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Abstract: The dense population and the large amount of domestic waste generated make it difficult
to determine the best route and departure time for waste removal trucks in a city. Aiming at the
problems of municipal solid waste (MSW) removal and transportation not in time, high collection
and transportation costs and high carbon emissions, this paper studies the vehicle routing problem of
municipal solid waste removal under the influence of time-dependent travel time, traffic congestion
and carbon emissions. In this paper, a dual objective model with the lowest total economic cost and
the highest garbage removal efficiency is established, and a DCD-DE-NSGAII algorithm based on
Dynamic Crowding Distance and Differential Evolution is designed to improve the search ability,
improve the convergence speed and increase the diversity of the optimal solution set. The results
show that: according to the actual situation of garbage collection and transportation, the method can
scientifically plan the garbage collection and transportation route, give a reasonable garbage collec-
tion scheme and departure time, and effectively avoid traffic congestion time; Through algorithm
comparison, the algorithm and model proposed in this paper can reduce collection and transportation
costs, improve transportation efficiency and reduce environmental pollution.

Keywords: vehicle routing problem for garbage collection; improved NSGA-II algorithm; time-dependent;
traffic congestion; carbon emissions

1. Introduction

With the expansion of urban scale and the continuous improvement of residents’
consumption level, the production of municipal solid waste (MSW) is growing rapidly, and
the problem of MSW is becoming more and more serious. Untimely garbage collection
and transportation, high cost of garbage collection and transportation and high carbon
emissions will bring a series of problems to society, economy and environment, which will
greatly affect the development of a city. Because of it is particularly important to establish a
reasonable vehicle scheduling model for MSW collection and transportation, and give a
scientific and reasonable waste collection route, garbage collection schemes and vehicle
departure time schemes.

1.1. Related work
1.1.1. VRP

Waste Collection vehicle routing problem (WC-VRP) is essentially a VRP, but it is
different from the traditional VRP. It needs to consider more constraints and factors, such
as time window constraints, vehicle capacity constraints, various vehicle types, garbage
station capacity constraints, nodes need to be accessed by multiple vehicles, traffic conges-
tion, and special conditions of road networks caused by weather changes. Aiming at the
problem of garbage collection vehicle routing in different situations, scholars in domestic
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and foreign have conducted a series of studies. Molina et al. [1] changed the economically
focused objective of the traditional waste removal vehicle path problem, which does not
take into account the importance of the environment. A model with ecological efficiency
as the goal was proposed and solved it using a variable neighborhood forbidden search
algorithm, which was validated on a real problem in the city of Guadaira, within the Seville
(Spain) metropolitan area. Nurprihatin et al. [2] considered the constraints of split delivery,
multiple trips, time windows, and different vehicle types, and established a WC-VRP
model with the minimum total cost and travel distance as the optimization goal. Farrokhi-
Asl et al. [3] established a social and economic dual-objective garbage collection model
with time window constraint, solved it by NSGA-II algorithm and MOPSO algorithm
respectively, and proved that NSGA-II algorithm can obtain better results. Rabani et al. [4]
considered different vehicle types, time window constraints, vehicle capacity constraints
and site capacity constraints, and established a model with the lowest transportation
cost, the smallest number of vehicles used and the minimum number of disposal centers.
Hina et al. [5] proposed a two-city garbage collection vehicle path planning method, which
considers regional constraints, vehicle capacity and time window constraints, and estab-
lished a model aiming at the minimum vehicle driving distance. The model provides a
decision-making basis for municipal management departments to effectively clear and
transport solid waste. Ahlaqqach et al. [6] established a VRP model for medical waste
removal, considering the heterogeneity of vehicles, the risk of waste collection and time
window constraints, and solve it with a genetic algorithm. Dereci et al. [7] considered both
solid waste optimization and VRP to solve the route optimization problem with multiple
heuristic and meta-heuristic algorithms with the objective of solid waste collection route
optimization in Istanbul Umraniye district.

