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Simple Summary: Understanding seed germination requirements and storage methods is important
for successful conservation and restoration of aquatic vegetation. Main research issues are Hy-
drocharis dubia seed germination requirements and appropriate seed storage methods. It was found
that high seed clustering density and light had positive effects on seed germination, while burial had
negative effects on seed germination. Oxygen, water level and substrate had no significant effect on
seed germination. Seed germination, water content and respiration rate were significantly affected by
storage method. Seed germination was highest under the Ambient Water Temperature-Wet storage
condition, followed by 4 ◦C-Wet and then 4 ◦C-Dry. Seeds did not germinate under the storage
conditions of Ambient air temperature-Wet and Ambient air temperature-Dry.

Abstract: Understanding of seed germination requirements and storage methods is very important
to successfully conserve and restore aquatic vegetation. The main question addressed by the re-
search was germination requirements and suitable seed storage methods of Hydrocharis dubia seeds.
Furthermore, the water content and respiration rate of H. dubia seeds were studied under different
storage conditions. The study found that light and high seed clustering density had a positive effect
on germination, while burial had a negative effect. Germination percentages were 60.67 ± 6.11%
and 28.40 ± 6.79% in light and dark conditions, respectively. Under clustering densities of 1 and 50,
germination percentages were 6.00 ± 2.00% and 59.33 ± 0.67%, respectively. Germination percentages
were 50.40 ± 5.00%, 3.20 ± 3.20%, and 0.80 ± 0.80% at depths of 0, 2, and 3 cm, respectively. Oxygen,
water level, and substratum had no significant effect on seed germination. Storage method had
a significant effect on seed germination, moisture content, and respiration rate. The germination
percentages were 64.00 ± 1.67%, 85.20 ± 5.04%, and 92.80 ± 4.27% under the storage conditions
of 4 ◦C-Dry, 4 ◦C-Wet, and Ambient water temperature-Wet for 2 years, respectively. The seeds
had no germination under the storage conditions of Ambient air temperature-Wet and Ambient air
temperature-Dry. Overall, the study indicates that seed germination of H. dubia is restricted by light,
burial depth, and seed clustering density. Additionally, it was found that H. dubia seeds can be stored
in wet environmental conditions at ambient water temperature, similar to seed banks. Specifically,
the seeds can be stored in sand and submerged underwater at ambient water temperatures ranging
from 4 ◦C to 25 ◦C. This study will help with the conservation and restoration of aquatic plants, such
as H. dubia.
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1. Introduction

Many aquatic plants have been threatened worldwide by adverse changes over the last
few decades [1]. As primary producers, aquatic plants play a very important role in water
ecosystems. Not only do they provide food and habitat for many other aquatic organisms,
they also improve water quality by reducing nutrient availability [2]. Accordingly, the
protection and restoration of aquatic plants is imperative. Seeds of aquatic plants are
necessary for the restoration of the declined population, and re-seeding is an effective
method to restore the disappeared vegetation [3]. Furthermore, regeneration from seeds
is important for the diversity and composition of plant communities [4]. Consequently,
understanding of seed storage methods and germination requirements is very important to
conserve them successfully and to restore vegetation.

Many studies have indicated that temperature, substratum, oxygen concentration,
light availability, burial depth, water depth, and seed clustering density may be important
limiting factors for seed germination of aquatic macrophytes [5–9]. Numerous studies
have demonstrated that light is necessary for high germination rates in most freshwater
species [10–12]. In eutrophic lakes, oxygen level in sediment is very low, and oxygen is an
important factor for seed germination of aquatic macrophytes [7,13]. Anaerobic conditions
proved to accelerate seed germination of Vallisneria natans [14] and had no significant effect
on seed germination of Ottelia alismoides [15]. Burial inhibits seed germination of many
aquatic plants [6,9]. Sediment type often influences seed germination rate in aquatic plant
seed germination [9,16]. Water level is also an important trigger for seed germination of
some aquatic plants [13,17]. Density-dependent clustering effects on seed germination both
increase and decrease germination when seeds are densely clustered [18], and high seed
clustering density can enhance the germination of O. alismoides [19]. These studies indicate
that light, oxygen availability, water level, burial depth, substrate, and clustering density
can be important determinants of the seed germination of aquatic plants.

