
makeup of an individual’s electron transport chain sets basal rates of ROS production.
This mechanism controls the rate at which acquired mitochondrial damage accumulates.
Mitochondrial damage, resulting from oxidative DNA, RNA, lipid, and protein damage,
amplifies ROS production and triggers three key events. These events include a reset
response generating Aβ, a removal response eliminating compromised cells, and a replace-
ment response attempting cell cycle re-entry.

Consistent features of mitochondrial dysfunction in AD involve damaged mitochon-
drial bioenergetics, heightened oxidative stress, and disrupted mitochondrial genome.
The importance of these issues in triggering mitochondrial dysfunction may differ based
on the individual biological, environmental, and genetic characteristics of each AD patient.
Nonetheless, any of these abnormalities can result in the other two, worsening neuronal
dysfunction and the process of neurodegeneration [26,27]. Mitochondrial bioenergetic
deficits occur early in AD, preceding dysfunction in mitochondrial electron transfer chain
(ETC) complexes and global metabolic failure. This suggests that AD may be a metabolic
neurodegenerative disease, with Aβ-related effects observed across diverse organisms [371].
Oxidative stress can trigger tau phosphorylation, promote aggregation, and elevate the
production and buildup of Aβ [26,135]. ATP deficits precede behavioral issues and Aβ
aggregation in Aβ-expressing nematodes, indicating a potential independent or causative
role for bioenergetic deficits. Dysfunctional ETC complexes I and IV follow the ATP drop,
as observed in muscle-specific C. elegans strain overexpressing human Aβ. Global metabolic
failure, which is evident in older Aβ nematodes, results from mitochondrial bioenergetic
deficits and dysfunction in complexes I and IV. Notably, significant metabolic effects oc-
curred in whole nematodes despite low Aβ in neurons [371]. The associative learning
competency of the neuronal Aβ C. elegans strain underwent evaluation, revealing a behav-
ioral phenotype indicative of diminished cognitive function. These worms, designed as an
AD model, exhibit altered behaviors involving complex neuron interactions and signaling
due to Aβ expression. When stimulated with serotonin, they notably produce far fewer
eggs [372]. C. elegans worms expressing Aβ peptides have been created to imitate the patho-
logical features of AD [373,374]. Several strains of transgenic worms have been created to
generate Aβ peptides. The production of Aβ 1-42 peptides in muscle cells is stimulated by
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elevating the temperature in the C. elegans strain GMC101 [373,375]. The C. elegans model
expressing full-length Aβ1-42 can be utilized for screening potential therapeutics and in-
vestigating the toxic mechanisms of Aβ. PBT2, an AD therapeutic, provided rapid and
significant protection against Aβ-induced toxicity in C. elegans and significantly improved
cognition [375]. In C. elegans, human tau is extensively phosphorylated at disease-relevant
sites and undergoes conformational changes resembling those observed in AD [376]. Sor-
rentino et al. [377] investigated the impact of nicotinamide riboside (NR) on neuroblastoma
cells expressing human Aβ and, in line with data from the C. elegans model, they noted
a significant decrease in intracellular Aβ deposits along with elevated levels of OXPHOS
proteins and mitochondrial stress response transcripts.