1.1.2. GVRP

Through the above literature on garbage removal vehicle routing, it is found that
most studies only consider economic factors, rarely consider environmental factors, and
there is a lack of research on carbon emissions calculation methods. Therefore, this pa-
per considers the factor of carbon emissions in the model construction, and at the same
time, a large number of domestic and foreign research on green vehicle routing problem
(GVRP). Niu et al. [8] proposed a formula to calculate carbon emissions, and modeled
it with the goal of minimum cost of carbon emissions, fuel consumption and driver’s
salary. Rauniyar et al. [9] constructed a GVRP model with the goal of minimizing the
total cost and total travel distance with capacity constraints, and solve it by genetic al-
gorithm. Qiu et al. [10] established and solved a multi-objective green vehicle routing
model with the goal of minimizing fuel consumption, penalty cost and distribution income
variance. Zhou Guo et al. [11] constructed a mathematical optimization model for the
GVRP of multi-to-many cross-docking distribution with the goal of minimizing the sum of
vehicle operation cost, carbon emission cost and fuel consumption cost. Zhou et al. [12]
and Erdoğdu et al. [13] established the dual-objective GVRP and designed algorithms to
solve it.

1.1.3. TDGVRP

Most of the above research results focus on the GVRP with constant vehicle speed,
but the variability of vehicle speed needs to be considered in the actual traffic network.
Soysal [14] and Cimen [15] expressed the time-dependent GVRP (TDGVRP) of variable
speed as a Markov decision process and solved it by dynamic programming. Considering
the effects of time-dependent speed and carbon emissions and load on vehicle fuel con-
sumption, Zhou et al. [16,17] constructed a multi-objective TDGVRP model and designed
an improved ant colony algorithm to solve it. Ge Xianlong et al. [18] considered the factor
of time-dependent traffic congestion, established a dual-objective model with minimum
carbon emissions and minimum travel time, and solved it with an improved tabu search
algorithm. Chen Cheng et al. [19] studied the VRP of city distribution based on the spa-
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tiotemporal dynamics of speed, and incorporated the carbon emissions cost into the model,
and solved it by the variable neighborhood search algorithm. Zhu Lan et al. [20] proposed
a time-dependent green vehicle routing model to reduce transportation costs and environ-
mental pollution by optimizing transportation routes and departure times. Luo et al. [21]
considered the TDGVRP with traffic congestion, developed a set partition formulation
(SPF), and proposed a branch-price-and-cut (BPC) algorithm to solve it. Liu et al. [22]
studied the time-dependent GVRP with time windows (TDGVRPTW) considering time-
dependent travel times and time window constraints and integrating the minimization of
carbon emissions, and designed an efficient adaptive large neighborhood search (ALNS)
algorithm to solve it.

1.1.4. Non-Dominated Sorting Genetic Algorithm

The Non-Dominated Sorting Genetic Algorithm (NSGA-II) based Genetic Algorithm
(GA) can be used to solve multi-objective optimization problems and was originally pro-
posed by Deb et al. in 2000 [23] and the complete research article was published in 2002 [24].
In the review of NSGA-II, Verma et al. [25] summarized the application of NSGA-II and
its variants in specific Combinatorial Optimization Problems (COPS), such as assignment
problem, traveling salesman problem, vehicle routing problem (VRP) and scheduling prob-
lem, etc. The following article briefly introduces the application of NSGA-II in VRP. Xu
et al. [26] introduced a hybrid algorithm involving NSGA-II and Or-opt heuristic to solve a
multi-objective model for VRPTW. Liu et al. [27] proposed a four-objective dynamic routing
planning problem to achieve simpler routing and better user experience, and designed
and used the NSGA-II node-based crossover operator to solve the proposed model. Wang
Y et al. [28] combined k-means and NSGA-II to propose a hybrid heuristic algorithm
(HNSGA-II) for solving the collaborative multiple centers vehicle routing problem with
simultaneous delivery and pickup (CMCVRPSDP), and compared it with the traditional
NSGA-II and Multi-Objective Particle Swarm Optimization (MOPSO) algorithms, and
the results showed that HNSGA-II has better performance in objective function values.
Srivastava et al. [29] proposed a NSGA-II based algorithm to solve VRPTW with five
generic objectives, and the results showed the superiority of this algorithm compared to
previous methods.

