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Simple Summary: Artificial feeding systems have emerged as a vital tool in research on arthropods
like mosquitoes, ticks, blackflies, sandflies, tsetse flies, fleas, and triatomine bugs, aiding in the
understanding of pathogen transmission. This review explores various artificial feeding systems used
to study human–vector relationships and pathogen transmission, detailing their roles in insect-related
research. We discuss the advantages and disadvantages of these systems, their practical applications,
and speculate on future directions in vector-borne disease research. Recognizing the strengths and
weaknesses of different artificial feeding systems will help researchers to choose the right tools for
developing effective pathogen transmission and disease control strategies.

Abstract: This review examines the advancements and methodologies of artificial feeding systems for
the study of vector-borne diseases, offering a critical assessment of their development, advantages,
and limitations relative to traditional live host models. It underscores the ethical considerations
and practical benefits of such systems, including minimizing the use of live animals and enhancing
experimental consistency. Various artificial feeding techniques are detailed, including membrane
feeding, capillary feeding, and the utilization of engineered biocompatible materials, with their
respective applications, efficacy, and the challenges encountered with their use also being outlined.
This review also forecasts the integration of cutting-edge technologies like biomimicry, microfluidics,
nanotechnology, and artificial intelligence to refine and expand the capabilities of artificial feeding
systems. These innovations aim to more accurately simulate natural feeding conditions, thereby
improving the reliability of studies on the transmission dynamics of vector-borne diseases. This
comprehensive review serves as a foundational reference for researchers in the field, proposing a
forward-looking perspective on the potential of artificial feeding systems to revolutionize vector-
borne disease research.
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1. Introduction

Vector-borne diseases (VBDs) are caused by pathogens that are transmitted to humans
through the bites of infected arthropods like mosquitoes, ticks, and sandflies. These
diseases continue to be a major global health concern, affecting millions annually and
placing a substantial burden on public health [1–4]. Among them, malaria and dengue
alone contribute to approximately 400,000 and 40,000 annual deaths, respectively [4]. Other
VBDs, such as chikungunya fever, Zika fever, yellow fever, West Nile fever, and several
neglected diseases also impact millions worldwide [1,4].

The transmission of VBDs relies on the interplay between vectors, pathogens, and
hosts. It begins with an infected vector feeding on a susceptible host and depositing
the pathogen into the host’s skin [5]. Once inside the host, the pathogen may replicate
and disseminate through the host’s tissues. This process is influenced by factors like the
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host’s immune response and pathogen virulence [6,7]. The transmission cycle may then
be sustained by the infected host serving as a source of infection for the vector. This
highlights the complex interactions among vectors, pathogens, and hosts, emphasizing the
multifaceted nature of vector-borne disease dynamics.

The study of these complex VBDs systems has relied heavily on live animal or human
feedings [8–12]. While vertebrate animals offers several advantages, such as providing
a natural physiological environment for the arthropods and offering insights into host–
pathogen interactions [13,14], ethical and practical concerns exist [8,14–17]. Alternative
methods including artificial feeders have emerged to address some of these limitations
and provide a more controlled approach [18–22]. Artificial feeding systems incorporate ad-
vanced tailored membranes, capillary feeding mechanisms, and engineered biocompatible
constructs to enhance experimental accuracy and support arthropod colonies in laboratory
settings [23].

Artificial feeding aligns with the three Rs: the principles of Replacement, Reduction,
and Refinement. The first refers to the replacement of animal use, the second refers
to reduction by minimizing the number of animal use, and the third encompasses the
refinement realized by enhancing experimental procedures to minimize any potential
pain or distress experienced by the animals [24]. These systems emulate natural feeding
conditions, allowing for precise observations and analyses of vector behaviors during
blood feeding [25–27]. Artificial systems not only reduce inherent variability in live animal
experiments but also offer enhanced insights into vector behaviors, transmission dynamics,
and intervention strategies [28].

The controlled environment provided by artificial feeding systems allows for the
exploration of a wider range of experimental conditions. While these systems attempt to
mimic natural conditions, they also have inherent limitations. Therefore, the aim of this
review is to explore and compare various artificial feeding systems and their advantages
and limitations.

