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Abstract: Due to the fourth industrial revolution, manufacturing companies are looking to implement
digital twins in their factories to be more competitive. However, the implementation of digital twins
in manufacturing systems is a complex task. Factories need a framework that can guide them in the
development of digital twins. Hence, this article proposes a small-scale digital twin implementation
framework for manufacturing systems. To build this framework, the authors gathered several
concepts from the literature and designed a digital twin subsystem model using a model-based
systems engineering (MBSE) approach and the systems engineering “Vee” model. The systems
modelling defines the digital twin components, functionalities, and structure. The authors distribute
most of these concepts throughout the framework configuration and some concepts next to this
general configuration. This configuration presents three spaces: physical, virtual, and information.
The physical space presents a physical layer and a perception layer. The information space has a
single layer called middleware. Finally, the virtual space presents two layers: application and model.
In addition to these layers, this framework includes other concepts such as digital thread, data,
ontology, and enabling technologies. This framework could help researchers and practitioners to
learn more about digital twins and apply it to different domains.

Keywords: digital twin; manufacturing systems; model-based systems engineering; Vee model;
framework

1. Introduction

Manufacturing companies must follow the Industry 4.0 trends to survive in a highly
competitive market. The fourth industrial revolution uses modern technology to transform
manufacturing and make it smart [1,2]. Smart factories digitize the physical layout, business
processes, and products, and integrate them in the digital world [3,4]. This improves the
efficiency of processes [5], create better products [6], and enables data-driven decisions [7].
Smart manufacturing encompasses recent technologies such as the Internet of Things (IoT),
artificial intelligence (AI), augmented reality (AR), big data analytics, and so on to enable
the digital transformation of factories [8–11]. The integration of some of these technologies
result in the development of digital twins [12,13].

Digital twin (DT) is a tool of Industry 4.0 that helps factories achieve digital trans-
formation. DT mirrors the physical system in the virtual world. It has a continuous
communication with its counterpart in the real world through an information channel [14].
DT uses several components such as sensors, actuators, software, databases, etc. DT col-
lects, transfers, and stores data [15]. Factories could use digital twins for monitoring, data
analysis, product development, and so on. In manufacturing, DT find its application in, for
example, predictive maintenance, process planning, product, and factory design [16,17].

Nevertheless, the implementation of DT brings challenges to factories. DT implemen-
tation represents a huge investment of physical and human resources. Some researchers
believe that a digital twin must use sophisticated technologies such as artificial intelligence
and machine learning to operate. Furthermore, DT is a complex system that includes many
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concepts and processes. Researchers have different definitions for a digital twin and their
capabilities for manufacturing. Finally, there are not clear examples of a digital twin for
manufacturing because of data property. Companies do not share their DT models to the
public [18–20].

Therefore, factories need a framework that can guide them in the development of
digital twins. Frameworks help to study a new concept or phenomena such as digital
twins. Frameworks are an effective way to gather main concepts of the topic of interest and
integrate them in a defined structure [21]. Even though there are many concepts related to
DT in the current literature review, a framework can help to explain and resolve conflict
between DT concepts. Frameworks can have a specific application that differentiate it from
other frameworks. A digital twin implementation framework could enable manufacturing
systems to implement digital twins in a secure, easy, and fast manner.

Existing DT literature present frameworks and related works for different manufactur-
ing processes, and types with distinct characteristics, methods, and objectives. For instance,
there are frameworks that focus on simulation and optimization of digital twins. Guo
et al. [22] proposed a DT framework to optimize factory layout designs and solve hidden
design flaws. Zhang et al. [23] proposed a DT framework using discrete-event simulation
models for production planning and layout design. Marmolejo-Saucedo [24] developed a
DT framework using optimization models for large-scale problems in supply chains. This
framework considers the use of big data analytics but does not include artificial intelligence.
Some focuses on collecting and enabling data throughout the digital twin models. The
Kumbhar et al. [25] framework proposed a DT data-driven framework for detection and
diagnostics of flaws. It executes a DT simulation to identify bottlenecks and improve
bottlenecks throughput in complex manufacturing systems. Some frameworks do not focus
on modelling the digital twin. Friederich et al. [26] focused on developing a framework
to improve the simulation functionality of DT using machine learning and process min-
ing techniques. Some researchers suggest a standardized framework. Shao and Helu [27]
developed the scope and requirements for a generalized DT framework. However, their
proposed framework just focuses on the use of DT in factories, not on the implementation.
The International Organization for Standardization (ISO) developed the ISO 23247 which
presents an overview, definitions, principles, and requirements for a DT framework [28].
Nonetheless, a generalized framework may be incompatible for factories with different
context or applications.

Consequently, after analyzing the digital twin (DT) concept in a previous article [29],
the next research step is to propose a small-scale digital twin implementation framework
for a manufacturing system. This framework aims to design a digital twin for discrete
manufacturing processes. Discrete manufacturing put together tangible components into
a final product in an assembly line [30]. This work focuses on small size manufacturing
companies that do not have resources such as sophisticated technology and skilled workers.
It provides a comprehensible step-by-step implementation process. Furthermore, the
authors used a methodology with a systems perspective to build this framework. This
article gathers relevant digital twin concepts from the literature and models a digital
twin for manufacturing systems. This model provides a high-level perspective about
the development of digital twins and posterior implementation in factories. It defines
essential digital twin functionalities, components, and structure. The system’s modelling
follows a model-based systems engineering (MBSE) approach and uses the “Vee” model
developed by the U.S. Federal Highway Administration [31], which are based on the ISO
15288 systems and software engineering - system life cycle processes [32].

This study presents some limitations and assumptions in terms of scope to build a
digital twin implementation framework for manufacturing systems. This work looks to
develop small-scale digital twins from a systems perspective. This study does not focus
on a specific technology or functionality such as cloud computing or artificial intelligence,
nor does this framework develop a digital twin for a specific task or activity such as model
fidelity design or product development. This study generalizes the development of digital
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twin models in a manufacturing domain. The concepts presented in this article are not
comprehensive. Nevertheless, they could help practitioners to implement digital twins in
their factories.