1.2. Our Contributions and Overview of the Paper

In summary, the existing results have laid a good theoretical foundation for further
research on the routing problem of MSW removal, but there are still research gaps as
follows: (1) Most of the studies are on single vehicle types, and there are fewer studies on
multi-vehicle cases. (2) Vehicles visit each node only once, and there is a lack of studies
on nodes visited by multiple vehicles. (3) When studying the effects of different vehicle
speeds on path planning in time-dependent road networks, most assume that vehicles start
at the same moment, and there is a relative lack of research results on vehicles starting from
different times to avoid traffic congestion.

The purpose of this study is to find the best route and vehicle start time to meet the
demand by considering the MSW collection process in Ma’anshan City. All data used in
this paper were obtained from the Environmental Health Management Department of
Ma’anshan City. The contributions of this paper are summarized as follows:

• In this paper, we introduce traffic congestion coefficients to simulate the conges-
tion level of roads at different time periods, and consider constraints such as multi-
ple vehicle types, multiple vehicle visits, different vehicle departure moments, and
time windows to construct and solve a multi-objective model with minimum to-
tal economic cost and minimum total timeout. The traditional NSGA-II algorithm
search weak search capability and poor convergence in solving multi-objectives, so
we design a DCD-DE-NSGAII algorithm based on Dynamic Crowding Distance and
Differential Evolution;
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• The model and the proposed algorithm can give reasonable vehicle scheduling scheme
according to the preference of decision maker, which can provide solutions and sug-
gestions for government departments to solve the problems of untimely urban waste
removal and high cost of collection and transportation.

The remain of the paper is organized as follows. Section 2 describes the main research
problem and model of this paper. Section 3 describes the DCD-DE-NSGAII algorithm
in detail. Section 4 reports the data analysis of the examples in the literature. Section 5
summarizes the research and discusses future research directions.

2. Problem and Model
2.1. Problem Description

This paper investigates the specific situation of garbage removal in Ma’anshan City,
and the actual situation of waste removal vehicle dispatching in Ma’anshan City was
modeled. The problem is described as follows: the garbage trucks (all garbage trucks are
parked at the City Administration) are uniformly sent by the sanitation department of the
City Administration to collect garbage at various waste transfer stations and transported
it to Xiangshan waste incineration plant. After the garbage trucks are transported to
the waste incineration plant, they return to the city center to continue collecting and
transporting garbage (do not return to the City Administration), and then to Xiangshan
waste incineration plant until the day’s cleaning and transportation task is completed. The
location of each garbage transfer station and the amount of garbage are known, and the
driving speed of vehicles in different time periods is affected by traffic conditions. The
optimization model is to establish with the objective of lowest the total cost and total
timeout (the sum of the time when the moment of completion of each garbage station’s
removal exceeds the latest time window specified for that garbage station). To further
clarify the research of this scope of this paper, the following hypotheses are proposed.

