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Abstract: Robotic assembly lines are widely applied to mass production because of their adaptability
and versatility. As we know, using robots will lead to energy-consumption and pollution problems,
which has been a hot-button topic in recent years. In this paper, we consider an assembly line
balancing problem with minimizing the number of workstations as the primary objective and
minimizing energy consumption as the secondary objective. Further, we propose a novel mixed
integer linear programming (MILP) model considering a realistic production process design—cross-
station task, which is an important contribution of our paper. The “cross-station task” design has
already been applied to practice but rarely studied academically in type-1 RALBP. A simulated
annealing algorithm is developed, which incorporates a restart mechanism and an improvement
strategy. Computational tests demonstrate that the proposed algorithm is superior to two other classic
algorithms, which are the particle swarm algorithm and late acceptance hill-climbing algorithm.

Keywords: robotic assembly line balancing; energy consumption; cross-station task; mixed integer
liner programming; simulated annealing

1. Introduction

Assembly lines are widely utilized in mass production, such as automobiles and house-
hold appliances. Robots have gained appeal with line designers as a result of advances
in manufacturing technology and the quest for production efficiency. Assembly line with
robots is referred to as the robotic assembly line. Compared with human workers, robots
can process tasks quickly and accurately without having to worry about undue fatigue.
Further, a robot with multiple arms is also more adaptable and capable of processing a
variety of tasks [1]. However, the utilization of robots will consume energy and create
pollution problems. Fysikopoulos et al. [2] pointed out that approximately 9–12% of the
cost of manufacturing a car is spent on energy, and for every 20% reduction in energy
consumption, the final manufacturing cost will drop by roughly 2–2.4%. Therefore, re-
ducing energy consumption plays a vital role in protecting the environment and boosting
business competitiveness.

The assembly line balancing problem (ALBP) was first raised by Bryton [3], and refers
to assigning tasks to workstations to achieve the optimization objective. The ALBP can
be divided into four types according to different inputs and objectives, i.e., minimizing
the number of workstations with a given cycle time is called type-1 ALBP. Minimizing
the cycle time given the number of workstations is called type-2 ALBP. If the number of
workstations and cycle time are unknown simultaneously, maximizing the line efficiency is
labeled type-E ALBP. Aiming to find a feasible balancing solution when both are given is
type-F ALBP.

The ALBP with robots is called the robotic assembly line balancing problem (RALBP),
which was first proposed by Rubinovitz and Bukchin [4], and is a significant problem in the
industrial sector. Since different types of robots have different processing task times and
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energy consumption per unit of time, the allocation of robots also needs to be considered
in RALBP. In this paper, we consider minimizing the number of workstations with a
given cycle time, i.e., type-1 RALBP, to be the primary objective and minimizing energy
consumption based on the optimal number of workstations to be the secondary objective.
Further, we introduce the “cross-station task” design, which is quite popular in practice
but is rarely considered in academic settings [5], to improve production efficiency in the
RALBP, and propose a novel mixed integer linear mathematical model for this problem.
A simulated annealing algorithm encapsulating a restart mechanism and an improvement
rule are developed to solve the problem.

The type-1 ALBP has been widely studied in the literature. Kilincci [6] presented
a heuristic algorithm based on the Petri net approach to solve the type-1 simple ALBP.
Manavizadeh et al. [7] solved a U-shaped balancing type-1 problem with different types
of workers and designed an alert system based on the optimal number of stations to bal-
ance workload. A simulated annealing algorithm (SA) was used to solve this problem.
Li et al. [8] investigated 14 meta-heuristics for type-1 two-sided ALBP and two new decod-
ing schemes with a reduced search space developed. Comprehensive experiments have
shown that the improved iterated greedy algorithm is the most efficient in solving the
benchmark problems. Li et al. [9] investigated type-1 assembly line balancing considering
uncertain task time. An algorithm based on the branch and bound remember algorithm
was developed to solve this problem, and the effectiveness of the algorithm was demon-
strated. Li et al. [10] incorporated uncertain task time attributes in type-1 U-shaped ALBP.
They proposed an algorithm based on the branch and bound remember algorithm to solve
this problem. Zhang [11] proposed an immune genetic algorithm (IGA) which aimed to
minimize the number of workstations as well as the workload. Baskar and Anthony Xavior
[12] investigated a few heuristic algorithms based on slope indices, which is a method
of assigning tasks to stations, to solve the type-1 simple ALBP. Pınarbas̨ı and Alakas̨ [13]
formulated a constraint programming (CP) model for type-1 ALBP considering assignment
restrictions. The author compared the results of different models and showed that CP is
the best one. Huang et al. [14] considered a mixed-model two-sided ALBP that aimed at
minimizing the number of mated-stations. A combinatorial Benders-decomposition-based
exact algorithm was used to solve the proposed problem. The computational tests showed
that this algorithm can obtain exact results on large-sized problem instances.