2. Use of Vertebrate Hosts to Study Arthropod Feeding and Pathogen Transmission

The study of VBDs often involves the use of vertebrate animals such as mice, rats,
non-human primates (NHPs), and birds. Vertebrate animals facilitate investigations into
various aspects of pathogen transmission, including feeding mechanisms in immune and
non-immune hosts, and the potential for pathogen transmission based on the timing of
feeding [29–31].

Early explorations in the research of VBDs were focused on understanding the trans-
mission cycles and infection mechanisms of pathogens [32,33]. These foundational inves-
tigations have shaped subsequent research endeavors, emphasizing the role of animal
models in deepening understanding and informing intervention strategies. However, stud-
ies have observed considerable variability in vector feeding patterns across different animal
hosts [34–46]. This variability can be influenced by the specific characteristics of the vector
species involved, including their feeding preferences, number of vectors per animal, life
cycle, and physiology.

Animal models: Mouse models have been extensively used to explore various facets
of VBDs, including the timing and quality of blood meals transmitted by Anopheles stephensi
mosquitoes in malaria transmission [47]. Similarly, mouse models have contributed in-
sights into the transmission dynamics of Zika virus and Mayaro virus via Aedes aegypti
mosquitoes [36,48], Borrelia burgdorferi transmission by Ixodes spp. [49], and the acquisition
dynamics of Tick-Borne Langat Virus in Ixodes scapularis [50]. Non-human primates (NHPs),
particularly rhesus macaques, exhibit genetic and immunological similarities to humans,
making them valuable models for studying immune responses, disease progression, and
therapeutic evaluations [51–53]. Studies on Chagas disease and Yellow fever virus show-
case the relevance of NHPs in closely replicating human disease progression [53,54], despite
challenges in handling and monitoring, the need for specialized facilities, ethical consid-
erations, and cost implications [55]. A number of birds, such as the Eurasian blackbird,
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house sparrow, American robin, and domestic chicken, have provided information about
the interactions between viruses like St. Louis encephalitis virus and West Nile virus and
their reservoir hosts [39,56–59].

The use of animal models in scientific studies offers several valuable advantages
[Table 1], such as enabling the study of physiological processes and disease mechanisms [14],
providing widely available and standardized animal models that offer a consistent plat-
form for research, and granting flexibility in genetic manipulations to meet specific study
requirements [13]. Despite these advantages, animal models present some limitations and
ethical considerations. These models may not fully replicate human physiology and can
create challenges in translating findings to clinical applications [60]. Ethical considerations
regarding animal welfare and the use of anesthesia in vector feeding experiments have
prompted discussions, calling for the continual reassessment and potential refinement
of research methodologies [61–63]. Also, maintaining animal colonies and conducting
experiments can be resource-intensive in terms of both time and cost [64].

Human Challenge: Human challenge studies, also known as controlled human
infection models (CHIMs), represent a unique approach to studying VBDs. Unlike scenarios
where human volunteers primarily aid in sustaining vector colonies, CHIMs involve
deliberately exposing volunteers to arthropods infected with attenuated pathogens [65,66].
The historical backdrop of VBDs such as malaria and yellow fever traces back to the 19th
and early 20th centuries, when patterns of disease transmission and associated symptoms
from vector bites were meticulously documented through CHIMs [67]. Over time, the
understanding of these diseases progressed, culminating in more formalized research
methodologies in the mid-20th century.

Ethical considerations have played a significant role in the evolution of human chal-
lenge studies. In the latter half of the 20th century, the establishment of ethical guidelines
and regulatory frameworks, including documents like the Nuremberg Code and the Dec-
laration of Helsinki, highlighted the importance of informed consent and the protection
of research participants [68]. In modern times, human challenge studies have evolved to
incorporate sophisticated monitoring systems, genetic analysis, and modeling approaches.
These advancements have allowed for deeper insights into disease dynamics and more
effective evaluations of interventions.