An effective seed storage method of aquatic plants is still under investigation. Previous
studies have indicated that temperature, relative humidity, and oxygen of the storage
conditions should be considered for seed storage [6]. Cold storage conditions led to a
higher germination percentage for numerous aquatic species [20]. At low temperature
(4 ◦C) storage conditions, dry storage conditions are more favorable than wet storage
conditions for seeds of Carex nebrascensis, O. acuminata, V. natans, Potamogeton wrightii,
Stuckenia pectinata, Myriophyllum balladoniense, and Triglochin linearis, while seeds of Juncus
balticus, J. ensifolius, J. tenuis, Alisma gramineum, O. alismoides, and P. lucens had higher seed
vigor after wet storage [6,21]. For seeds of Zostera marina, there was a negative relationship
between seed germination and oxygen concentration [22]. Anaerobic storage condition was
an effective storage condition for three species (O. acuminata, O. alismoides and V. natans) of
Hydrocharitaceae [6].

The Hydrocharis genus acts as edificators and subedificators in freshwater vegetation
communities. Furthermore, it is considered an excellent bioremediator due to its ability to
bioaccumulate heavy metals on its roots [23]. Research on the genus has primarily focused
on plant cytobiology [24], classification [25], and phylogeny [26–28]. Studies have also
been conducted on the reproductive [29,30] and seed morphology [31,32] of the genus.
Previous studies have shown that the ripe fruit of H. laevigata, one species of Hydrocharis
genus, can release a mucilaginous mass of approximately 100 seeds. For aquatic plants,
sexual reproduction might be a luxury investment in most cases, responsible for population
restoration from extreme events and primarily working on an evolutionary time scale.
However, research on Hydrocharis genus seed germination and storage is insufficient.

As a floating-leaved aquatic plant, H. dubia could be used as food for animals, as a
vegetable, as green manure, or for medicine. It has medicinal properties for alleviating
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heat and dampness. H. dubia can reproduce through clonal growth and seed germination.
The seeds can be easily collected. This makes seed banking conservation an effective way
to protect them and re-seeding a particularly attractive method for restoration. However,
there is little information about the factors influencing seed germination and the effective
storage conditions for maintaining seed vigor. Understanding of H. dubia germination
requirements and seed storage method are vital for its reproduction and conservation. The
hypotheses of this research were as follows: (1) light, oxygen, water level, burial depth,
substratum, and seed clustering density are important limiting factors for seed germination
of H. dubia, and (2) the most appropriate method of storage for H. dubia seeds is one that is
similar to the storage conditions in the seed bank. This study extends previous research
on seed germination and seed storage of aquatic plants by filling in gaps in knowledge
regarding the environmental conditions required for seed germination and the suitable
storage conditions of floating-leaved plants like H. dubia.

2. Materials and Methods
2.1. Materials

The germination cycle of the H. dubia plant is illustrated with a timeline in Figure 1.
The fruiting period of H. dubia occurs between August and October in China; it has high
seed productivity and can produce a large amount of seeds every year. The fruit of H.
dubia has six incompletely formed locules with superficial placentation [33] and contains
about 200–400 seeds. The number of seeds in the fruit was measured as follows: in October
2014, ten H. dubia fruits were randomly collected from the Wuhan Botanical Garden and
placed in ten mesh bags (10 cm in length and 8 cm in width) with a hole size of 0.5 mm,
respectively. The mesh bags were placed inside a plastic bucket (25 cm diameter and 20 cm
height) that was filled with water. The number of seeds in each fruit was then counted after
they were dispersed. The seeds are very small (approximately 1.4 mm long and 0.6 mm
wide).
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Figure 1. Germination cycle of Hydrocharis dubia plant with timeline.

2.2. Seed Collection

Mature fruits of H. dubia were collected from October to November 2013 and 2014
from Wuhan Botanical Garden, Chinese Academy of Sciences (30◦32′ N, 114◦25′ E). The
seeds were removed from the fruits and washed with distilled water. Mature seeds (with
brown testa color) were used in this study.
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2.3. Germination Experiments

The germination experiments were conducted in April 2015 using the seeds collected
in 2014. We utilized the single-factor design to study the effects of light availability, oxygen
availability, water level, burial depth, substratum types, and clustering density on seed
germination of H. dubia (Figure 2). All the germination experiments were conducted at
25 ◦C using a single factor design with 5 replicates and 50 seeds per replicate. Germination
was considered to have occurred when the radical emerged from the seed coat. The
number of germinated seeds was recorded daily, and the test was concluded when no new
germination was observed for seven consecutive days.
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Figure 2. Schematic representation of seed germination experiment design.