Ever since Rubinovitz and Bukchin [4] came up with RALBP and proposed an efficient
heuristic to solve it [15], it has become a prevalent research direction for ALBP. Hong and
Cho [16] solved the type-1 RALBP considering assembly cost. A simulated annealing
algorithm was utilized as the optimization tool. Gao et al. [17] proposed an innovative
genetic algorithm (GA) hybridized with local search to solve the type-2 RALBP. Five local
search procedures were developed to enhance the search ability of GA. Li et al. [1] designed
a cuckoo search method through different neighborhood generation methods to solve the
two-sided RALBP. The computational tests showed that the proposed algorithm outper-
formed other meta-heuristics. Janardhanan et al. [18] considered sequence-dependent
setup times for RALBP to minimize the cycle time. They proposed a migrating birds
optimization algorithm (MBO) and demonstrated the effectiveness of the MBO. Sun and
Wang [19] developed a hybrid algorithm that combines the branch-and-bound (B&B) and
estimation of the distribution algorithm to minimize the cycle time on the robotic assembly
line. Aslan [20] investigated an two-sided RALBP with sequence-dependent setup times,
and a variable neighborhood search (VNS) algorithm was utilized to solve this problem.

Other features of RALBP have also been studied. Michels et al. [21] studied spot
welding robotic assembly lines based on an automotive company located in Brazil. A mixed-
integer linear programming (MILP) model was developed. Pereira et al. [22] solved cost-
oriented RALBP (cRALBP), taking into account that different types of robots have different
costs. Rabbani et al. [23] investigated four-sided human–robot collaborations on ALBP,
where the tasks are performed on the left, right, above, and beneath sides. An augmented
multi-objective particle swarm optimization was used to solve the model. Koltai et al. [24]
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analyzed the short- and long-term effects of adding robots to human ALs for the operation
of the line. The use of the models was demonstrated using a case study involving a power
inverter. Lahrichi et al. [25] investigated two variants of type-2 RALBP with sequence
dependence. The first variant is given different types of robots, each of which can be
arbitrarily assigned to multiple stations. Another variant is that given a group of robots,
each robot can only be assigned to one station.

Further, the use of robots on assembly line creates energy consumption problems;
some scholars treat energy consumption as one of the optimization objectives. Mukund
Nilakantan et al. [26] proposed models with dual objectives to minimize the cycle time and
total energy consumption simultaneously. The particle swarm optimization was used to
solve this problem. Nilakantan et al. [27] proposed a multi-objective co-evolutionary algo-
rithm to solve the energy-related RALBP. Zhang et al. [28] investigated a U-shaped RALBP
and developed a multiobjective mixed-integer non-linear model to optimize carbon emis-
sions. Hybrid Pareto–grey wolf optimization (HPGWO) was designed, and its effectiveness
was demonstrated. Zhou and Wu [29] aimed to optimize the total energy consumption
and a productivity-related objective simultaneously in RALBP. A novel algorithm based
on a well-known enhanced decomposition-based multi-objective algorithm (MOEA/D)
was designed to solve this problem. Zhang et al. [30] investigated mixed-model U-shaped
RALBP and proposed a hybrid multi-objective dragonfly algorithm (HMODA) to achieve
the goals of energy saving and efficiency. Belkharroubi and Yahyaoui [31] minimized
energy consumption on a mixed-model RALBP. A cuckoo search algorithm, which was
based on the memory principle, was developed to tackle this problem. The authors tested
its effectiveness by comparing other algorithms.

By analyzing the previous research works, we can conclude that the RALBP had been
studied extensively from various angles. However, the mathematical models are always
nonlinear, which is not desired for a commercial solver specialized in solving mixed-integer
problems, e.g., CPLEX. We did not find any literature about the type-1 RALBP with the
energy consumption objective. Further, the multi-functional robots and their implied
application to the assembly line regarding the cross-station design are absent.

The contribution of our paper is as follows: (1) To our best knowledge, we did not find
the studies of the multi-objective optimized type-1 RALBP considering energy consump-
tion. Thus, this work fills the research gap in RALBP. (2) We introduce the “cross-station
task” design, which has already been applied in practice but rarely studied academically,
into type-1 RALBP for the first time. (3) We leverage and modify the simulated annealing
algorithm for solving this problem, where incorporates an improvement mechanism of
exact algorithms.

The remainder of this paper is organized as follows. Section 2 describes the cross-
station task design in detail, and a simple example is presented. We propose a MILP model
considering the cross-station task design in Section 3. A simulated annealing algorithm
is designed for the problem in Section 4. Computational results are shown in Section 5.
Section 6 concludes the paper.