This intentional exposure induces mild disease, allowing for a structured investigation
into the feeding behaviors and transmission dynamics of various VBDs [69,70]. CHIMs play
a pivotal role in advancing the comprehension of vector–host interactions, thereby facilitat-
ing the development of robust disease control measures [71]. CHIMs also provide insights
into the transmission dynamics of diseases like dengue and malaria [72,73]. Notably, CHIM
studies have significantly contributed to examining clinical inflammation in malaria-naïve
volunteers and devising effective malaria control strategies [74,75]. CHIMs have been
instrumental in unraveling the transmission dynamics of the Leishmania parasite [76–78].
Given the inherent risks associated with these infections, stringent safety protocols are
rigorously enforced to safeguard the well-being of participants.

The advantages of using CHIMs in research on VBDs include their ability to facilitate
highly controlled studies, promoting detailed investigations into disease mechanisms
and immune responses [79]. CHIMs provide realistic outcomes and highly relevant data
by accurately reflecting the complexities of human physiology, immune responses, and
disease interactions [80]. CHIMs help maintain temperature homeostasis, crucial for
optimal vector feeding and pathogen development, and preserve natural odor cues that
guide vector behavior during feeding. CHIMs have emerged as indispensable tools for
evaluating vaccine candidates against a spectrum of diseases, including malaria, dengue
fever, Leishmania, and Chagas disease [76–78,81–87]. However, CHIMs present ethical
considerations, including potential risks to participants and the need for stringent safety
protocols [88]. Variability in disease severity among individuals participating in CHIMs
can affect the generalizability of findings to broader populations [89] [Table 1]. Despite
these challenges, CHIMs stand as a valuable tool in advancing our understanding of VBDs.
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3. Artificial Feeding Systems for Vectors

Progress in vector-borne disease research is enhanced by advancements in feeding
methods by mimicking natural feeding platforms to provide insights into feeding behaviors
and the competence of vectors as disease carriers [12,23]. These systems vary in complexity,
from basic setups using synthetic and animal hide membranes to advanced constructions
utilizing individual capillary feeding or biocompatible constructs.

Artificial Membrane Feeding: The least complex artificial feeding systems utilize
membranes that emulate natural feeding surfaces [23]. While artificial membranes offer
insights into vector-borne diseases, their universal applicability can be limited, as some
vectors do not interact with them. Careful membrane selection has made artificial mem-
brane feeding successful with a wide range of species. Semi-artificial feeding systems
employing animal hides and intestines have gained attention for simulating natural feeding
environments, especially for specific vectors like ticks and sandflies [22,90–92]. Parafilm
M and silicon are two widely synthetic biocompatible materials used for artificial feeding
membranes, closely mirroring natural host tissues [22,23,93–95]. These materials ensure
that membranes do not elicit harmful immune responses, making them effective tools for
vector-borne disease studies. Collagen membranes and polytetrafluoroethylene (PTFE)
membranes are also used in constructing artificial feeding membranes for vectors [96–98].
Membrane feeding has proven valuable across various vector species, including mosquitoes,
ticks, and tsetse flies [99–102].

A specialized in vitro artificial membrane system is the Hemotek feeding system,
allowing for precise controlled blood feeding of hematophagous insects in the labora-
tory [21,97]. Equipped with electronic temperature controls and a blood reservoir, this
system regulates the feeding environment to mimic natural conditions [21]. The Hemotek
feeding system is relevant for the standardization of the infectious agent dose, vector com-
petence, and pathogen transmission studies [103–105]. It has been instrumental in various
pathogen transmission studies, such as studies on malaria transmission [106], evaluating
the effectiveness of different blood sources for rearing Ae. aegypti [107], Leishmania spp.
infections in sandflies [108–110], xenomonitoring in tsetse flies [111,112], investigating
Trypanosoma cruzi in triatomine bugs [113–115], and examining Yersinia pestis in fleas [116].
Hemotek feeders have the advantage of temperature control, standardization, and commer-
cial availability [106]. However, Hemotek feeders present drawbacks, such as their high
cost and the need for regular maintenance [117].

Another in vitro artificial feeding system is the glass feeding device, commonly known
as the Rutledge-style feeder [118]. Constructed with glass chambers, these devices allow
arthropods to feed on a membrane or artificial surface [26,119]. Similar to the Hemotek
feeder, odors or chemical cues derived from hosts can be introduced into the feeders to
further enrich the feeding process and heighten attraction [120]. Glass feeders find extensive
applications in studying mosquito feeding behavior, host preferences, tick feeding patterns,
sandfly establishment and maintenance, virus transmission, and various infections in
sandflies and fleas [121–135].