This article has the following structure. Section 2 presents a literature review, including
the most relevant topics for the development of this article. Section 3 models a digital
twin subsystem of a manufacturing system. In Section 4, the authors propose a small-scale
digital twin implementation framework for manufacturing systems. Section 5 presents
a discussion about the digital twin model and proposed framework. Finally, Section 6
presents the conclusions and proposes future research on digital twin technology for
manufacturing systems.

2. Literature Review
2.1. Digital Twin Components

Digital Twin has three main components: products in the physical space, products in
the virtual space, and the connections of data and information that unifies both spaces [14].
Currently, a digital twin presents more behavioral characteristics due to the knowledge
of information technology and operations technology. These technologies allow DT to
model processes, machines, products, and so on, and perform specific functionalities such
as testing a product’s performance capabilities. Figure 1 shows the original concept of
a digital twin as an information mirroring model that display the product in the virtual
space [33].
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Loaiza and Cloutier’s article [29] studied the selection of the digital twin components
for a manufacturing system. Each digital twin configuration space presents different
components or concepts. These components are necessary to enable the digital twin
capabilities. The authors used the conceptagon to distribute them into internal and external
components. The internal components belong to the digital twin system. These components
are RFID readers, RFID tags, PLC, transducers, software, electric actuators, switches, MEMS
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sensors, and RFID transceivers. The external components belong to the manufacturing
system. These components are artificial intelligence, digital thread, cloud computing, and
smart machines. Moreover, the conceptagon describes the digital twin’s behavior and
functionalities such as data collection, data analysis in real-time, simulation of objects, and
so on. Finally, it also considers the relationship between the system’s components and
how they transform inputs into outputs. Digital twin inputs are images, procedures, data,
algorithms, and energy. The outputs are images, results, data, diagnosis, and energy. The
authors concluded that the digital twin’s goal is to give information and data that support
manufacturing system’s operations.

Loaiza and Cloutier’s article [29] also presents a systemigram, which is a systems
thinking tool. This tool studies the relationship between a digital twin, manufacturing
system, and other concepts such as system readiness level, systems engineering, and digital
transformation for the DT implementation. It provides an insight to several components
within different concepts. The systemigram shows how data flows from the physical system
to the digital twin, which send feedback to the system closing the loop.

2.2. Characteristics of Digital Twin Technology

According to DI SPRING [34], a company that promotes the Industry 4.0, DT present
the following characteristics: connectivity, homogenization, smart programmability, trace-
ability, and modularity. These characteristics make DT different from other technologies.
The connectivity of DT is one of its most distinguishing features. It is the foundation of
DT to connect the real world with the virtual world. It is crucial for the development of
DT functionalities. Connectivity is a feature that will change over time as DT evolves.
Homogenization is a feature that allows DT to collect and share data with other digital
platforms. DT gathers information from the physical source to mirror it into a virtual model.
Homogenization brings benefits such as low-cost ways to manage data and enhances the
user experience to collaborate on a single digital source. DT is a smart technology that can
program its functions automatically. The characteristic of smart programmability makes it
possible to control physical objects. DT uses sensors, actuators, and artificial intelligence.
DT can manage factory’s processes and program them according to learning experience.
This gives introduction to servitization in manufacturing. Smart programmability improves
DT services to meet customer’s needs. The DT characteristic of traceability enables it to
perform functionalities such as simulation. DT can check past information of processes
or products for diagnosis due to its digital thread. Digital tread implements traceability
from the system requirements to the design, production, distribution, and disposal stage
of a system of interest. It improves the communication and relationship of the DT with
other systems. Finally, modularity is a system characteristic adopted by DT to separate
and reorganize components. It gives flexibility and variety to DT models, reducing the
complexity of systems by arranging a system in modules. The complexity of system’s
components is not visible at this level of model abstraction. The benefit of modularity is to
understand and look on the right problem.

Barricelli et al. [35] believe that a DT has the following characteristics: connection
with multiple devices, a high amount of data storage, and the ability to make smart
decisions. The physical and virtual spaces should have a seamless connection to Internet
and other networking devices to allow data sharing. This connection sets up direct and
indirect communication through physical devices and cloud computing. The DT process of
communication links physical objects and the DT, the DT and other DTs in the surrounding
environment, and the DT and domain experts. DT is also capable to gather distinct kinds
of data and organize them in categories, concepts, areas, etc. It understands data sources
through ontologies. It shows data properties and the relationship between them. A digital
twin should implement a database or storage system to save historical data and current
data. Data are key to the performance of DT functionalities. Finally, a digital twin has the
characteristic of making predictions, prescriptions, and descriptions of situations, processes,
tasks, status, etc. It uses artificial intelligence that allows DT to learn capabilities. This
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is possible due to algorithms that work as a virtual cognitive brain that collects data and
makes intelligent decisions.

2.3. The “Vee” Model of the Systems Engineering Process

Systems engineering is a disciplined approach that focuses on the design, implemen-
tation, operation, and retirement of systems [36]. The IEEE 15288, Systems and Software
Engineering—System Life Cycle Processes, describe the processes to manage systems over
their life cycles [32]. The “Vee” model is one of several system models that describe these
system processes. The “Vee” model has a V-shape describing a system’s development from
left to right. It is an iterative model that improves the system until its maturity. The left-side
of the “Vee” starts in the abstraction level where the system is decomposed into several
components. The right-side assemble these components to develop the final product [37].