2. RALBP-CS Design

In this section, we introduce the cross-station task design to reduce the idle time of each
station as much as possible on the assembly line. This idea is similar to certain other studies.
Grzechca and Foulds [32] relaxed the assumption that a task cannot be split among two
or more stations, i.e., a task can be split into multiple subtasks, then changed the priority
graph for research. Nanda and Scher [33] relaxed the assumption and studied overlapping
workstations, where a task can be processed by a pair of workstations simultaneously.

In the cross-station task design, a task could be processed at three stations, which
is a more realistic design than the previous two designs in some manufacturing systems.
The cross-station task design is a practical application [5]. The three stations include the
current station and its front and rear stations, if they exist. To achieve this, one station can
“borrow” (“lend”) its cycle time from (to) its front or rear stations. If this task is assigned
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to the very front part of the current station, it could be processed in advance at the front
station. That is, the current station borrows its cycle time from the front station. If this
task is assigned to the very rear part of the current station, it could be processed with a
delay at the rear station. That is, the current station borrows its cycle time from the rear
station. For example, in Figure 1, task 2 is originally assigned to station 2. Since station 2
has borrowed a portion of the cycle time of station 1, task 2 can start being processed in
advance at station 1. Likewise, task 4 is originally assigned to station 3. Since station 2
has lent a portion of its cycle time to station 3, task 4 can start being processed in advance
at station 2. There are two points worth noting: (1) Tasks can only be assigned to one
station and one robot, but they can be processed when the work-in-process (WIP) is at
adjacent stations. (2) A robot is multi-functional with different robotic arms, as mentioned
in Section 1. For example, robot 3 is processing task 4 with one robotic arm and operating
task 6 with another arm.

Figure 1. Assembly line with cross-station task design.

Then, a simple example is presented.

Example 1. To intuitively recognize the advantages of this design, suppose there is only one task
sequence and a type of robot, which is shown in Figure 2. The task number is stored in the node, and
the number outside the code displays the time the robot takes to process the task. There is a given
cycle time of 11.

Task assignment is shown in Figure 3. The shaded part represents idle time. Without the
RALBP-CS design, tasks 1, 2, and 3 are assigned to station 1; tasks 4, 5 and 6 are assigned to
station 2; and tasks 7, and 8 are assigned to station 3. Thus, there are 3 stations installed, and some
idle time is incurred on the line. If the RALBP-CS design is applied to the line, tasks 1, 2, 3, and 4
are assigned to station 1, which borrows 1 unit of the cycle time of station 2. Then, tasks 5, 6, 7,
and 8 are assigned to station 2. The number of stations that are installed is two (one less than the
line without considering RALBP-CS design), and there is no idle time at all on line.

Figure 2. Priority relationship for example 1.

4

1 2 3 4 5 6

1 2 3 4 5 6 7 8

Without

 RALBP-CS design

 

RALBP-CS design

Station 1 Station 2 Station 3

Station 1 Station 2

Borrow

1 unit

7 8

Figure 3. Task assignment for example 1.

3. Mathematical Modeling

In this section, the MILP mathematical model is formulated. The primary goal is to
minimize the number of workstations. The secondary objective is to minimize total energy
consumption. The decision variables are summarized at Table 1.
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Table 1. Notations.

Parameters Descriptions

n Total number of tasks
R Total number of robot types
J The maximum number of workstations that are allowed to be opened
m The number of workstations that are actually installed
i, h Index of tasks, i, h = 1, 2, · · · n
s, j Index of stations. s, j = 1, 2, · · · J
r Index of robots. r = 1, 2, · · · R
c Cycle time
ω Weight coefficient

Rtes The remaining capacity at station s
TEC Total energy consumption

TECmax The upper bound of total energy consumption
OECr Operation energy consumption of the robot r per time unit
SECr Standby energy consumption of the robot r per time unit

tir The task i′s processing time by robot r
Pr(i) Set of direct predecessors of task i

γ Maximum amount of time that can be borrowed from one station by another
φ A large positive number

Decision variables Descriptions

xij 1, if task i is assigned to workstation j ; 0, otherwise
yrj 1, if robot r is allocated to workstation j ; 0, otherwise
zirj 1, if task i and robot r are assigned to workstation j ; 0, otherwise
dj,s 1, if station j borrows time from station s; 0, otherwise
qj,s A positive value shows the amount of time station j borrows from station s; 0, otherwise

3.1. Assumptions

The basic assumptions underlying the problem are as follows.