Like the Hemotek feeding system, glass feeding devices maintain controlled environ-
mental conditions closely resembling natural settings. The transparent glass construction
facilitates the observation of the feeding process, allowing for the collection of valuable
data on vector behavior. These devices offer the advantage of enabling repeated feeding
attempts, enhancing experimental flexibility and robustness. Despite these advantages,
the use of glass can complicate biosafety protocols, limiting their suitability for certain
studies. Their widespread use in research introduces a distinct challenge associated with
Rutledge-style assays that utilize animal pelts as membranes for certain vectors. These
pelts serve as a natural and biologically relevant substrate for tick and flea studies but may
introduce challenges in maintaining consistency, ensuring reproducibility, and exercising
experimental control [121,136,137]. The utility of glass feeders is further constrained due to
the inherent fragility of glass material [106].
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The use of artificial membrane feeding systems in vector-borne disease studies offers
distinct advantages over animal or human feeding. They minimize reliance on live animal
hosts, addressing ethical concerns and reducing overall animal use in research [138,139].
Artificial feeding membranes provide a controlled and standardized feeding environment,
improving the accuracy and reliability of experimental results. They enable the precise
observation and analysis of vector behaviors during feeding, contributing to a deeper un-
derstanding of vector biology, pathogen transmission dynamics, and potential intervention
strategies. The benefits and ethical considerations associated with artificial feeding mem-
branes highlight their significance as valuable tools in vector research. Artificial feeding
membranes facilitate oral infection studies, offering flexibility in blood sources (cow, avian,
or human blood, etc.) and enabling the collection of vector saliva for further analysis [140].
They are cost-effective, easy to use, and versatile [141].

However, one of the primary concerns with artificial feeding membranes is the po-
tential for altered vector behavior due to variations in vector feeding conditions. Some
studies have indicated that feeding behaviors and infection rates might differ between
vectors feeding on artificial membranes compared to natural hosts [116,142–144], which
could influence the reliability of experimental outcomes [Table 1]. The primary challenge
in employing artificial membranes for tick research is mimicking the complex feeding
environment encountered by ticks during host attachment, as they secrete a combination
of saliva and cement-like substances to facilitate attachment and blood feeding, involving
intricate biochemical interactions and structural adaptations [145]. Sandflies, with their
very short mouthparts, may face difficulties in feeding on artificial devices. Therefore, it is
crucial to choose suitable membranes such as those derived from animal skin or intestine to
accurately replicate the unique feeding mechanisms and environmental conditions relevant
to specific vectors.

Capillary Feeding: More specialized than membrane feeding devices are capillary
feeding systems, offering an alternative artificial feeding approach specifically designed
for certain hematophagous insects [146]. In this system, vectors like ticks feed through a
capillary tube filled with a blood substitute or animal/human blood. Capillary feeding
has been applied in various tick species to explore aspects of tick biology and pathogen
transmission, such as the relationship between the rickettsia pathogen Anaplasma marginale
and the tick species Dermacentor variabilis [19]; the infection of nymphal Ixodes scapularis
ticks with Borrelia burgdorferi, the causative agent of Lyme disease [147]; establishing a labo-
ratory colony of Rhipicephalus (Boophilus) microplus (formerly Boophilus microplus) ticks [148];
and evaluating the potential of selected tick proteins as antigens for reducing cattle tick
infestations and infections with Anaplasma marginale and Babesia bigemina pathogens [149].
This has also been employed to assess the transmission of Leishmania spp. in sandflies [150]
and investigate the vector competence of sandflies [146].

Capillary feeding offers finer control over individual vectors, thereby standardizing
the feeding process [150]. But the limitation of capillary feeding in mimicking natural
feeding behaviors may restrict its broader applicability in certain experimental contexts,
such as studies involving tick cement. Capillary feeding might not be suitable, as ticks
typically initiate feeding by partially engorging on hosts to create cement cones [145,151].
This critical step cannot be adequately replicated using capillary tubes. The suitability of
capillary feeding can vary based on the specific vector and species involved.