Systems engineering literature presents different variants of the “Vee” Model with
different terminology and levels of decomposition. However, these models have activities
in common throughout the system’s development [38]. In general, the left-side of the “Vee”
model presents the system’s definition and planning stage, and the right-side the system’s
integration, test, and operational stage. The first activity in the left-side describes the
system stakeholder’s needs. The second activity transforms these needs into the system’s
requirements. The next activity decomposes the system in a lower level presenting a
high-level architecture. The next step is a more detailed architecture of the system design.
The bottom activity of the “Vee” model is the execution of the plan. It looks to create
the system’s components. Then, going up to the right-side of the “Vee” model, the next
activity aims to integrate the components and verify and validate that the system meets
the stakeholder’s needs. Finally, the last activity is when users operate and maintain the
developed system though several iterations of the “Vee” model. The following iterations
use feedback such as data, tests, updates, and so on, to improve the system until its
retirement or replacement [39].

2.4. Model-Based Systems Engineering

The model-based systems engineering (MBSE) approach is a graphical modelling
language that enables the design of complex systems such as a digital twin system. This
approach aims to create systems engineering domain models to save and exchange informa-
tion different to the document-centric model. It uses computer modelling to define systems
based on properties, specifications, and future behavior. Systems modelling are helpful
for architectural design processes. It also supports the development and procurement
of requirements in the system, subsystems, and components. The MBSE goal is to give
precision, consistency, traceability, and integration to the entire system lifecycle [40,41].

According to Delligatti [42], MBSE looks for the integration, coherence, and consistency
of system activities in one single model. This is an advantage over the traditional document-
based approach. The MBSE approach aims to generate documents automatically based
on the information provided to the system model. The benefits are noticeable when the
designer wants to change a requirement or update it. Changes in requirements affect
the entire system model. The MBSE approach keeps track of these changes and updates
the system automatically. There is no need to examine and update all the models and
documents that were affected by that change as in the traditional document-based approach.
The MBSE approach supports the application of the systems engineering “Vee” model
for project development. The “Vee” model presents the system requirements from the
stakeholder’s needs, the system design, analysis, integration and test, and the verification
and validation process. The Vee model activities begin in the conceptual design and finishes
with the actual operation of the project.
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2.5. Smart Manufacturing

The trend of manufacturing is to become smart due to IoT devices, and software that
improves management decisions. Smart manufacturing (SM) involves and studies all the
stages of production from suppliers to customers. Agencies such as the Department of
Defense and the Department of Energy use this term to describe the use of intelligence to
produce better products. Smart manufacturing implements intelligence along the supply
chain manufacturing. It gives users a holistic perspective to study, plan, and manage
manufacturing processes. This is possible through the implementation of IoT devices, and
development of data analytics, modelling and simulation [43].

The National Institute of Standards and Technology definition of SM is that it inte-
grates all the components of a manufacturing system. SM processes meet supply chain
manufacturing needs in real-time such as factory conditions, customer needs, and supply
networks [44]. Digital twins are a part of smart manufacturing. It connects physical as-
sets to an industrial network and models them in the virtual space. It provides SM with
tools to simulate, improve models, and predict physical objects status in real-time. DT is
not the only technology that makes manufacturing smart. Big data, artificial intelligence,
and cloud computing, along with DT, work together to enable automated processes and
activities. This is the case of DT technology. It needs of other IoT technologies to perform
its functionalities.

There are three applications of smart manufacturing. The first one is smart production.
This application describes production with augmented intelligence to manufacture smart
end-products. SM are capable of making production more flexible and efficient. It improves
the human–machine interface towards collaboration. The second application is the smart
production network. It puts SM in a bigger system perspective. It considers the integration
of other systems in the supply chain management. The goal is to create a big manufacturing
network that helps each other to satisfy the constantly changing customer needs. This
network will ease production planning and create automated processes at distinct levels in
the SM. The upsides are more revenue, production processes that respect the environment,
and a socially responsible factory. The last one is mass personalization, which means that
SM will focus on customized production. This changes mass production for a personalized
one that allows users to create their own end-product [4].

2.6. Conceptual Framework

A conceptual framework is an analytical tool that studies different concepts. It allows
researchers to make comparisons and organize ideas. It not only gathers concepts, but also
integrates them into one single structure. The goal is to find factors, attributes, variables,
behavior, processes, and so on that describe the new concept. Some researchers could
mistake conceptual frameworks with conceptual models. The first one considers concepts
alone. The second one considers factors and variables. It presents an approach to interpret
the real world. However, it does not study cause-and-effect relationships. It helps to
understand new concepts [45].

According to Levering [46], conceptual frameworks are a good start to explain a
concept or phenomena. They allow problems to be understood, but cannot determine
the specific outcome as quantitative models. Nevertheless, they can solve a problem
based on external concepts or factors that are interrelated. Researchers follow a qualitative
analysis process to develop conceptual frameworks. According to Jabareen [21], conceptual
frameworks connect several concepts in a network to investigate a phenomena. They
simplify ideas and organize them in a way that is easy to apply. It is the product of a
qualitative process that explores theorization. It gathers several theories to build a new
concept. A concept presents components which define the concept itself. Hence, these
components are not separable, heterogeneous, and endo-consistent. These concepts have a
background of other concepts. All these components and concepts form the conceptual
framework of the new concept. Conceptual frameworks are ontology-, epistemology-,
and methodology-based. Concepts that are part of a framework have an ontological and
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epistemological structure or nature. The ontological nature defines concepts or things in
the real world. The epistemological nature describes these things or concepts in an abstract
or ideal world. The methodology explains how to build the framework and evaluates its
contribution to the real world.

The conceptual framework analysis technique involves the research and analysis of
concepts relevant to the new topic. It is a grounded theory technique that looks to find
phenomenon or events, patterns, and relationships in theory. The selection of concepts
is based on the number of occurrences in a text, their meaning, and importance. All of
them are part of the new conceptual or theoretical framework. It is critical to evaluate
and select data relevant to the new concept or phenomena. Data could come from several
sources which are part of different disciplines. Hence, conceptual frameworks present
a multidisciplinary approach to analyze data. The conceptual framework analysis is an
interactive process that compares concepts and data, continuously. This process manages
emerging theory based on the conceptual level and scope. The conceptual framework
analysis presents the following process [21]:

1. Mapping the selected data sources.
2. Extensive reading and categorizing of the selected data.
3. Identifying and naming concepts.
4. Deconstructing and categorizing the concepts.
5. Integrating concepts.
6. Synthesis, resynthesis, and making it all make sense.
7. Validating the conceptual framework.
8. Rethinking the conceptual framework.