• One single product is manufactured on the assembly line.
• Robots are multi-functional with numerous arms that can handle different tasks

simultaneously.
• The precedence relations between the tasks are given previously.
• A task can only be assigned to one station and one robot.
• Each station can only borrow time from its adjacent stations.
• The task-processing time is dependent on the type of robot assigned to it.
• Each robot can be assigned to any station and can process any task.

The notations are presented in Table 1 and used throughout the paper.

3.2. Formulation

In the model, TEC represents the total energy consumption. TECmax represents the
upper bound of total energy consumption, which is a fixed parameter by taking the
maximum operating and idle energy consumption of the robots for each task, and then
summing them. Thus, TEC/TECmax is in the range [0, 1]. Now, the mathematical model
is presented.
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min Obj = m + TEC/TECmax, (1)

s.t. m =
R

∑
r=1

J

∑
j=1

yrj, (2)

TEC = OEC + SEC, (3)

OEC =
J

∑
j=1

R

∑
r=1

n

∑
i=1

OPCrzirjtir, (4)

SEC =
J

∑
j=1

R

∑
r=1

grjSPCr, (5)

grj ≤ c + qj,j+1 + qj,j−1 − qj+1,j − qj−1,j −
R

∑
r=1

n

∑
i=1

zirjtir + (1− yrj)ψ, ∀j = 1, · · · , J, (6)

grj ≥ c + qj,j+1 + qj,j−1 − qj+1,j − qj−1,j −
R

∑
r=1

n

∑
i=1

zirjtir − (1− yrj)ψ, ∀j = 1, · · · , J, (7)

R

∑
r=1

yrj ≤ 1, ∀j = 1, · · · , J, (8)

R

∑
r=1

yrj ≥ xij, ∀j = 1, · · · , J, ∀i = 1, · · · , n, (9)

R

∑
r=1

yrj ≤
n

∑
i=1

xij, ∀j = 1, · · · , J, (10)

R

∑
r=1

yrj ≥
R

∑
r=1

yrj+1, ∀j = 1, · · · , J − 1, (11)

J

∑
j=1

xij = 1, ∀i = 1, · · · , n, (12)

n

∑
i=1

jxhj ≤
n

∑
i=1

jxij, ∀h ∈ p(i), (13)

xij + yrj ≤ zirj + 1, ∀i = 1, · · · , n, ∀r = 1, · · · , R, ∀j = 1, · · · , J, (14)(
1− xij

)
+ yrj ≤

(
1− zirj

)
+ 1, ∀i = 1, · · · , n, ∀r = 1, · · · , R, ∀j = 1, · · · , J, (15)

xij +
(

1− yrj

)
≤

(
1− zirj

)
+ 1, ∀i = 1, · · · , n, ∀r = 1, · · · , R, ∀j = 1, · · · , J, (16)(

1− xij

)
+

(
1− yrj

)
≤

(
1− zirj

)
+ 1, ∀i = 1, · · · , n, ∀r = 1, · · · , R, ∀j = 1, · · · , J, (17)

qj,s ≤ γ, ∀j = 1, · · · , J, ∀s = 1, · · · , J, (18)

dj,j+1 + dj+1,j ≤ 1, ∀j = 1, · · · , J − 1, (19)

ϕdj,j+1 ≥ qj,j+1, ∀j = 1, · · · , J − 1, (20)

ϕdj+1,j ≥ qj+1,j, ∀j = 1, · · · , J − 1, (21)

qj+1,j ≥ 0.1dj+1,j, ∀j = 1, · · · , J − 1, (22)

qj,j+1 ≥ 0.1dj,j+1, ∀j = 1, · · · , J − 1, (23)
R

∑
r=1

yrj+1 ≥ dj,j+1, ∀j = 1, · · · , J − 1, (24)

R

∑
r=1

yrj+1 ≥ dj+1,j, ∀j = 1, · · · , J − 1, (25)

q1,0, q0,1, qJ,J+1, qJ+1,J = 0, (26)

qj,s ≥ 0, ∀j = 1, · · · , J, ∀s = 1, · · · , J, (27)

grj ≥ 0, ∀r = 1, · · · , R, ∀j = 1, · · · , J, (28)
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Equation (1) shows the objective function, which represented by the primary (m) and
secondary objective (TEC). Constraint (2) calculates the number of workstations that are
actually installed. Constraint (3) calculates the total energy consumption by summing
the total operation energy consumption (Constraint (4)) and standby energy consump-
tion (Constraint (5)) on the assembly line. Constraints (6)– (7) calculate the idle time for
each station, and if the robot r is allocated to the station j (yrj = 1), the constraints are
active. Constraint (8) refers to the requirement that, at most, one robot can be allocated
to the station. Constraint (9) ensures that tasks are assigned only to stations that are in-
stalled. Constraint (10) ensures that the installed station is not empty. Constraint (11)
ensures the stations are installed continuously in turn. Constraint (12) ensures a task can
only be assigned to one station. Constraint (13) refers to the priority constraint. Con-
straints (14)–(17) demonstrate the logical relationship between tasks, robots, and work-
stations. Constraint (18) limits the upper bound of time borrowing from one station to
another. Constraints (19)–(23) ensure that two stations cannot borrow each other’s time
simultaneously. Constraints (24)–(25) ensure that the action of lending and borrowing
cannot occur for the empty station. Constraints (26)–(28) are the domain constraints.