5.3. Wnt, P53, Pin1, and Mitochondria

Some studies have illustrated the involvement of mitochondrial regulation of Wnt
pathway [378–380]. Loss of mtDNA, increased glycolysis, and decreased OXPHOS are
caused by mitochondrial transcription factor A (TFAM) deficiency. Elevated expression
of the tricarboxylic acid-cycle metabolites α-ketoglutarate suppresses Wnt signaling and
tumorigenesis [378,379]. According to Costa et al. [380], a decrease in mitochondrial
ATP production results in the induction of ER stress, which in turn lowers canonical
Wnt/β-catenin signaling both in vivo and in vitro. The decrease in mitochondrial ATP
production via sublethal doses of various drugs results in reduced Ca2+ stores in the
ER [378,380]. Wnt signaling inhibits Aβ oligomer-induced mitochondrial permeability
transition pore, protecting hippocampal neurons from death. This suggests that Wnt acti-
vation could serve as a therapeutic target for individuals with AD by directly affecting the
mitochondria [378,381]. Wnt-5a activates mitochondrial dynamics, causing acute fission
and fusion in rat hippocampal neurons. This Wnt-5a/Ca2+ signaling pathway regulates
the mitochondrial fission-fusion process in hippocampal neurons, offering insights into
Wnt-related pathologies and neurodegenerative diseases linked with mitochondrial dys-
function [382]. P53 has been demonstrated to engage with mtDNA polymerase γ and is
crucial for the maintenance of mtDNA integrity in response to oxidative injury [383,384].
The absence of p53 leads to a notable rise in mtDNA vulnerability to damage, resulting in
a higher frequency of in vivo mtDNA mutations. This phenomenon can be reversed by
stable transfection of wildtype p53 [384]. Pin1 enhances the mitochondria translocation
of PGK1, where it triggers the activation of PDHK1 to facilitate PDH-inhibited activity of
PDHK1 [319,385]. Mitochondrial PGK1, operating as a protein kinase, phosphorylates and
activates PDHK1, thereby suppressing mitochondrial pyruvate metabolism and facilitating
the Warburg effect [385]. Pin1 promotes the stress-induced localization of p53 to mitochon-
dria, both in vitro and in vivo. Upon stress-induced phosphorylation of p53 on Ser46 by
homeodomain interacting protein kinase 2, Pin1 stimulates its mitochondrial trafficking
signal. This process is also induced by RITA, a molecule that activates p53. Pin1’s role is
crucial for inducing mitochondrial apoptosis by this compound. These findings suggest
potential implications for treating tumors expressing p53 [386].

6. Conclusions

Altered mitochondrial function is a critical factor at the intersection of lung cancer
and AD. Mitochondrial respiration and OXPHOS play pivotal roles in energy production,
with metastatic and CSCs maintaining elevated mitochondrial OXPHOS levels, potentially
influenced by benign cells during metastasis. While the exact mechanisms behind OXPHOS
deficiency in AD remain a scientific puzzle, recent evidence highlights the significance of
mitochondrial F1Fo ATP synthase dysfunction in AD-related mitochondrial OXPHOS fail-
ure. Overall, mitochondrial heme, ER-mitochondria interactions, and calcium homeostasis
are key players in the context of lung cancer progression, making them potential targets for
therapeutic intervention. MAM alterations, Aβ production, and mitochondrial dysfunc-
tion play pivotal roles in AD pathogenesis. C. elegans models mimic AD features and are
valuable for testing potential therapies. β and γ-secretases, found in MAMs, process Aβ



Biology 2024, 13, 185 26 of 41

protein precursor, contributing to Aβ production. Aβ accumulation at mitochondria-ER
contact sites disrupts their function, a key step in AD neurodegeneration.

Various biological processes, including impaired cell proliferation and survival path-
ways, are significant contributors to this inverse relationship between AD and cancer.
Additional studies should be carried out to establish the relationship. Shared biological
mechanisms such as Pin1, Wnt, and p53 signaling play opposing roles in cancer and AD,
leading to uncontrolled cell proliferation and survival in cancer and cell death and neu-
rodegeneration in AD. The genes Pin1, p53, and Wnt are differentially regulated in these
two conditions, with Pin1 serving a significant dual function. In cancer, Pin1 is often over-
expressed and promotes oncogenic signaling pathways, while in AD, its loss contributes to
neurodegeneration. Furthermore, in cancer, somatic p53 mutations are prevalent, while in
AD, p53 activation is disrupted, impacting DNA repair and apoptosis. Similarly, the Wnt
pathway plays a crucial role in both conditions, with upregulated Wnt signaling contribut-
ing to tumor development in cancer and downregulated Wnt signaling associated with
Aβ neurotoxicity in AD. Moreover, mitochondrial interactions with Wnt, Pin1, and p53
pathways influence cancer and AD, warranting further investigation for tailored therapeu-
tics and potential cancer treatments, particularly in p53-altered tumors. Future research
may focus on understanding the molecular mechanisms of Pin1, Wnt, and p53 signaling in
cancer and AD. Targeting these pathways therapeutically and exploring their dual roles
may offer novel treatments for both conditions.
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