(1) The garbage truck has two types of heavy load (maximum load: 8 tons) and light
duty (maximum load: 5 tons). There are 45 garbage trucks in total in the City Admin-
istration Environmental Sanitation Department. All garbage trucks must return to the
Sanitation Department before 18:00;

(2) According to the actual needs, different vehicles can set off at different times, but
it must be ensured that a garbage truck is sent out at 5: 30 am, and the rest of the
garbage trucks can be sent out in succession;

(3) The vehicle runs at a normal speed during the normal driving period, and runs at a
congestion speed during the traffic congestion period;

(4) For stations with a high volume of waste, determine which vehicles will be transported
according to the nearest principle;

(5) The amount of garbage loaded cannot exceed the maximum capacity of the vehicle,
and if a garbage truck is not full at a transfer station, it can be judged according
to the nearest principle whether the truck should go to the next transfer station to
continue loading;

(6) Each garbage transfer station has a service time window requirement. Each garbage
transfer station does not have the earliest time window requirement, but has the latest
time window requirement. The time for each garbage station to complete the day’s
cleaning task exceeds its latest time window;

(7) Not all of the 45 garbage trucks have to be sent out. If the car in front of them can
ensure that the amount of garbage can be delivered for the day, stop the departure;
the drivers of garbage trucks have a rest from 12:00–14:30 noon, and the drivers
who arrive at the transfer station during this time will have a rest, and not carry out
garbage transportation;

(8) All garbage of all garbage transfer stations must be cleared daily;
(9) The usage cost includes vehicle travel time cost, service time cost and fixed departure cost;
(10) The service time for the vehicles to collect garbage at each transfer station is 10 min,

and the time for the garbage trucks to reach the incineration plant to unload garbage
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is also 10 min. In addition, during the service period, the engine is closed without fuel
consumption and carbon emissions;

(11) Using multiple models for distribution, the weight, maximum load and fixed start-up
cost of each model are different;

(12) It is assumed that the daily traffic congestion time periods are 7:00–9:00 and 17:00–18:00
respectively, and the rest of the time periods are set as normal driving time periods.

2.2. Symbols and Variables

The meanings of variables, sets, and decision variables are shown in Table 1.

Table 1. The meanings of variables, sets, and decision variables.

Symbol Meaning Symbol Meaning

P Collection of refuse transfer stations,
P = {1, 2, 3 . . . .N}; C Municipal sanitation department and waste

incineration plant collection, C = {0, N + 1};
A Node set, A = P ∪ C; E Road set between nodes;

Dij The distance from node i to node j; H Vehicle h set, H =
{

1, 2, 3, . . . .nq + nz
}

;
nq Number of light-duty garbage trucks; nz Number of heavy-duty garbage trucks;

HQq The maximum load of light load garbage trucks; HQz The maximum load of heavy-duty garbage truck;

HQ Maximum load collection of garbage trucks;
HQ = HQq ∪ HQz; Qi Daily garbage volume of transfer station i;

qih
The amount of garbage loaded by vehicle h at

transfer station i; LTi
The latest time that each transfer station

allows service;
K The set of time period k; bk The start time of time period k;
ek The end time of time period k; v f Vehicle speed in non-congested time period;
vc Vehicle speed during congested time periods; βih Time of arrival of vehicle h to transfer station;
lih Time of vehicle h leaving transfer station i; sih Service time of vehicle h at transfer station i;

ATi
The time when all the garbage in the transfer

station has been removed; C f Unit fuel consumption cost, unit one liter;

Ce Unit carbon emissions cost, unit kg; µ Unit time cost of vehicle use, unit min;

ψ Driver unit time wage cost, unit hour; ζ
Fixed departure fee for garbage truck, unit vehicle;

ζ = ζq ∪ ζz;

ζq
Light-duty garbage truck fixed departure fee,

unit vehicle; ζz
Heavy-duty garbage truck fixed departure cost,

unit vehicle;

Vijk
The speed of the vehicle on the road (i, j) during

time period k; tijk The time of vehicle h running the whole road (i, j);

dijkh
The mileage of vehicle h on road (i, j) at speed Vijk

in time period k; tijkh
The time that vehicle h travels on the road (i, j) at

speed Vijk in time period k;

FCijkh
The fuel consumption of vehicle h on road (i, j) in

time period k, unit one liter; ECijkh
The carbon emissions of vehicle h on road (i, j) in

time period k, unit kg;

Xih
0–1 variable with a value of 1 when transit station i

is served by vehicle h and 0 otherwise; Xij
0–1 variable, which is 1 when there is a vehicle on

the road, otherwise 0;

σh
0–1 variable, 1 when the vehicle is used,

0 otherwise; yijh
0–1 variable, when the vehicle h travels from node

i to node j, it is 1, otherwise it is 0.