4. A Simulated Annealing Algorithm

In this section, a simulated annealing algorithm (SA) is designed to tackle the pro-
posed problem. SA was first proposed by Kirkpatrick et al. [34], which is an optimization
algorithm that imitates the gradual cooling of metals. It is a meta-heuristic including a
random optimization approach, which is to avoid a local optimum by evaluating inferior
solutions. It has the advantages of simple description, flexible use, wide application, high
operation efficiency, and less affected by the input parameter. Starting from a randomly
chosen initial solution S, SA seeks a candidate solution S′ in the area surrounding the
initial solution. S and S′ correspond to fitness values Obj and Obj′, respectively. Then,
determine which candidate solution can be approved by comparing the fitness values of the
candidate with the present solutions. The amount of change in the fitness value is referred
to as ∆ (∆ = Obj−Obj′). If ∆ > 0, S′ is accepted; otherwise, S′ is accepted with a given
probability (p = e−

∆
T ), where T is the temperature parameter. At the beginning, there is

a high probability of accepting the inferior solution due to the higher T. In each iteration, T
is decreased by a cooling schedule until a predetermined stopping requirement is satisfied.

4.1. The General Framework of SA

In this study, the optimal objective is solved by designing the iterative mechanism and
developing an improvement rule based on the traditional SA. Obj represents the fitness
value. The notation of SA is given below.

T Temperature parameter
α Cooling rate
ite The iteration index
itemax The maximum number of iterations of temperature
dnmax The maximum number of iterations per restart
Sqtask A feasible assignment sequences of task
Sqrobot A feasible assignment sequences of robot
rn, pr Uniform random numbers between [0, 1]

Specifically, SA searches for the Sqtask and Sqrobot that result in the best fitness. Variable
neighborhood search (VNS) is another characteristic of the SA. In SA, VNS chooses between
two neighborhoods and systematically searches them. A random number (pr) determines
whether to alter the robot sequence or the task sequence for each iteration. The iterative
steps of SA are listed below.

Step 1: Input P(i), T, Nn, α, OPCr, SPCr, tir, J, c, dnmax, TECmax, set ite = 1, dn = 0.
Step 2: Initialize sequences Sqtask and Sqrobot.
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Step 3: Generate the initial objective value Obj. Set the first three optimal objective
values equal to Obj.

Step 4: Generate pr, if pr ≤ 0.5, launch the neighborhood generation mechanism of
the task sequence to obtain a new Sq′task; otherwise, launch the neighborhood generation
mechanism of the robot sequence, and obtain a new Sq′robot.

Step 5: Launch decoding process to obtain a new objective value Obj′.
Step 6: Calculate ∆ = Obj′ −Obj. If ∆ < 0, update and retain the first three optimal

solutions, update dn = 0, go to step 8; otherwise, update dn = dn + 1, and go to step 7.
Step 7: Generate rn, if rn < e−

∆
T , go to step 8; otherwise, go to step 9.

Step 8: Accept and update Sqtask = Sq′task, Sqrobot = Sq′robot, Obj = Obj′.
Step 9: If dn == dnmax, activate the restart mechanism, update dn = 0, go to step 2;

otherwise, update T = αT, ite = ite + 1, and go to step 10.
Step 10: If ite == itemax, launch the improvement mechanism, output optimal solu-

tion, done.

4.2. Initial Sequence Encoding

In the initial sequence encoding process, we employ Sqtask and Sqrobot to express
the feasible assignment sequences of task and robot, respectively. In contrast to the task
sequence, a feasible robot sequence can be generated randomly because the robot sequence
is not constrained by precedence. The encoding details are provided below for generating
Sqtask and Sqrobot.

Step 1: Generate Sqrobot, which is an array containing J random integers taken from
1 to R.

Step 2: Set Sqtask = [ ].
Step 3: Generate Sq′task, which is an array containing random permutation of the

integers from 1 to n.
Step 4: Based on the Sq′task and the precedence constraints, assign the task i to Sqtask =

[ ], then delete the task i in Sq′task.
Step 5: If task i cannot be assigned because of violating precedence relationship, skip

it and then consider the next task i according to Sq′task, then go to step 4.
Step 6: Repeat steps 4–5 until Sq′task = [ ], obtain Sqtask, done.