2.3.1. Effect of Light Availability on Germination

Seeds were placed in water using plastic culture dishes (diameter: 1 cm, height:
1 cm). The experiment was conducted under conditions where the oxygen concentration
was in equilibrium between water and the atmosphere. Distilled water was used as the
substratum. Dark conditions (control) were created by wrapping dishes with a double
layer of aluminum foil. The control dishes were kept in complete darkness, while the
light treatment dishes were exposed to a 12 h photoperiod with a photon flux density of
20 ± 5 µmol m−2 s−1 provided by warm white fluorescent lamps. Germination under dark
conditions was checked using a safe lamp in the dark room.

2.3.2. Effect of Oxygen Availability on Germination

Glass tubes (diameter: 58 cm, height: 38 cm) were used in this experiment. A total of
20 mL of distilled water was used as the substratum. To make the low-oxygen treatment,
20 mL of distilled water flushed with N2 gas for 15 min was added in the tubes, and the
tubes were bubbled for 2 min with 800 mL min−1 of N2 gas before being sealed with rubber
stoppers. The control tubes were opened for ventilation, and distilled water was added
every other day to maintain the water level. The experiment was conducted under a 12 h
photoperiod. The seeds were checked for germination through the transparent wall of
the vials.

2.3.3. Effect of Water Level on Germination

Seeds were incubated in cylindrical glass tubes (25 cm diameter and 40 cm height) at
seven different water levels (0, 1, 5, 10, 20, 30, and 40 cm). Water levels of 0 cm were the
control group. For the 0 cm water level, two layers of filter paper moistened with distilled
water were placed in the bottom of the tube. The experiment was conducted under a 12 h
photoperiod with oxygen concentration maintained in equilibrium between water and the
atmosphere. Distilled water was added every day to maintain the designed water levels.
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2.3.4. Effect of Burial Depth on Germination

Five burial depths (0, 1, 2, 3, and 4 cm) were designed using cylindrical plastic
containers (5 cm diameter and 8 cm height). The control group had burial depths of 0 cm.
The experiment used pond sediment that had been sterilized at 120 ◦C for 30 min and was
conducted under a 12 h photoperiod. Distilled water was added every day to maintain the
water level at 1 cm above the substratum surface.

2.3.5. Effect of Substratum on Germination

Four germination substrata (water, well-washed sand from the Yangtze River, mud
from a pond in Wuhan Botanical Garden, and a mixture of sand and mud in equal volume
proportions) were designed in the substratum experiment. The control group was the
water substratum. The experiment was carried out using a plastic board with 48 holes, with
0.5 cm height substratum and 0.5 cm height distilled water in each hole. The experiment was
conducted under a 12 h photoperiod, and the seeds were placed on the substrate surface.

2.3.6. Effect of Clustering Density on Germination

The experiment was conducted using glass petri dishes with a diameter of 9 cm. Seeds
were carefully arranged in 2 sets of cluster densities with 5 replicates: (a) all 50 seeds
were mixed together (control); (b) seeds were separated from each other (50 seeds per
dish). Seeds were placed on filter paper moistened with distilled water in petri dishes. The
experiment was conducted with a 12 h photoperiod, and the oxygen concentration was
maintained in equilibrium between the water and the atmosphere.