Zijkh
0–1 variable, 1 when vehicle h travels from node i

to node j in time period k, 0 otherwise;

2.3. Mathematical Model

This model has two objective functions, the first objective is to minimize the sum of
carbon emission cost, vehicle fuel consumption cost, driver’s wage cost and vehicle use cost,
and the second is to minimize the total overtime time (to effectively quantify waste removal
efficiency by total vehicle overtime time). A multi-objective, multi-vehicle VRP model
with capacity constraints, time window constraints and multi-vehicle access considering
the influence of time-dependent vehicle speed and carbon emissions are constructed,
as follows:

min f 1 = C1 + C2 + C3 + C4 (1)
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C1 = ∑
h∈H

∑
i∈A

∑
j∈A

∑
k∈K

FCijkhC f Zijkh (2)

C2 = ∑
h∈H

∑
iεA

∑
jεA

∑
kεK

ECijkhCeZijkh (3)

C3 = ∑
h∈H

∑
i∈A

∑
j∈A

∑
k∈K

µtijkhZijkh + ∑
h∈H

∑
i∈A

µsihXih + ∑
h∈H

σhζ (4)

C4 = ∑
h∈H

∑
i∈A

∑
j∈A

∑
k∈K

ψtijkhZijkh + ∑
h∈H

∑
i∈A

ψSihXih (5)

min f2 = sum(max{ATi − LTi, 0}) (6)

s.t.
∑

h∈H
Xih ≥ 1 ∀i ∈ N (7)

yijh ≥ Zijkh, ∀(i, j ∈ A, k ∈ K, h ∈ H) (8)

yijh ≤ ∑
k∈K

Zijkh, ∀(i, j ∈ A, h ∈ H) (9)

∑
i∈N

yijh = ∑
j∈N

yijh, ∀h ∈ H (10)

dijkh ≤ DijZijkh, ∀(i, j ∈ A, k ∈ K, h ∈ H) (11)

∑
k∈K

∑
h∈H

dijkh = DijXij, ∀(i, j) ∈ A (12)

βih + Sih ≤ lih, ∀i ∈ A, h ∈ H (13)

tijh = ∑
k∈K

tijkhyijh, ∀i ∈ N, j ∈ N, h ∈ H (14)

β jh = lih + tih (15)

∑
i∈P

∑
j∈P

∑
h∈H

qihyijh ≤ HQ, ∀h ∈ H (16)

∑
i∈P

∑
h∈H

qihXih = Qi (17)

∑
h∈H

σh ≤ nq + nz (18)

Dij ≥ 0, Qi ≥ 0, qih ≥ 0, HQq ≥ 0, HQz ≥ 0
LTi ≥ 0, ATi ≥ 0, βih ≥ 0, lih ≥ 0, Sih ≥ 0
bk ≥ 0, ek ≥ 0, Vijk ≥ 0, dijkh ≥ 0, tijkh ≥ 0

 (19)

Xih ∈ {0, 1}, Xij ∈ {0, 1}, σh ∈ {0, 1}
yijh ∈ {0, 1}, Zijkh ∈ {0, 1}

}
(20)