4.3. Decoding of Objective Function

In the decoding process, each robot is allocated to a station in turn according to
Sqrobot. The robot allocation at stations s and s + 1, respectively, are denoted by r and r′.
The initialization process (step 1) refers to loading the input data. The task assignment
process is described in steps 2 to 5, where step 2 refers to assigning the task to the current
station, and steps 3–5 refer to assigning the task to the current station or next adjacent
station considering the cross-station design. These three points should be noted: (1) if the
final task needs to borrow time of the assignment process, it is assigned to the next adjacent
station directly to prevent the situation that an empty stations lend its time; (2) the current
station’s available time is not Rets but Rets + γ since the station is permitted to lend or
borrow time; and (3) if the task is assigned to station s + 1, the idle time max(Rets − γ, 0)
may incur at station s, i.e., min(Rets, γ) is the amount of time that station s lends to station
s + 1. Step 6 computes the energy consumption for station s. Eventually, the feasible
solutions Obj can be obtained in step 7.

Step 1: Input tir, J, Sqtask, Sqrobot, OPCr, SPCr, set s = 1, id = 1, and Rets = c.
Step 2: If all tasks are assigned, go to step 7; otherwise, assign the idth task in Sqtask to

station s, update Rets (Rets = Rets − tir) and id = id + 1, and go to step 3.
Step 3: If tir > Rets and id == n, assign the task i = Sqtask(id) to station s + 1, set

qs,s+1 = 0 and qs+1,s = 0, update s = s + 1, and compute OECs and SECs, go to step 7;
elseif tir > Rets and id < n, go to step 4; otherwise, go to step 3.
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Step 4: If tir ≤ γ + Rets and tir′ + max(Rets − γ, 0) ≥ tir, assign the task i = Sqtask(id)
to station s, and set qs,s+1 = tir − Rets, qs+1,s = 0, update Rets+1, where Rets+1 = c− qs,s+1,
go to step 6; otherwise, go to step 5.

Step 5: Assign the task i = Sqtask(id) to station s + 1, set qs,s+1 = 0 and qs+1,s =
min(Rets, γ), update Rets+1, where Rets+1 = c + qs+1,s − tir, and go to step 6.

Step 6: Compute OECs and SECs, update id = id + 1, and s = s + 1, go to step 2.
Step 7: Get m, where m = s, compute TCF, and output Obj.
The decoding operation of objective function is then illustrated with an example.

Example 2. Consider the precedence relationship graph given in Figure 4 and the parameters are
provided in Table 2. Sqtask = {1, 2, 4, 3, 5, 6, 7, 8}, Sqrobot = {3, 2, 2, 1, 3}. Tasks 1 and 2 are
assigned to station 1 and update Ret1, Ret1 = 3. Then we should assign task 4 according to Sqtask
since t4,3 > Ret1 and task 4 is not the last. We should take into account the cross-task design.
By executing step 4, 4 < 3 + 2 and 3 + max(3− 2, 0) = 4, task 4 should be assigned to station 1
and station 1 shall borrow 1 unit of time from station 2. Update Ret2, Ret2 = 10, tasks 3 and 5 are
assigned to station 2, and update Ret2, Ret2 = 1. Task 6 is assigned to station 3 due to 4 > 1 + 2,
and station 2 lends 1 unit of time to station 3. Task 7 is assigned to station 3 and we update Ret3,
Ret3 = 3. When assigning task 8, we find t8,2 > Ret3 and task 8 is the last, and thus task 8 is
assigned to station 4 directly. Finally, a feasible solution can be found, where m = 4, TCF = 9.825,
and Obj = 4.856.

Figure 4. Priority relationship for example 2.

Table 2. Parameters for example 2.

Variables and Parameters Value

n 8
R 3
J 5
c 11
γ 2

TECmax 11.48
OECr [0.3; 0.25; 0.32]
SECr [0.03; 0.025; 0.032]

4.4. Neighborhood Generation and Restart Mechanism

In SA, an insert method mentioned by Khorasanian et al. [35] is used for generating a
neighbor of the task sequence. Simply put, a new task sequence Sqtask can be generated
by relocating a task to a different position. The reader can refer to the cited literature
for more details on the neighborhood generation of task sequences. For neighborhood
generation of robot sequences, we randomly select stations with the robot that have been
installed, and then randomly select a different type of robot to replace to obtain a new robot
sequence Sqrobot.

In SA, as we know, local optimality can be escaped by accepting inferior solutions.
As the temperature decreases, the probability of accepting the inferior solution becomes
smaller, and the easier it is to fall into the local optimality. To address this issue, we designed
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a restart mechanism with reference to Li et al. [36]. If the optima are not improved in dnmax
consecutive iterations, the algorithm returns to the initial solution generation phase.