3. Modelling a Digital Twin for Manufacturing Systems

This section uses the systems engineering “Vee” model and a model-based systems
engineering (MBSE) approach to design complex systems such as a small-scale digital
twin subsystem of a manufacturing system. The system of interest (SOI) for this study is a
manufacturing system with the digital twin as a subsystem. The authors use a MBSE tool
such as Astah SysML for the system modelling. They also uses the “Vee” model activities
presented by the Federal Highway Administration (FHWA) [31] to develop the digital twin
subsystem. Figure 2 shows the FHWA’s “Vee” model.
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In this case, the only interest of this article is the left-side of the “Vee” model. This side
presents some crucial activities for the digital twin planning and design. These activities or
steps are the concept of operations, system requirements, high-level design, and detailed
design. This article employs a MBSE approach to perform and integrate all these activities.
MBSE allows the creation, visualization, and traceability of each activity throughout the
entire system.
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3.1. Concept of Operations

This section defines the system’s concept of operations (CONOPS). The CONOPS
is a document where stakeholders define the system needs and main operational goal
from a high-level or systems perspective. This document helps to define the system
requirements [31]. The system’s modelling starts with the operational need or top-level use
case. The manufacturing system (MS) operational need is the implementation of digital
twin technology in the manufacturing processes. To meet this goal, the system’s architects
identify the MS stakeholders and develop a context diagram. These stakeholders interact
with the MS as described in the use cases. Then, the system’s architects describe the
system’s top-level use case which is the major usage scenario for the MS. Finally, it presents
the concepts of operations and system domain which characterize the system needs.

3.1.1. Top-Level Use Case

Use cases are actions or events that define the interactions between an agent and
a system to achieve a goal [42]. The system of interest (SOI) considers the digital twin
technology implementation as a top-level use case. The system interacts with operators
and the physical factory. The system needs operators to implement digital twin technology
in the factory. These operators could be programmers, engineers, data analysts, and so on.
Figure 3 shows the system’s top-level use case.
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3.1.2. Stakeholders

The MS stakeholders are all parts interested in the system because the system satisfies
their operational need. The stakeholders’ identification is important to define the system’s
requirements. The system’s life cycle decides who the SOI stakeholders are [31,42]. This
system presents two groups of stakeholders: active and passive. Figure 4 shows the
stakeholder’s diagram.
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Active stakeholders are those who have a continuous participation with the SOI. They
provide inputs and get outputs from the SOI. The active stakeholders for the digital twin
subsystem of a manufacturing system are the following:

• Operators/Programmer: The MS needs operators to work on the DT subsystem and
perform operational tasks such as simulating, monitoring, and controlling. Operators
are key elements in the DT subsystem’s life cycle from its conception to its retirement
or replacement. In return, operators receive a salary for worked hours.

Passive stakeholders do not have a continuous interaction with the system. This does
not mean they are not interested in the system. They are just not active participators in the
system’s lifecycle. The passive stakeholders are the following:

• Owners: The MS needs owners to put money or capital to develop new projects such
as the digital twin implementation on the factory operations. Owners need to invest
in the factory’s structure, machines, equipment, material, labor costs, and so on.

• External Environment: The MS shall be responsible with its environment because
the system gets energy and natural resources from it. Therefore, the system must be
careful with waste emissions to the environment.

• Electrical Subsystem: The electrical energy allows the use of machines and other
equipment, as well as the factory lighting.

• Structural Subsystem: The MS uses the factory facilities as its infrastructure to manage
the business from the materials reception to the delivery of products. This subsystem
is the physical space of the digital twin subsystem.

• Community: The community has similar interests in the SOI as the environment.
Hence, the system shall be responsible with the community. The community shall
accept the factory and support its operations. In return, the factory provides jobs,
products, and services to the society.

• Government: The government regulates the SOI development and operations. It
defines and enforces laws, norms, incentives, rules, regulations, and so. The factory
will retribute the government by obeying the law and paying taxes.

Figure 5 presents the system of interest context diagram that shows the interaction of
stakeholders with the manufacturing system:
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3.1.3. CONOPS and System Domain

The CONOPS and system domain describes the system’s characteristics from a user
perspective. A MS looks to implement digital twin technology in its regular operations.
Digital twin is a smart technology that twin physical objects in the virtual world. DT
simulates real-time data to make decisions. DT optimizes processes and objects in the
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virtual world and applies the results in the real world. DT capabilities are monitoring,
simulating, and controlling manufacturing processes. DT monitors production processes
in real time. DT simulates ‘what-if’ scenarios to prevent or reduce risks and improve
processes. Finally, DT controls the physical system to apply the simulation results [16,47].
Figure 6 shows the digital twin’s CONOPS diagram.
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The CONOPS diagram shows the activities to implement DT in a factory. First, MS
operators identify physical objects in the factory to twin in the virtual world. Then, they
install IoT devices, such as sensors and actuators, in the factory to collect data from and
operate the objects. The third step is to create digital twin models in the virtual world.
The next step is to enable digital twin functionalities such as simulation, monitoring, and
controlling objects. MS workers model the factory processes and add functionalities to the
DT models. Then, the operators connect the DT models to the factory using real-time data.
Finally, they test the DT performance, and certify it. Therefore, the high-level tasks involved
in the CONOPS for the implementation of a digital twin for a manufacturing system are to
install IoT devices, develop digital twin models, enable digital twin functionalities, and
connect the factory to the digital twin. The authors describe these tasks in the use cases
lines below.