The primary application of capillary feeding in mosquitoes involves the controlled
collection of insect saliva for vector-borne pathogen studies [152,153]. This method is
considered invasive for mosquitoes, often involving immobilization by removing their legs
and wings to facilitate saliva collection into capillary tubes [152]. The fine and controlled
nature of capillary tubes for collecting minute quantities of saliva is essential for down-
stream analyses requiring sensitivity, such as pathogen detection or the identification of
bioactive compounds [152]. The temporal control offered by this method allows for saliva
collection at specific time points [154], providing insights into dynamic changes in saliva
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composition over the course of feeding and shedding light on how vector-borne pathogens
are transmitted to hosts.

Engineered Biocompatible Constructs: These are artificial materials carefully de-
signed to replicate the structure and properties of the mammalian skin [18,155,156]. The
constructs consist of crosslinked polymer networks with the ability to absorb and retain
substantial amounts of water, imparting a soft, flexible, and gel-like structure that is similar
to host skin [155,157–161]. These characteristics render them a viable alternative for deliv-
ering blood meals in vector-borne pathogen studies, closely mirroring the natural feeding
conditions experienced by vectors in the wild [156]. The integration of engineered human
tissue into these biocompatible constructs has facilitated investigations into the mechanical
characteristics of the skin and the activities of vectors, notably mosquitoes, during feeding
processes [18,155].

Recent advancements in mosquito feeding behavior studies have seen the emergence
of two innovative systems utilizing engineered biocompatible constructs. One system
employs bio-printed vascularized skin mimics designed to replicate natural feeding con-
ditions, establishing a controlled environment for in-depth investigations into mosquito
feeding behavior [18]. This platform demonstrated its capabilities through the successful
evaluation of repellent effects, positioning it as a promising tool for future repellent screen-
ing assays. In parallel, another approach focused on the intricacies of arthropod bite-site
biology. This study utilized tissue engineering techniques to create a Biologic Interfacial
Tissue-Engineered System (BITES) designed to mimic the human dermal microvascular
bed. These engineered constructs, cellularized with specialized cell types, showcased the
potential for detailed analyses of vector–host–pathogen interactions [155]. Both systems
represent significant contributions, expanding the capabilities of mosquito research. While
the bio-printed vascularized skin mimics platform provides a controlled setting to explore
mosquito feeding behavior and repellent efficacy, the BITES platform presents a novel
approach to investigate complex interactions at arthropod bite sites. Together, these in-
novations highlight the transformative potential of engineered systems in advancing the
understanding of vector biology and disease transmission dynamics.

Similar to other artificial feeding systems, the use of engineered biocompatible con-
structs provides an ethical alternative to methods relying on live animals or human volun-
teers [Table 1]. The benefits include the capacity to emulate the native feeding environment
of vectors within an adjustable framework [18]. In contrast to other artificial feeding sys-
tems, engineered biocompatible constructs replicate the mechanical and physical attributes
of human skin, offering a more precise simulation of the innate feeding mechanism [162].
This precision is crucial in studying pathogens transmitted by vectors, as understanding
the natural feeding process is essential in determining the conditions most favorable for
pathogen transmission, providing an accurate and realistic environment for the study of
transmission, infection, and pathogenesis. The strength of bioengineered biocompatible
constructs lies in their ability to function as versatile cell culture platforms, seamlessly
integrating with living cells and tissues [155]. This inherent biocompatibility creates an
optimal environment for the examination of cellular interactions. Engineered biocompatible
constructs can also be tailored to mimic different skin types and conditions [163].

By providing a controlled and reproducible environment, this technique facilitates
the study of host immune responses to vector feeding [164,165]. The utilization of engi-
neered biocompatible constructs also enables investigations into pathogen entry mecha-
nisms [166,167], providing greater control over the feeding process. This control extends
to simulating different skin types and regulating blood flow rates within the gel [18], en-
hancing precision in the study of disease transmission dynamics. Despite their potential
advantages, engineered biocompatible constructs come with notable limitations. This tech-
nique, while coming the closest to accurately simulating the host’s disease manifestation,
may still fall short of capturing all the intricacies and complexities seen in natural systems.
Biocompatible constructs often have a finite lifespan [168], potentially compromising the
longevity of experimental results. Another significant drawback is the substantial cost
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associated with designing, producing, and maintaining such advanced systems [169]. The
successful implementation and interpretation of experiments using these constructs neces-
sitate a high level of technical expertise, further adding to the complexity and potential
challenges in their use.