The objective function f1 represents the minimum total economic cost of garbage
removal, where C1 represents the fuel consumption cost of garbage trucks, C2 represents
the carbon emissions cost, C3 represents the use cost of garbage trucks, including vehicle
driving time cost, vehicle garbage loading and unloading time cost and fixed departure cost,
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C4 represents the driver’s wage cost; The objective function f2 represents the minimum
total timeout (the sum of time when each garbage station completes the cleaning task
exceeds the latest time window of the garbage station); Equation (7) indicates that each
transfer station can be served multiple times by the garbage truck; Equations (8) and (9)
represents the restriction relationship between variables yijh and Zijkh; Equation (10) en-
sures that the arrival and departure of the vehicle are the same demand point; Equation (11)
represents the restriction relationship between variable dijkh and Dij; Equation (12) ensures
that the vehicle will drive a complete road as long as the road is selected by the vehicle;
Equation (13) represents the relationship between vehicle arrival time at the transit sta-
tion, service time and departure time; Equation (14) represents the calculation of the full
travel time of the vehicle on the road (i, j); Equation (15) represents the time connection
relationship of vehicles driving on different road sections; Equation (16) represents the
capacity constraint of the vehicle; Equation (17) means that the garbage of each site must be
cleared; Equation (18) indicates that the number of vehicles used shall not be greater than
the maximum number of vehicles in the sanitation department; Equations (19) and (20)
represent variable value constraints.

2.4. Fuel Consumption and Carbon Emissions Calculation

In this paper, the CMEM (Comprehensive Modal Emission Model) proposed by
Barth [30] is used to calculate the vehicle fuel consumption to make the calculation more
realistic. If the driving distance of vehicle h on the road (i, j) in time period k is dijkh, the
calculation of vehicle fuel consumption is shown in Equation (21).

FCijkh = α1
dijkh

Vijk
+ α2dijkhV2

ijk + α3

(
ω + fijkh

)
dijkh (21)

where, α1 is the engine module coefficient, α2 is the speed module coefficient, α3 is the load
module coefficient, ω is the vehicle dead weight (unit: kg), fijkh is the load of vehicle h
driving on road (i, j) in time period k (unit: kg). It has been shown in the literature that
the relationship between the carbon emissions of a vehicle and the fuel consumption is
positive, and the carbon emissions of a vehicle are calculated as shown in Equation (22).

ECijkh = FE ∗ FCijkh (22)

where, FE is the fuel emission parameter, generally considered as a constant. In this paper,
the value of FE is 2.621 kg/L.

2.5. Calculation of Vehicle Travel Time

In the traditional VRP, the vehicle speed is not time-dependent and runs at a constant
speed. However, in the case of traffic congestion, the speed of the garbage truck is time-
dependent, and the speed of the vehicle in different time periods is different. In particular,
even if the vehicle is driving on the same road section, it may drive at normal speed during
the normal driving period in part of the road section, and driving at normal speed during
the congestion period in the rest of the road section. The driving time of the vehicle on
the road section (i, j) is difficult to calculate directly and must be dealt with reasonably.
Therefore, this paper adopts the method of Zhou X [17] based on road division to calculate
the driving time of garbage truck. Due to the space problem, the specific calculation steps
are not shown.

3. Solution Algorithm Design
3.1. Improved DCD-DE-NSGAII Algorithm

The multi-objective optimization problem is usually solved using the NSGA-II algo-
rithm, but the classical NSGA-II algorithm shows weak search ability and poor convergence
when solving multi-objective problems. Therefore, this paper proposes a DCD-DE-NSGAII
algorithm based on Dynamic Crowding Distance and Differential Evolution. The dynamic
crowding sorting strategy [31] is used to overcome the defect of poor diversity of solu-
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tion sets in traditional crowding sorting methods; to protect the population diversity and
prevent premature, the polynomial mutation is replaced by differential mutation, and
the scaling factor in differential mutation was improved; the probability of crossover and
mutation is improved from a fixed value to decrease with the increase of the number of
iterations according to the logsig function to effectively save the optimal gene and increase
the possibility of searching the global optimal solution.