2.4. Storage Experiments

The seeds collected in 2013 were used in the storage experiment. The detail treatments
of storage conditions were referenced by [6]. The storage treatments comprised a factorial
combination of two environments and two temperatures (Figure 3, Table 1). The two
storage environments comprised (i) a paper bag (dry) and (ii) water that was changed
weekly (wet). The two storage temperatures comprised (i) low temperature (4 ◦C) to
simulate the winter water temperature, achieved by using a refrigerator, and (ii) ambient air
temperature to simulate the changes in a full year’s air temperature (ambient) (Figure A1).
In addition, the control treatment was used to simulate natural conditions in a lake with
the ambient water temperature ranging from 4 ◦C to 25 ◦C. We proposed a storage method
for aquatic plants that is similar to a seed bank. This is an innovative approach to storing
aquatic plants. Specifically, the seeds were placed in mesh bags that measured 10 cm in
length and 8 cm in width. The hole size of the mesh bags was 0.5 mm. Mesh bags were
placed at the bottom of plastic buckets measuring 25 cm in diameter and 20 cm in height,
which were then filled with sand. Plastic buckets were submerged in a pool of water that
measured 60 cm in length, 40 cm in width, and 80 cm in depth. Relative humidity was
measured using the hygrometer (Deli 9013).
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Table 1. Seed storage treatments.

Abbreviation Temperature Relative
Humidity Storage Media Seed Status Storage Place Storage Time

4 ◦C-Dry 4 ◦C 55% paper bag dry refrigerator 2 years
4 ◦C-Wet 4 ◦C 100% water wet refrigerator 2 years
AA-Dry ambient air temperature a 75% paper bag dry laboratory room 2 years
AA-Wet ambient air temperature 100% water wet laboratory room 2 years

AW-Wet ambient water
temperature b 100% wet sand wet pond 2 years

a Ambient air temperature range was between −6 ◦C and 37 ◦C. Figure A1 provides detailed temperature
information. b Ambient water temperature was between 4 ◦C and 25 ◦C.

In order to explore the optimum storage method, seeds collected in 2013 were used to
test germination in September 2015. A total of 50 seeds (5 replicates) in each storage condi-
tion were placed in plastic culture dishes (diameter: 1 cm, height: 1 cm). In order to keep
the water level at 1 cm, distilled water was added every day. The germination temperature
was 25 ◦C and the light period was 12 h. The photo irradiance was about 25 µmol m−2 s−1

provided by warm white fluorescent lamps (PAR; Li-Cor underwater sensor connected to a
Li-Cor LI-1400 data logger) (Li-COR Inc., Lincoln, NE, USA). The oxygen concentration
was maintained in equilibrium between the water and the atmosphere.

The seed moisture content was determined according to Zhao et al. [34]. In brief,
0.05 g seeds (with five replicates) were placed in a glass culture dish and weighed together.
Then they were oven-dried at 125 ◦C for 2 h. After cooling for 24 h in a desiccator, seeds
were weighed several times until a constant final seed weight was determined. The seed
moisture content was calculated according to the percentage of fresh weight.

Seed respiration rate was determined at 25 ◦C using the O2 micro-electrode (Unisense,
Aarhus, Denmark). The respiratory rate was corrected for oxygen consumption via the
electrode, and the results were expressed as µmol O2 h−1 mg−1 FW.

3. Data Analysis

Data were analyzed using SPSS 22.0 software. The data were arcsine- or square-root
transformed prior to analysis when necessary. The t-test was used to analyze the light,
oxygen, or clustering effects. A one-way ANOVA was used to analyze the effects of water
level, buried depth, and substrate on seed germination, as well as the impact of storage
conditions on the germination, water content, and respiration of H. dubia seeds. Multiple
comparisons were made using Tukey’s test. The confidence limits were set at 95%.

4. Results
4.1. Germination Requirement in Seeds of H. dubia

Light had a significant effect on the seed germination of H. dubia (Figure 4A, Table 2).
The germination rate was 60.67 ± 6.11% under light, which was significantly higher than
that under dark (28.40 ± 6.79%).

Oxygen availability had no significant effects on the seed germination of H. dubia
(Figure 4B, Table 2). The results show that the germination rate was 69.50 ± 6.18% and
76.5 ± 3.59% under high and low oxygen conditions, respectively.

Water level had no significant effects on the seed germination of H. dubia (Figure 4C, Ta-
ble 2). The germination rate was 47.33 ± 4.67%, 58.67 ± 2.91%, 54.67 ± 4.37%,
51.33 ± 1.76%, 58.00 ± 4.16%, 47.33 ± 4.81%, and 52.00 ± 0.00% under underwater condi-
tions at depths of 0, 1, 5, 10, 20, 30, and 40 cm, respectively.