3.2. System Requirements

Requirements describe the necessary operational outcomes to fulfill an operational
need. They define the system’s functions and features. From a high-level perspective,
requirements focus more on what the system should do than how to do it. They do not
get into details [31]. This is the case of this system of interest which needs requirements
to fulfill its use cases. The SOI operational need is to implement digital twin technology
in the manufacturing system. Therefore, the system of interest needs three high-level
requirements such as resources, technology, and digital transformation. Figure 7 shows
the system’s high-level requirements in a SysML requirements diagram. Finally, this
section divides the requirements into functional, non-functional, and interface requirements.
Table 1 shows some of the digital twin requirements for a manufacturing system.

3.3. High-Level Design

After defining the system requirements, the system’s architects describe high-level
use cases and design the system’s logical architecture. This section shows use cases with
several tasks that enables the realization of the system’s top-level use case [31]. It also
shows an overall system’s architectural design to satisfy the system requirements. This
architectural design decomposes the system into subsystems and components [42].

Table 1. Some of the digital twin requirements for a manufacturing system.

ID Req. Requirement Description Type of Requirement

1.1.1 Physical The MS shall use physical resources to support the creation of
digital twin models. Non-Functional

1.1.1.1 Infrastructure The MS shall use a physical infrastructure to operate the digital
twin’s “hardware.” Interface

1.1.2 Human The MS owners shall hire employees to implement digital twin in
the manufacturing system. Non-Functional

1.2.1 Smart Machines The operators shall install smart machines that works in a network
setting and makes automated decisions. Functional

1.2.2.3 Data Visualization The DT software should use maps, graphics, dashboards, and so on
to represent data and information. Functional

1.3.1.1 Digital Thread The MS workers shall create a digital thread to connect the physical
space to the virtual space. Functional

1.3.2.3 Objects The MS workers shall digitize physical objects in the system
according to the DT scope. Functional
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3.3.1. Use Cases

The system of interest considers the following use cases: install internet of things (IoT)
devices, develop digital twin models, enable digital twin functionalities, and connect the
factory to the digital twin. These use cases allow the top-level use case of implementing
digital twin technology in the manufacturing system to be achieved. They are high-level
tasks because they are composed of other tasks. Figure 8 shows the system’s use cases.

1. Install IoT devices: This high-level task starts with the selection of IoT devices that
are compatible with the manufacturing system. If they are not compatible, the factory
must select other devices. If they are compatible, the operators proceed with installing
the IoT devices to the factory. Then, the system operators must operate the IoT devices
in the factory. Finally, the operators test the performance of these devices. If the IoT
devices pass the test, they approve their installation. If not, they must be reinstalled.

2. Develop digital twin models: This high-level task starts with the installation of digital
twin software. Then, the operators integrate the IoT devices to the digital twin
software and set the configuration for their use. The next step is the digitization of the
physical objects in the factory by creating computer-aided design (CAD) objects. The
digital twin software must display these CAD objects. Finally, the operators must test
and approve the virtual object’s fidelity with respect to the real objects.

3. Enable digital twin functionalities: This high-level task starts with the operators
mapping the factory processes to mirror them in the digital twin. Then, the operators
define the digital twin functionalities and implement them to the digital twin software.
The next step adds DT functionalities to the virtual models. Finally, operators display
the digital twin functionalities and test their behavior. If the digital twin does not pass
the test, operators must redefine the digital twin functionalities for the virtual models.

4. Connect factory to digital twin: This high-level task uses IoT devices to collect and
centralize data in a database. Then, operators create the digital thread to integrate
the physical manufacturing system and the digital twin. The digital thread enables
the flow of data between the physical and virtual spaces. Finally, operators test the
digital twin performance by feeding data from the factory to the digital twin and vice
versa. They also test the digital twin functionalities. If the digital twin does not pass
the test, operators must check and correct the integration between the physical and
virtual spaces. If the digital twin passes the test, it is ready to be released and used in
the factory’s regular operations.
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3.3.2. System Logical Architecture

A logical architecture is an abstract representation of the requirements. It presents a
structure design that define functions, properties, and interfaces of logical components. It
should be abstract and not give specific detail. Hence, it does not identify physical elements,
but rather a baseline to start developing the physical system. In SysML, logical architecture
uses block definition diagrams (BDD). These blocks or components distinguish from other
diagram’s blocks by the stereotype “Logical.” The logical architecture divides the com-
ponents in four categories or platforms: physical, virtual, information management, and
business. This architecture enables the creation of the system’s physical architecture [42].
The digital twin subsystem defines the logical components from the system’s requirements
in Figure 9.

3.4. Detailed Design

A detailed design shows the physical components that enables the realization of the
system. It presents the system’s physical architecture which derives from the system’s
logical architecture [31]. This section is the last activity of the system’s planning and design.

System Physical Architecture

The physical architecture is a technical representation of the logical architecture. Phys-
ical architecture represents the structure design of the system’s physical components. In
SysML, physical architecture also uses block definition diagrams (BDD). The physical blocks
or components distinguish from other diagrams by the stereotype “Physical.” The physical
architecture divides the components in three main categories: factory, data management,
and DT software. Physical components are actual devices or software objects that realize
logical components [42]. The “factory” physical components are the physical realization of
the “physical platform” logical components. The “data management” components realize
the “information management platform” logical component. Finally, the “DT software” re-
alizes the “virtual platform” logical component. The digital twin subsystem model defines
the physical components based on the previous logical architecture in Figure 10.
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4. Small-Scale Digital Twin Implementation Framework for Manufacturing Systems

This study proposes a framework to develop digital twins in manufacturing domains.
This study considers the general configuration of digital twin technology and the digital
twin components presented in the literature review. This configuration presents three main
spaces or systems which are physical, virtual, and information. It allows the continuous
dataflow through all spaces. It gives the digital twin updated information from the real
world. It also helps to make better decisions and improve processes in the physical
systems [4,12,14]. This framework also takes into consideration the system modelling
presented above. It employs the use cases and system requirements to define the digital
twin main goal, capabilities, and functionalities. It uses the system’s logical and physical
architecture to define some key concepts part of a digital twin design. Figure 11 presents a
framework to implement the digital twin in manufacturing systems.
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This article develops a step-by-step process to use this framework and implement
digital twins in a manufacturing system. The steps are the following:

1. Define what processes, products, or system to twin in the virtual space.
2. Install perception devices such as sensors, actuators, tags, and readers in the physical

layer.
3. Create a database management system that give access to different type of databases.
4. Enable a digital thread that connects different types of data, devices, and systems.
5. Install a digital twin software that shows digital twin models and data and enables

user’s operation.
6. Create digital twin models with their properties in the DT software.
7. Enable digital twin functionalities such as feeding data to DT models.