4.5. Improvement Mechanism

In this section, we propose a novel improvement rule, which embeds the exact algo-
rithm into the SA algorithm to improve the quality of the solution.

As we know, the MILP model can be solved using exact algorithms or heuristic
algorithms. Exact algorithms can find the optimal solution to the model, but for the complex
assembly line problem, it is difficult to obtain a feasible solution when the allowable time is
limited. Therefore, researchers generally use heuristic algorithms to obtain an approximate
optimal solution. However, heuristic algorithms tend to fall into the local optimality,
and the gap between the approximate optimal solution and the actual optimal solution
cannot be measured.

In the improvement mechanism, we cut the original problem into a few small problems
to find a better solution using exact algorithms. That is, most of the variables in RALBP
are fixed, and only the remaining variables are relaxed. Based on the SA results, we
select relaxed tasks and robots based on the three rules given in Table 3. In Example 3,
the effectiveness of the improvement mechanism is shown.

Table 3. Improvement rules.

Rules Description

Rule 1 The robots and tasks assigned to the last station are relaxed

Rule 2 Compare the first 3 approximate optimal solutions of SA, the task and robot of
assigning different positions are relaxed

Rule 3 10% of the tasks and robots are randomly relaxed in the remaining sequence (upper
limit rounding)

Example 3. To test the effectiveness of the improvement mechanism, we compare the results before
and after the introduction of the improvement mechanism. The sub-problems are derived from the
datasets described in Section 5.1. The results of the comparison are shown in Figure 5. In Figure 5,
the same color represents the same cycle time in datasets (Arcus, Heskiaoff, Scholl). Obviously,
after the introduction of the improvement mechanism, although m has not changed, TEC has become
smaller for datasets of different sizes. Thus, the improvement mechanism we propose is effective.

3 4 5 6 7 8 9 10

m

275.8

276

276.2

276.4

276.6

276.8

277

277.2

277.4

277.6

T
E

C

Heskiaoff28

after improvement

before improvement

14 15 16 17 18 19 20 21

m

2.085

2.09

2.095

2.1

2.105

2.11

2.115

T
E

C

104 Arcus83

after improvement

before improvement

26 28 30 32 34 36 38 40

m

1.98

1.99

2

2.01

2.02

2.03

2.04

2.05

2.06

T
E

C

104 Scholl297

after improvement

before improvement

Figure 5. Example 3.

5. Computational Experiments
5.1. Design of Experiment

The basic datasets are extracted from a well-known database (https://assembly-line-
balancing.de/, accessed on 30 August 2022). They are Heskiaoff (28), Kilbrid (45), Arcus
(83), and Scholl (297). The numbers inside the parentheses indicate the total number of

https://assembly-line-balancing.de/
https://assembly-line-balancing.de/


Systems 2022, 10, 218 11 of 14

tasks of that dataset. The task time tir is randomly generated based on the original data
according to the fact that the higher the energy consumption, the lower the efficiency. SPCr
and OPCr are selected by referring to Nilakantan et al. [27], which are provided in the
supplementary file. For each instance, c is fixed at six different values, and γ is set to the
0.1× c. Hence, there is a total of 24 independent experiments to conduct.

The particle swarm algorithm (PSO) and the late acceptance hill-climbing algorithm
(LAHC) are two traditional methods that are compared. To observe the quality of each al-
gorithm, we used the Gurobi 9.1.2 optimizer to solve the MILP model. Due to the excessive
time of the exact algorithm for solving large instances, the runtime limit is set to 3600 s and
the gap value is returned. To ensure that the heuristic algorithms are comparable, constrain
the algorithm runtime (rt) to rt = 10× n seconds. These algorithms are implemented in
Matlab (R2019a) and executed on an AMD Ryzen 55500U 2.10 GHz CPU.

We have seen from the preliminary experiment results that the optima are not parame-
ter sensitive. As a result, the parameter values are taken from the literature, as in Table 4. It
should be noted that the initial temperature is case-dependent. The initial temperature in
SA is determined using the methods described in Li et al. [36].

Table 4. Parameter values for each algorithm.

Parameters SA LAHC PSO

Cooling rate 0.9 - -
Length of cost list - 100 -

Learning coefficient l1(l2) - - 2(2)
The number of task(robot) particles - - 30(30)

5.2. Results and Analysis

The computational results are displayed in Table 5. The best results each algorithm
can obtain are recorded in column Obj. Obj is calculated by Formula (1), which contains
information in both m and TEC. Due to TEC/TECmax is in the range [0, 1], before and after
the decimal point are our primary objective (m) and secondly objective (TEC), respectively.
When the runtime is reached but the Gurobi optimizer cannot return a result, it is denoted
by –. The unique optimal result between the three heuristics is marked in bold.