Burial depth had a significant effect on seed germination (Figure 4D, Table 2). Germi-
nation percentage for buried seeds was significantly lower than that for non-buried ones.
The germination percentage was 50.4% at a 0 cm burial depth but significantly decreased
to 32% and 0.8% at depths of 1 cm and 2 cm. Once the burial depth exceeded 3 cm, seeds
failed to germinate.
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The natural substrata had no significant effects on the seed germination of H. dubia
(Figure 4E, Table 2). The germination rate was 47.20 ± 1.02%, 47.20 ± 1.02%, 50.40 ± 4.96%,
and 54.67 ± 4.37% under substrata conditions of water, sand, mud, and a mixture of sand
and mud in equal volume proportions, respectively.

Clustering density had a significant effect on the seed germination of H. dubia
(Figure 4F, Table 2). Higher seed clustering density strongly increased the seed germi-
nation of H. dubia. The percentage of germination in the condition where the seeds were
scattered in the dish was significantly lower than the seed germination percentage in the
condition where 50 seeds were clustered together. The germination percentage was only
6.0% when the seeds were dispersed in the dish, while it was 59.3% at the density of 50
seeds per cluster.

Table 2. Analysis of variance for effects of light, oxygen, water level, burial depth, and clustering
density on germination in seeds of Hydrocharis dubia.

Source t-Value a or F-Value b p

Light availability 4.696 ** 0.009
Oxygen availability −0.979 0.366

Water level 1.601 0.219
Burial depth 69.102 ** <0.001
Substratum 0.984 0.428

Clustering density −25.298 ** <0.001
a t-value in t-test. b F-value in one-way ANOVA. ** Significant p < 0.01.
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Table 2. Analysis of variance for effects of light, oxygen, water level, burial depth, and clustering 
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4.2. Suitable Storage Method in Seeds of H. dubia

The germination percentages were 64.00 ± 1.67%, 85.20 ± 5.04%, and 92.80 ± 4.27%
under the storage conditions of 4 ◦C—Dry, 4 ◦C—Water, and Ambient water temperature—
Wet, respectively (Table 3). The seeds in the 4 ◦C storage environment (4 ◦C—Wet and
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4 ◦C—Dry) had lower germination than that in Ambient water temperature—Wet storage
treatments (Table 4, Figure A2). In the 4 ◦C storage environment, the germination in the wet
storage condition was significantly higher than that in the dry storage condition. The seeds
did not germinate under the Ambient air temperature—Dry storage environment. Seeds in the
Ambient air temperature—Wet storage environment rotted before the germination experiment.

Table 3. Germination, respiration rate and moisture content in seeds of Hydrocharis dubia for 2 years
under different storage conditions.

Storage Conditions Germination
(%)

Moisture Content
(% FW)

Respiration Rate
(µmol O2 h−1 mg−1 FW)

4 ◦C-Dry 64.0 ± 1.7 c 13.80 ± 0.62 b 13.55 ± 1.36 ab

4 ◦C-Wet 85.2 ± 5.1 b 35.44 ± 0.50 a 11.09 ± 0.51 ab

AA-Dry 0 ± 0 d 11.51 ± 0.57 b 7.36 ± 2.25 b

AA-Wet - - -
AW-Wet 92.8 ± 4.3 a 32.49 ± 1.13 a 15.25 ± 2.10 a

Data represent the mean ± SE (n = 5). Data with different letters are significantly different (p = 0.05). Seeds in
Ambient air temperature—Wet storage environment rotted before the germination experiment.

The water content of the seeds was 13.80 ± 0.62%, 35.44 ± 0.50%, 11.51 ± 0.57%,
and 32.49 ± 1.13% under the storage conditions of 4 ◦C—Dry, 4 ◦C—Wet, Ambient air
temperature—Dry and Ambient water temperature—Wet, respectively. Seed moisture
content in dry storage treatments (4 ◦C—Dry and Ambient air temperature—Dry) was
significantly lower than that in Ambient water temperature—Wet storage treatments. There
was no significant difference in seed moisture between the two different conditions of
4 ◦C—Wet and Ambient water temperature—Wet.

Table 4. Analysis of variance for germination, respiration rate, and moisture content in seeds of
Hydrocharis dubia.

Parameters F-Value a p

Germination 263.499 ** <0.001
Moisture content 201.162 ** <0.001
Respiration rate 11.85 ** <0.001

a F-value in one-way ANOVA. ** Significant p < 0.01.