There are some non-mandatory steps that users could follow to improve the digital
twin maturity. One step is using a digital twin ontology to be familiar with DT concepts and
relationships. Another step is integrating enabling technologies such as cloud computing,
artificial intelligence, and so on to improve the system’s digital twin.

After presenting the digital twin implementation framework for manufacturing sys-
tems, this study explains in detail the framework spaces, layers, and concepts lines below.

4.1. Physical Space

The physical space is a complex environment with many components interacting
between each other. This article encompasses a discrete manufacturing system and its
processes. It presents many processes such as product manufacturing, maintenance, logis-
tics, product development, and so on. These processes have rules and a common physical
constraint [48]. The system must install sensors over the physical asset that they want to
resemble in the virtual space. This data helps to resemble the behavior and structure of
objects and create digital twin models.

The physical space provides real-time data to enable digital twin capabilities such
as simulation, control, and monitoring. These capabilities allow the physical objects and
predict potential outcomes to be analyzed. Digital twin technology allows the physical
space to control its objects automatically. It uses sensors and actuators in the real world to
automatize processes. It will capture all the physical objects lifecycle in the virtual space
through the information space [49]. This space presents two layers: thephysical layer and
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the perception layer, with their respective components. The physical layer contains several
physical objects that collect and send data to the virtual space for its analysis. It creates a
network of objects that collaborate with each other to perform processes. The perception
layer collects data and execute commands in the physical space.

The physical layer components for this framework are processes, objects, layout,
workers, and flows. Physical processes are manufacturing activities to develop product
from raw materials. They are a set of statements that assign certain behavior to a product.
These processes transform inputs into end-products. Production processes create a system
that interacts with other system to deliver products to customers [50]. Objects are entities
such as machines, materials, parts, products, tools, and so on present in the physical space
of the factory. These objects go through certain processes in a layout. Some of these objects
(machines, parts, tools) are smart devices that connect to other devices creating a network
or internet of things. They can provide real-time data about the manufacturing processes
to the digital twin application and model layer. They can also receive feedback from these
layers. The objects that are not smart need the perception layer components to send to
and receive data from the virtual space. These objects share data such as position in the
layout and status. Objects that use digital twins can enhance or develop an augmented
perception of their physical environment [12,51]. The layout is the factory’s floor that
distributes the different objects, modules, and stations. It is the physical space where the
processes transform resources into end-products. Factories layouts could be complex due
to the high amount and variability of parameters. This complexity is related to the selection
and positioning of objects. Digital twin can solve this complexity and improve a layout
structure [7,52]. Workers are the human force that develop or assemble new products in a
factory. Factories must match processes with skilled labor to fulfill production goals. This
is a challenge that could decide a factory’s productivity. Hence, productivity is related
to the working layout and conditions in which workers perform their tasks. Workers are
an essential component in the mechanical, physical, or chemical transformation of raw
materials. Nevertheless, complex manufacturing systems such as additive manufacturing
could replace workers with sophisticated but flexible machines [53,54]. Finally, flows
are a sequence of processes which products follow in a manufacturing layout. They link
different process parameters and organize them to finish at a certain time. They allow
factories to design their work by defining the flow of people, materials, processes, and so
on. This provides reliability and predictability to the factory’s operations. They define the
production lead time and capabilities that ensure the production of quality products [55,56].

The perception layer is in charge of collecting data from the physical space. It presents
the following components: actuators, sensors, readers, and tags. A digital twin uses sensors
to collect data of changes in the real world such as images, motion, pressure, and so on. Data
are relevant for feeding digital twin models constantly in the virtual space. Sensors, being
part of the IoT, can monitor and control processes. They can also upgrade standard devices
into smart devices with network connectivity [57,58]. Actuators help machines, tools, or
other devices to execute changes in the physical space. It uses electrical or hydraulic energy
to command mechanical movements. Factories use them for opening doors, stop motions,
execute motions, accelerate/deaccelerate, etc. Common types of actuators are pneumatic,
electric, and electro-hydraulic [3,57,59]. Tags and readers are radio frequency identification
(RFID) devices. Readers emit and receive signals from the tags. Tags communicate the
location of the physical object [52].

4.2. Virtual Space

Digital twin uses the virtual space to show the physical objects in the virtual world.
The virtual space is a copy of the physical space. It transforms physical objects into virtual
objects. It resembles all characteristics of the physical counterpart. The virtual space
displays the structure, behavior, information, and so on of the physical object [60,61]. It also
displays diverse types of digital twin models based on components, assets, processes, and
systems. IBM [62] explains that a digital twin for manufacturing systems could integrate
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different digital twin models into a composite digital twin system. The virtual models
allow the analysis of data and the improvement of the physical system. The digital twin
goal is to implement post-analysis solutions in the physical system.

Digital twin recognizes every change on the physical asset. The virtual space mirrors
its counterpart in the real world. It has different capabilities such as control, diagnostics,
and prognostics [49]. It receives real-time data from the physical system to analyze it and
give feedback to the physical system. It shows the system’s current situation and potential
cases. The virtual space allows the design and test of new models [63]. The simulation
capability plays with the physical objects to propose potential changes for the benefit of the
system. It can simulate the system’s physics and structure. This capability allows operators
to make better informed decisions throughout the system’s lifecycle [7]. However, digital
twin is more than a simulation tool [64]. Digital twin is a flexible and agile technology that
works with real-time data under different use cases [22]. The user can monitor the physical
space changes through the virtual space. It updates the virtual objects in real time. It can
control physical objects from the virtual space using actuators in the physical space. These
capabilities analyze data and provide information about the objects, processes, and services.
All these add value and improve the system’s operations.