The specific improvements are described as follows:

(1) Differential mutation operation [32]

The mutation operation is to homogenize the spatial distribution of the Pareto optimal
solution to satisfy the population diversity. In the mth iteration, three individuals are
randomly selected from the population. Xp1(m), Xp2(m), Xp3(m) and p1 6= p2 6= p3 6= i,
i ∈ 1, 2, . . . N. The vector formula of the generated mutant target individual is shown
as follows:

Fi(m) = Xp1(m) + F·
(
Xp2(m)− Xp3(m)

)
(23)

where F is the scaling factor and the range of F is [0, 1].

(2) Improvement of scaling factor [32]

As can be seen from Equation (23), parameter F is a fixed value randomly selected
between [0, 1], and studies on its sensitivity are lacking. The generation of new individuals
in the population mainly depends on the mutation operation, and the parameter F has
a great influence on its search range. Furthermore, the convergence efficiency of the
algorithm and the diversity of the solution range are further improved, and the parameter
F is improved as follows:

F = Fmin + (Fmax − Fmin)·e
1− mg

m−m+1
g (24)

In the formula, Fmax and Fmin denote the minimum and maximum values of variation
parameters, m represents the current number of iterations, and mg represents the maximum
number of iterations. It can be seen from Equation (24) that with the increase of iteration
times, the adaptive variation factor Fmax gradually decreases and becomes equal to Fmin,
which can ensure the diversity of individual populations and avoid premature convergence:

(3) Improvement of crossover and mutation probability

The cross-variance and mutation probability is no longer a fixed value, but decreases
according to logsig function as the number of iterations increases.

Set the crossover probability to:

cp = 0.5 + 0.5 ∗ log sig(linspace(3,−3, iterations)) (25)

Set the mutation probability to:

mp = 0.1 + 0.3 ∗ log sig(linspace(3,−3, iterations)) (26)

3.2. Algorithmic Flow

The specific flowchart of the algorithm is shown in Figure 1 (which was created by
the authors):
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4. Case Analysis
4.1. Instance Data and Parameter Settings

In this paper, the specific situation of garbage removal in Ma’anshan City was investi-
gated on the spot, and the location of each garbage transfer station, daily garbage output
and other specific information were obtained from Ma’anshan City Administrative, as
shown in Table 2 the specific information of the vehicle is shown in Table 3, and the other
relevant parameter information of the model is shown in Table 4. In order to facilitate the
simulation analysis, the time is unified from hours to minutes, for example, the earliest
time of the vehicle at 5: 30 to 330 min.

Table 2. Garbage transfer station information.

Serial
Number Site Name X-Coordinate (m) Y-Coordinate (m) Average Daily Refuse

Production (t)
Time

Window

1 City Administration 33,250,196.3 7,531,852.0 —— [5:30–18:00]
2 Wangjiashan 33,246,232.1 7,535,882.4 42.00 738
3 Oriental Pearl 33,249,124.5 7,527,993.1 24.00 958
4 Xiangyang 33,256,135.7 7,532,931.6 25.78 518
5 Oriental City 33,250,892.1 7,531,310.0 27.60 692
6 Sixth Middle School 33,246,145.4 7,530,181.7 36.69 531
7 Junmin Road 33,249,685.5 7,532,563.7 38.74 942
8 Nantang 33,247,479.0 7,527,277.2 10.52 482
9 Zhongcun 33,245,589.9 7,527,948.3 15.00 852

10 Yongtai 33,244,264.5 7,530,779.9 12.00 872
11 Rainfield 33,244,685.2 7,534,773.1 23.08 897
12 Harvest Garden 33,252,294.8 7,528,515.5 31.42 521
13 Sand pond 33,246,762.0 7,529,212.0 20.00 672
14 Zhaoming 33,247,914.7 7,524,648.2 2.66 605
15 Jinshan Road 33,247,578.5 7,537,081.8 16.58 864
16 Quarrying stone 33,242,389.4 7,533,118.6 11.00 687
17 Jin’an Jiayuan 33,247,757.8 7,528,040.5 27.28 917
18 Jin Rui 33,249,534.5 7,527,329.2 23.36 567
19 West Lake Garden 33,249,676.4 7,529,831.8 55.46 607
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Table 2. Cont.