The respiration rate of the seeds was 13.55 ± 1.36, 11.09 ± 0.51, 7.36 ± 2.25, and
15.25 ± 2.10 µmol O2 h−1 mg−1 FW under the storage conditions of 4 ◦C—Dry, 4 ◦C—Wet,
Ambient air temperature—Dry, and Ambient water temperature—Wet, respectively. Seed
respiration rate in Ambient air temperature—Dry storage treatments was significantly
lower than that in Ambient water temperature—Wet.

5. Discussion

Light is the greatest ecological factor influencing the emergence of the seed bank. Our
results show that light promoted the seed germination of H. dubia. Similar results were
reported for seeds of O. alismoides [15,19]. Seeds of H. dubia are relatively small. Very small
seeds tend to have an absolute germination requirement for light [35,36]. Light is a crucial
environmental cue determining seed germination in some species. The red (R) and far-red
light photoreceptor phytochrome regulates GA biosynthesis in germinating lettuce and
Arabidopsis seeds. This effect of light is, at least in part, targeted to mRNA abundance
of GA 3-oxidase, which catalyzes the final biosynthetic step to produce bioactive gas [37].
Decrease in transparency is often caused by phytoplankton in eutrophic waters [38]. Thus,
the reduced benthic light not penetrating far into the sediment might be a limiting factor
for seed germination of H. dubia.

Oxygen is required for the seed germination of many aquatic species [39]. Our results
show that oxygen availability had no significant effects on H. dubia seed germination. This
is consistent with the results from studies on seeds of O. alismoides [15], V. natans [14], Z.
marina [22], and Z. capricorni [40]. Thus, sediment anoxia is not a limiting factor for H. dubia
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seed germination and population recruitment [15]. Eutrophic lake sediment is usually
under the anoxia condition [41]. The mud at the bottom of eutrophic waters tends to become
anoxic due to the accumulation of organic matter. The decomposition of organic matter in
sediment consumes a significant amount of oxygen, leading to sediment anoxia [42]. Seed
germination could be inhibited in such a environment. Seeds of Trapella sinensis have an
almost absolute requirement for aerobic conditions to germinate [43]. Under low oxygen
conditions, germination of H. dubia was not significantly inhibited. This may also be one of
the reasons why H. dubia can live in eutrophic waters.

The seed germination requirements of submerged species in the water level condition
are not fully understood [44,45]. Our results show that water level had no significant effects
on seed germination of H. dubia. Similar results were reported for seeds of M. spicatum [46],
P. natans, and P. perfoliatus [47]. Water level may influence the seed germination by affect-
ing levels of available light and oxygen [46,48]. The submerged treatment significantly
enhanced the seed germination of P. malaianus [46] while inhibiting the germination of
Hottonia palustris [49] and H. inflate [50]. Typically, water level may influence levels of
available oxygen and light, leading to different germination and dormancy responses of
seeds. For seeds of H. dubia, light, not oxygen availability, was the limited factor. This
demonstrated that the effect of water level on H. dubia seed germination had no relationship
with oxygen availability, and seeds could obtain enough light to germinate even when they
were submerged at a 40 cm water level. In this study, the highest water level was designed
to be only 40 cm due to limitations in the experimental facility. This may not be sufficient
to produce a substantial difference in available light.

Our results show that burial greatly inhibited the seed germination of H. dubia. These
results are consistent with the results for seeds of V. natans [14], O. alismoides [15], M.
spicatum [51], M. spicatum, and P. malaianus [46]. Light was the limited factor for seed germi-
nation of H. dubia. Studies on O. alismoides seeds have shown that stirring up the sediment
slightly to bring seeds to the surface is beneficial to seed germination [15]. The limiting
factors for seed germination of H. dubia are nearly the same with O. alismoides. This slight
stirring up sediment method might also be used for the restoration of H. dubia. The depth
at which the seeds of H. dubia are buried is a limiting factor for their germination. A light
gradient with depth seems to be responsible for the effect of burial on seed germination [52].
Our results provide insight into germination strategies in response to species regeneration
and seed bank formation. Strict or conditional primary light requirements for germination,
low germination at constant temperatures, and burial inhibition all promote the formation
of a persistent seed bank.