The proposed framework presents two layers in the virtual space: application and
model. The application layer analyzes data and sends useful information to the physical
space. This layer helps employees to make better informed decisions. It analyzes short,
medium, and long-term data. The application layer concepts are user interface, capa-
bilities, and functionalities. User interface is the software that enables a human–digital
twin technology interface. It shows the digital twin models and data. It allows users
to operate the digital twin functionalities and capabilities. It helps operators to make
data-driven decisions [65,66]. Digital twin presents main capabilities such as modelling,
simulating, monitoring, and controlling. DT adds these capabilities to physical systems,
improving their processes and functionalities. It also improves the efficiency and accuracy
of physical objects. It makes physical systems smart with powerful communication and
computing capabilities. DT capabilities enable a better simulation environment in terms
of fidelity, speed, and granularity. A customized DT can choose the number and types of
capabilities [3,33,49]. Finally, DT present some functionalities such as creating virtual mod-
els from physical objects, resembling the behavior of physical objects in the virtual space,
using real-time data, providing feedback to the physical system, designing better products,
solving complex problems, testing innovative ideas, and so on. These functionalities vary
depending on the type of manufacturing system and the digital twin scope [67].

The model layer allows the DT to replicate physical objects in the virtual space. It
presents all the characteristics of the physical objects. Based on the DT model level of
fidelity, it could be indistinguishable from the physical object that it resembles. The model
layer components are rules, physics, geometry, structure, and behavior. Digital twin rules
are a group of triggers, conditions, and effects in the virtual models. These rules play an
important role in deciding the digital twin system’s architecture [68]. Physics-based digital
twins are models that resemble the governing laws of nature such as space, time, and so on.
These type of DT models require a great computational resource and processes. Currently,
engineers use physics-based models for finite element analysis (FEA). Engineers should
also consider the physics of objects for developing DT models. Physics-based models
present benefits such as reliability and predictability [69]. Digital twin models must also
consider geometry to design physical objects. Geometry describes the size, shape, position,
and properties of physical objects. It could represent the digital twin in two-dimensional
(2D) or three-dimensional (3D) form. Geometry elements are points, curves, lines, surfaces,
bodies, patches, etc. These are necessary to form a solid geometric model. The collection of
geometric objects leads to the creation of a mesh [67,70]. The structure concept organizes
system components, elements, or parts, and presents its internal and external connections.
It decomposes objects or classes into subcategories or subclasses. Then, it integrates them
based on causal or correlational relationships. It describes value properties, interfaces, flows,
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and constraints. The user interface displays the DT model’s structure hierarchy [40,71].
The last concept in the model layer is behavior. Behavior defines the interaction between
DT models such as activities, state machines, and sequences. There are two types of
behaviors based on functions and state. The function-oriented behavior studies DT model
activities, connections, and compositions. It shows the execution of activities such as the
transformation of inputs into outputs. The state-based behavior studies the changing of
models before and after function execution. DT models can show the history of objects
through different transitions. Behaviors enable or realize DT capabilities. It can change the
DT model’s property values and structure [72,73].

4.3. Information Space

The information space connects and enables a bi-directional communication between
the physical and virtual space. This space supports the digital twin’s internal and external
communication in real time. It supports the system’s network and internet connection.
Connectivity helps in the development and evolution of digital twins [60]. It supports the
creation of a digital thread which generates data traceability keeping operators informed.
Digital twin uses a digital thread to send and receive data from the physical and virtual
space. Moreover, a digital thread allows the digital twin to analyze a system’s lifecycle
and integrate the system’s components. Finally, it connects the digital twin with external
systems that belong to the manufacturing supply chain [52,74].

Information space supports a continuous exchange of data between the physical and
virtual space. This interaction enables all digital twin functionalities. This space helps to
model objects, processes, systems, and end-products. After analyzing data, the virtual space
uses the information space to give feedback to the physical space. Dataflow is important
to predict failures and improve the system. Database abstracts physical space data and
shares it with the different system components. It collects, compiles, preprocess, and stores
data from both spaces. Digital twin uses historical data to create better solutions such
as predictions, prescriptions, and diagnosis of the physical system [4,57,69]. This makes
digital twin a smart technology able to learn.

The proposed framework includes the middleware layer in the information space. The
middleware layer is an intermediary between the physical space and virtual space [75,76].
It manages communication between the two spaces. It uses a wireless or wired connection
for this purpose. It stores real-time data collected in the physical space. It processes data
and sends it to the virtual space for analysis. This layer feeds data to the application
layer in the virtual space. It has two main functions: networking and data management.
The networking function aims to exchange information along the distributed network of
applications and objects. It allows the communication between the physical and model
layer. The data management function stores data and supports the middleware to perform
its processes [60,77,78].

The middleware layer components are network, cybersecurity, processes, and databases.
Digital twin network connects objects from the physical space to the application layer. This
network enables digital twin functionalities. A DT network focuses on communication tech-
nology and wireless communication. It allows continuous communication and transfers
data between objects. It integrates several types of components with different communi-
cation protocols and technologies [4,79]. Cybersecurity looks to protect the virtual and
physical space from threats such as malware, eavesdropping attacks, man-in-the-middle
(MitM) attacks, denial-of-service (DOS) attacks, and so on. It defines policies, best practices,
tools, guidelines, and technologies to assess risk, mitigate potential damage, and counterat-
tack cybercriminals. It maintains the confidentiality and availability of information and
data. An example of cybersecurity for digital twins are the authentication and authorization
security processes. The authentication process verifies the user’s identity. It determines if
they are true or valid users. Authorization checks the user’s access rights. It authorizes
or denies their access. Digital twins could be a tool to enhance the cybersecurity of a
factory. It could help to recognize attacks in real-time. Moreover, it could simulate potential
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threats or damages to the system. DT can help to build a better security system [80,81].
Middleware processes connect different software, physical components, and data to bring
a single centralized service to users. It links new applications such as digital twin to the
manufacturing system. It manages different devices in the physical layer, allowing com-
munication between them. It manages applications, provides internet connection, and
allows the sending and receiving of data between layers [75,76]. The last concept in the
middleware layer is the database management system (DMS). A DMS is a software that
allows users to create and manage databases. It has several databases with different types
of data. Databases store data from physical objects, processes, products, and so on. DMS
can give access to several apps and users at the same time. It also brings security to data
due to its centralized storage capability. Digital twins process a great amount of data to
analyze, perform functionalities, and make decisions [82,83].