Table 1. Overview of the advantages and limitations of various vector feeding systems.

Feeding Systems Advantages Limitations References

Animal models

Practicality of use
Physiological and genetic
similarity to humans
Availability
Flexibility to genetic
manipulations

Biological variations between
animals and humans
Ethical considerations
Resource- and cost-intensive
Variability in vector
feeding patterns

[8–10,14,32–46,55,60–
62,64,163–165]

Human challenge studies

Realistic outcomes
Maintenance of temperature
homeostasis
and cues
Controlled environment

Ethical considerations
Variability in disease severity
among individuals
Potential risk to participants

[65,66,71,76,79,80,85–89]

Artificial membrane
feeding

Controlled feeding
Facilitate oral studies and
the collection
of saliva from vectors
Eliminates ethical concerns
Flexibility in blood sources
Easy observation of
vector feeding
Easy to use, readily available,
convenient, and cost-effective
Reproducibility

Limited realism compared to
natural hosts
Variability in vector
feeding behaviors
Challenges in mimicking
specific feeding mechanisms
and conditions
Animal pelt
membrane limitations
Biosafety protocols for
glass feeders
High cost
Need for technical expertise

[23,107,117,118,141–144]

Capillary feeding

Precise control and
standardization
Easy collection of vector saliva
Easy observation of
vector feeding
Eliminates ethical concerns

Limited to certain vectors
Blood volume available is
relatively small compared to a
live host.
Technical complexities
Invasive for mosquitoes

[146,149–154,170,171]

Engineered
biocompatible
constructs

Close simulation of
natural conditions
Eliminates ethical concerns
Biocompatibility with living
cells and tissues
Controlled and reproducible
environment
Flexibility to mimic different
skin types
Easy collection of vector
salivary components

Limited realism
Limited lifespan due
to degradation
High cost
Need for technical expertise

[18,155,156,162–169]

4. Application of Artificial Feeding Systems

Vector competence studies: The evaluation of a vector’s ability to competently trans-
mit a pathogen to a host is a multifaceted process influenced by various factors, including
the vector’s physiological responses to the ingested pathogen [172,173]. Artificial feed-
ing systems play a crucial role in this evaluation, allowing for assessing infection rates,
replication kinetics, and dissemination patterns within vectors by introducing specific
pathogen quantities into artificial blood meals [174,175]. The adaptable nature of artificial
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feeding setups facilitates the examination of factors influencing vector competence, such
as temperature and nutritional influences [176–178]. These systems serve as a valuable
platform for assessing the efficacy of novel control strategies, including vector control
measures and vaccinations [179]. Continuously evolving and improving, these methods
significantly contribute to the understanding of vector competence intricacies, informing
strategies for combating VBDs.

In studies focusing on pathogen acquisition, artificial feeding systems have been
instrumental in investigating the complex mechanisms of vector–pathogen interactions.
They provide a means to explore vector susceptibility factors, including immunological
responses, environmental influences, and vector genetics, all of which impact the vector’s
ability to acquire and transmit pathogens [180,181]. Artificial feeding systems also enable
the precise control of vector infection status, facilitating the evaluation of various factors’
effects on transmission rates [182]. Such studies are pivotal for understanding the factors
driving VBD transmission, including the effects of pathogen load and the duration of the
infectious period [23].

Drug and Vaccine Development: Artificial feeding methods have emerged as a
promising frontier in the development of drugs and vaccines against VBDs. This innovative
approach provides a controlled platform for evaluating the efficacy of pharmaceutical
compounds and vaccine candidates within a vector–host–pathogen context [183–185].
Live attenuated vaccine candidates such as DDVax are administered to mosquito vectors
using artificial feeding systems, mimicking their natural feeding behaviors [185]. The
setup facilitates investigations into the vaccines’ effects on pathogen transmission and
vector competence.