Table 5. Computational results.

Dataset c
Gurobi SA PSO LACH

Obj Gap (%) Obj Obj Obj

Heskiaoff

160 7.7150 0.0 7.7153 7.7236 7.7235
190 6.6989 0.0 6.7057 6.7041 6.7085
220 5.6799 0.0 5.6848 5.6857 5.6832
250 4.7058 0.0 5.6789 5.6782 5.6860
280 4.6507 0.0 4.6518 4.6559 4.6548
310 4.6435 0.0 4.6449 4.6538 4.6590

Kilbrid

70 8.7203 0.0 8.7528 8.7739 9.7163
90 7.6807 0.0 7.6842 7.6889 7.6863
110 5.6852 0.0 5.7273 5.7293 6.6619
130 5.6313 0.0 5.6328 5.6334 5.6364
150 4.6068 0.0 4.6105 4.6123 4.6190
170 4.5893 0.0 4.5904 4.5906 4.5935

Arcus

4200 25.7511 52.6 18.7532 19.7510 19.7233
4500 – – 17.7538 17.7517 18.7151
4800 17.7018 58.6 16.7229 16.7377 17.7113
5100 – – 15.7267 15.7277 16.7014
5400 – – 14.7218 14.7395 15.6946
5700 14.6807 35.4 14.6866 14.7082 14.6911
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Table 5. Cont.

Dataset c
Gurobi SA PSO LACH

Obj Gap (%) Obj Obj Obj

Scholl

2000 – – 36.7751 36.8018 37.7644
2300 – – 31.7916 31.7875 32.7511
2600 – – 28.7415 28.7516 28.7494
2900 – – 25.7373 25.7472 26.7213
3200 – – 22.7629 22.7809 23.7187
3500 – – 21.7004 21.7137 21.7110

Compared with three heuristic algorithms, the Gurobi optimizer returns the optimal
solution for each instance (gap = 0) of the first two datasets. Thus, we can conclude that
exact algorithms can quickly get a feasible solution and is optimal for instances with a
small number of tasks. Additionally, 9 out of the 12 primary objective m of the first two
datasets are the same with three heuristic algorithms, indicating that the heuristic can find
solutions as well as the exact algorithm for small instances.

However, when solving a problem with a large number of tasks, exact algorithms
may find a solution with a large gap (Arcus) or not even find any feasible solution (Scholl),
and the quality of the feasible solution may also be worse than that of the heuristic algo-
rithms. Therefore, for large ALBP problems, heuristics are better than the exact algorithm.

Comparing the results among the three heuristic algorithms, the SA algorithm finds
the best optimal solution where 18 out of 24 are the unique best, dominated by PSO in
5 instances, and is dominated by LACH in 1 instance. For the SA algorithm, the number of
stations m is optimal among the three heuristics. In addition, in the first dataset, the SA
algorithm finds the best optimal solutions where 3 out of 6 are the unique best. The SA
algorithm finds the best optimal solutions where 5 out of 6 are the unique best in the
remaining three datasets. Thus, the SA algorithm is much better for solving large instances.

6. Conclusions

A satisfactory ecological environment is an important part of people’s pursuit of
a better life. Pollution from energy consumption in the industrial sector is a problem
that cannot be ignored. Presently, robotic assembly lines are widely applied in industrial
production. Though the introduction of multi-functional robots on assembly line results in a
significant improvement in production efficiency, it brings about high energy consumption.
Thus, how to balance energy consumption and efficiency is the goal of our paper.

In this paper, a robotic assembly line balancing problem considering minimizing
the number of workstations as the primary objective and energy consumption as the
secondary objective is investigated. Our research is the first attempt to model and solve
the type-1 RALBP with multi-objectives and cross-station task design. A mixed integer
linear integer programming model is formulated to solve the problem. A simulated
annealing algorithm which encapsulates an improvement mechanism, is designed and
compared with the particle swarm algorithm and the late acceptance hill climbing algorithm.
The computational study shows that SA performs better than PSO and LAHC.

This study has some limitations. Since it is the first attempt to explore this innovative
research topic, a simple single product is assumed, which is less useful than a general
multi-product assumption. Additionally, we only represented three classic algorithms (SA,
PSO, and LAHC) to solve the straight assembly line. Algorithmic design and varieties can
be further improved to solve more complex assembly line balancing problems (two-sided,
U-shaped, and parallel).

Author Contributions: Conceptualization, Y.L. and Y.C.; methodology, Z.Q.; investigation, M.L.
and Y.Z. All authors have read and agreed to the published version of the manuscript.
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