5. Discussion

This article follows a methodological structure to build a DT implementation frame-
work. Frameworks provide a guideline that makes the development of digital twins easier.
This framework intends to be easy to learn and precise in terms of concepts. They collect
many concepts under a defined structure. It explains how to collect relevant concepts,
and classify them in classes, spaces, or layers. It analyzes these concepts and their rela-
tionships, properties, and functions. It creates a structure based on their taxonomy. This
framework could help small factories to build a digital twin of their products, processes,
and systems. They are an effective tool to learn about digital twins and how to implement
it in a manufacturing environment.

Before building the digital twin implementation framework, this article studies the
complexities of digital twin in the literature review. The digital twin implementation
framework uses data found in the literature review and digital twin subsystem model.
This framework organizes the concepts in a general digital twin configuration with three
spaces: physical, information, and virtual. Physical space presents two layers: physical
and perception. Information space has a single layer: middleware. Virtual space presents
two layers: application and model. In addition to these layers, In addition to these layers,
users could use other concepts for the development and operation of a digital twin, such as
ontology and enabling technologies. These concepts could help increase the maturity of a
digital twin, but they are dispensable in its implementation.

Through the modelling of a digital twin subsystem, it is noticeable that DT is a complex
system. It was necessary to use a MBSE approach to design it. MBSE provides consistency,
traceability, and precision to the digital twin subsystem design. The systems modelling
helped to build the digital twin implementation framework. It presents CONOPS, stake-
holders, requirements, use cases, logical architecture, and physical architecture. It considers
the implementation of digital twins in manufacturing as an operational need. It explains
with use cases how to implement digital twins. It describes missions, requirements, activi-
ties, functions, objects, relationships between objects, and integration of spaces. It explores
several devices and concepts for the physical and virtual spaces. It presents a logical and
physical architecture that defines the abstract and technical components necessary for
DT implementation.

This study presents a concise description of the DT implementation framework to
help researchers and practitioners understand it. The digital twin implementation starts in
the physical space. The physical space uses the perception layer components to get data
from the physical layer. The physical layer components are the factory processes, machines,
layout, tools, and every object that is physically there. The data travels through the
information space to the virtual space. The information space saves all data in a database
and digitizes it. It also enables the entire system to connect with other systems. The
digitized data feeds the model and application layer in the virtual space. The application
layer is the interface between the operator and the virtual world. It shows the digital twin
software, capabilities, and functionalities. Digital twin software is the computer program
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designed for end-users. Digital twin capabilities are simulation, monitoring, and diagnosis.
The digital twin system has many functionalities in a factory. The systems modelling
presents some high-level functionalities. Finally, the model layer represents the physical
objects in the virtual space with all its characteristics, behaviors, structure, geometry, level
of fidelity, and rules.

Finally, this study proposes a new definition for digital twins. “Digital twins are
virtual objects that mirror physical objects in the virtual world. Digital twins’ characteristics,
behaviors, functionalities, and connectivity vary according to their level of maturity.” This
definition uses the verb mirror which means to show a reflection of a physical object. This
reflection shows the characteristics and data of the original object. This new mirrored
object is part of the virtual world. A channel or thread connects and allows communication
between the physical and virtual object. Digital twin can be as complex as the system wants
it to be. The system scope and desired functionalities decide the level of maturity of the
digital twins.

6. Conclusions and Future Research

This article proposed a small-scale digital twin implementation framework for man-
ufacturing systems. The authors used several concepts from the literature review and a
digital twin model for manufacturing systems to build this framework. They developed a
digital twin model using a MBSE approach. This model helped to define the DT concepts
used later in the digital twin implementation framework. This framework uses a digital
twin configuration with three spaces: physical, virtual, and information. These spaces have
a continuous interaction to enable digital twin functionalities. These spaces present some
layers with different concepts. This structure helps researchers and practitioners to learn
about digital twins and apply it on their domains.

The development of a digital twin implementation framework highlights some digital
twin characteristics. Digital twin is a modern technology that enables smart manufacturing,
along with artificial intelligence, cloud computing, and so on. Digital twin looks to support
different operations in the factory. It presents some functionalities such as collecting data,
processing data, performing simulations, solving problems, and allowing communication
between spaces. Digital twin provides feedback from predictions, prescriptions, and
descriptions of current and potential situations to the physical space.

Moreover, this framework provides some conclusions for DT operations. DT must
enable connection between different devices and applications. It must manage different
devices and standardize them. It should help users to make data-driven decisions. It must
define the traceability of data from the physical space, through the information space, and
to the virtual space. It should be flexible to implement new functionalities and connect new
devices and applications to the DT domain.

Finally, this article proposes future research for digital twin development. Future
research needs to validate the proposed digital twin implementation framework. It must
use the framework to create digital twin models of a factory. Manufacturing case studies
are needed to apply the framework. This study could confirm that the proposed framework
helps to create a small-scale digital twin for a manufacturing system. Future investigation
could also refine the framework and include more concepts relevant to the DT development.
This research could lead other researchers to work on DT implementation for manufacturing
systems. For instance, researchers can use the proposed framework and compare it to other
frameworks in the literature.
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