Artificial feeding presents significant opportunities in evaluating novel drug can-
didates targeting VBDs. Vectors can be exposed to controlled doses of antiparasitic or
antiviral compounds via artificial blood meals, enabling the assessment of drug efficacy
in reducing pathogen load within vectors [186]. By identifying compounds that impede
pathogen development within vectors, these methods hold the potential to disrupt the
transmission cycle of VBDs. As artificial feeding techniques continue to advance, they
have the capacity to expedite the discovery of novel interventions against VBDs, bolstering
global efforts to combat these formidable health challenges.

5. Future Directions for Artificial Feeding Systems

Advancements in Biomimicry: Recent advancements in biomimicry herald a new era
of precision and relevance in vector-borne disease studies, offering highly efficient artificial
feeding systems that closely emulate natural feeding mechanisms. Innovative biomimetic
surfaces have been developed, closely mimicking the complex topography and physiologi-
cal cues of natural host tissues [18,155]. By replicating the texture, chemical composition,
and even temperature of host skin, these surfaces create a more realistic feeding experience
for vectors [156]. This approach is hypothesized to induce immunological responses in
both vectors and biomimetic artificial feeding systems closely resembling those occurring
in natural feeding environments. Advancements in biomimicry extend beyond surface
properties, potentially incorporating factors like pH gradients, mechanical resistance, and
localized temperature variations to create feeding environments more similar to natural
conditions. Such biomimetic approaches hold the potential to unravel unique aspects of
vector biology and pathogen transmission that have proven elusive using other methods.

Microfluidics and Nanotechnology: The integration of microfluidics and nanotech-
nology marks a transformative paradigm shift in artificial feeding systems for vector-borne
disease studies. These cutting-edge technologies provide the ability to engineer microenvi-
ronments mirroring host conditions with unprecedented precision. Microfluidic devices
enable the controlled delivery of feeding solutions [184], facilitating investigations into
vector–pathogen interactions at a cellular and molecular scale [187]. By reproducing dy-
namic aspects of blood feeding, such as shear forces and blood pressure, these devices
offer a more accurate representation of natural feeding conditions. Nanotechnology further
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enhances these systems, enabling the design of surfaces with tailored properties [188]
that influence vector behaviors and physiological responses. Nanoscale textures, chemical
gradients, and controlled release mechanisms can be harnessed to manipulate vector in-
teractions with pathogens and feeding solutions. This combination of microfluidics and
nanotechnology holds the potential to dissect the minute mechanisms governing pathogen
acquisition and transmission, thereby opening up the potential to explore new dimensions
of VBDs.

Application of Machine Learning and Data Integration: Incorporating machine
learning and data integration methodologies provides a promising avenue to harness the
vast potential of artificial feeding data in VBD research. Given the complexity of vector–
pathogen interactions and the multifaceted nature of the data generated by artificial feeding
systems, innovative approaches are crucial for extracting meaningful insights. Machine
learning algorithms excel at identifying patterns and correlations within intricate datasets,
revealing hidden relationships that conventional analyses of host–vector feeding might
overlook [189,190]. Integrating artificial feeding data with genomics, host immunity pro-
files, and environmental variables allows for the deciphering of the intricate networks
governing vector behaviors and pathogen dynamics, enhancing both understanding and
predictive capabilities. The synergy between artificial intelligence and artificial feeding
systems establishes a positive feedback loop: feeding data refines machine learning models,
deepening insights into vector behaviors and pathogen dynamics [190,191]. Data-driven
methodologies streamline experimental setups, bolstering research efficiency and repro-
ducibility. As the fields of machine learning and data integration continue to evolve, they
present an opportunity to maximize the utility of artificial feeding systems across diverse
research domains. These interdisciplinary approaches will propel artificial feeding exper-
iments into a trajectory of data-driven discovery, expediting the development of novel
interventions and strategies to mitigate the burden of VBDs.

6. Conclusions

In the realm of vector-borne disease studies, artificial feeding systems have evolved
into indispensable tools for examining the feeding behaviors, host preferences, and trans-
mission dynamics of pathogen-carrying vectors. Reducing the dependence on live hosts not
only minimizes ethical concerns but also mitigates potential risks associated with working
with infected animals. The continuous improvement and refinement of these systems will
enhance studies aimed at combating VBDs, contributing to the safeguarding of public
health on a global scale.
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