The effects of various habitats on seed germination may be due to the fluctuations in
temperature and redox potentials [53]. Our results show that substratum had no significant
effects on seed germination of H. dubia. This result is consistent with previous studies on
seeds of V. natans [14]. However, the mud substratum increased the seed germination of O.
alismoides [15].The germination temperature in our substratum experiment was constant.
Additionally, oxygen was not the limited factor for H. dubia seed germination. When
undertaking restoration, nutrient conditions should be taken into consideration. This result
indicates that H. dubia seeds can germinate under various habitats and nutrients might not
be the limiting factor for seed germination.

Previous studies showed negative or no response to high seed densities in some
species [54]. In our study, high seed clustering density increased the seed germination
of H. dubia. This is consistent with previous studies showing that the response of seed
germination to seed clustering in Hydrocharitaceae is mostly positive [51]. Similar results
were found in seeds of O. alismoides [19]. A negative response to high seed densities should
reduce the likelihood of intense intraspecific competition. Baskin et al. [55] reported that
ethylene can significantly stimulate the seed germination of Schoenoplectus hallii (Cyper-
aceae), a rare summer annual of occasionally flooded sites. Yin et al. [19] supposed that the
seeds of O. alismoides may produce ethylene, which then stimulates germination. Moreover,
positive response to seed clustering density may be related to their reproductive strategy.
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As a consequence of a gelatinous matter in the fruit of H. dubia, the seeds are clustered. The
clustering effect ensures that once the clustered seeds land in suitable conditions, most of
them will germinate. Germinating seeds of some species release substances that inhibit
the germination of other seeds [18]. Thus, they produce a patch area of single species and
occupy the new habitat rapidly.

The cardinal diagnostic feature of recalcitrant seeds is that they are sensitive to des-
iccation and cannot be dried without damage [56,57]. In our study, the moisture content
of H. dubia seeds under dry storage conditions (4 ◦C—Dry and Ambient air temperature—
Dry) was significantly lower than that in the wet environment (4 ◦C—Wet and Ambient
water temperature—Wet). This indicated that H. dubia seeds easily lose water under dry
stress. The seed germination of H. dubia seeds under dry storage conditions was signifi-
cantly lower than that in the wet environment. This indicated that H. dubia seed viability
decreases in a dry environment. Relative humidity affected the moisture content of the
seeds, which in turn impacted their vigor [58]. Desiccation-induced changes in biochemical
and physiological properties commonly cause the loss of H. dubia seed viability [34]. Our
results show that the H. dubia seed respiration rate under Ambient water temperature—Wet
environment was significantly higher than that under Ambient air temperature—Dry envi-
ronment during seed germination. In ex situ germplasm protection, recalcitrant seeds pose
serious challenges, as the seeds are intolerant to desiccation and sensitive to freezing [59].
In our study, the germination of H. dubia seed under Ambient water temperature—Wet
environment was higher than other storage treatments, staying at 92.8% even after 2 years
of storage. Considering the aquatic habitats of H. dubia, with its seeds being shed into
very moist environments, we conclude that the seeds can be stored under Ambient water
temperature—Wet environment to maintain seed viability in 2 years.

6. Conclusions and Prospects

The study shows that the germination of H. dubia seeds is affected by light, burial
depth, and clustering density. Seed germination is significantly promoted by light and high
clustering seed density, while burial significantly inhibits it. Oxygen concentration, water
depth, and germination substrate do not significantly affect H. dubia seed germination.

Regarding the optimal storage method for H. dubia seeds, our findings indicate that
seeds can maintain high viability when stored in environmental conditions similar to those
found in seed banks. In this method of storage, the seeds are submerged at the bottom of a
sand-filled container at ambient temperatures ranging from 4 ◦C to 25 ◦C.

Our study has shown that H. dubia seed germination is significantly influenced by
light, burial depth, and clustering density. Therefore, it is important to investigate the
mechanism of seed germination by examining the relationship between photochrome
and seed germination, as well as the substances that promote seed germination under
high clustering density conditions in the future. Additionally, we observed the highest
germination and respiration rates in H. dubia seeds under ambient water temperature wet
storage conditions. Therefore, future studies could explore the maintenance mechanism of
seed viability in H. dubia by examining changes in enzyme activity during respiration.
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