Serial
Number Site Name X-Coordinate (m) Y-Coordinate (m) Average Daily Refuse

Production (t)
Time

Window

20 New workshop 33,245,222.5 7,527,303.0 4.82 550
21 Hengxing 33,244,276.6 7,527,534.3 4.50 545
22 Ten districts 33,244,746.2 7,530,784.7 27.12 897
23 Yingcui 33,244,726.5 7,532,763.1 38.80 758
24 Pearl garden 33,246,910.1 7,531,456.9 36.08 744
25 Plum garden 33,248,855.2 7,531,184.5 38.99 550
26 Spring light 33,249,306.6 7,532,285.6 39.00 889
27 Royal view garden 33,253,746.8 7,532,021.4 6.66 779

28 Xiangshan Waste
Incineration Plant 33,262,273.8 7,532,404.0 —— ——

Table 3. Distribution vehicle information.

Vehicle Type Vehicle Count Weight/(t) Load/(t) Cost/(Yuan)

light load 37 8 5 200
heavy load 8 10 8 300

Table 4. Model parameter information.

Sign Parameter Value Sign Parameter Value Sign Parameter Value

C f 6.5 yuan/L Ce 0.0528 yuan/kg. µ 1.5 yuan/min
ψ 0.5 yuan/min ζq 200 yuan/car ζz 300 yuan/car
α1 1.4 × 10−6 α2 4.35 × 10−10 α3 1.04 × 10−11

FE 2.621 kg/L Vf 600 m/min Vc 300 m/min

4.2. Algorithm Performance Analysis

To test the performance of the DCD-DE-NSGAII algorithm, based on the experimental
data of the actual example, the algorithm parameters are set as follows: The initial pop-
ulation size popsize = 20, scaling factor Fmin = 1, Fmax = 2. Under the environment of
1.6 GHz IntelCorei5 processor and Win10 operating system, the DCD-DE-NSGAII algo-
rithm and the NSGAII algorithm run 10 times respectively. The Pareto frontier comparison
of the two algorithms is shown in Figure 2, the Pareto optimal solution is shown in Table 5,
and the statistical results and the percentage of algorithm improvement are shown in
Table 6 in Section 4.3.
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Table 5. Statistical results of different algorithms.

Algorithm

Total Economic Cost/(Yuan) Total Timeout/(min)

Optimal
Solution

Worst
Solution

Average
Solution

Optimal
Solution

Worst
Solution

Average
Solution

NSGAII 26,618.00 27,183.00 26,869.43 633.18 1355.80 931.94
DCD-DE-NSGAII 25,940.00 27,217.00 26,503.38 615.16 921.15 748.51

Improved ratio 2.55 −0.12 1.36 2.85 32.1 19.68

In this paper, the improved DCD-DE-NSGA-II algorithm is analyzed with the classical
NSGA-II algorithm. From the pareto frontier comparison diagram of the two algorithms in
Figure 2, it can be seen that the DCD-DE-NSGA-II algorithm has more optimal solutions in
the Pareto solution set, and the Pareto frontier has better distribution. DCD-DE-NSGAII
obtains 13 Pareto solutions, while classical NSGAII only obtains 7 Pareto solutions. As can
be seen from Table 5, in terms of total economic cost and total timeout time, the DCD-DE-
NSGAII algorithm proposed in this paper embodies the advantages of differential variation
and dynamic congestion, and has better solution quality.

4.3. Solution Result Analysis

The model established in this paper is solved using the proposed DCD-DE-NSGAII
algorithm, and the extreme value solutions corresponding to different objective functions
and various cost equivalents are obtained as shown in Table 6.

Table 6. Target values and costs.

f* Total Economic
Cost/(Yuan)

Total Timeout
/(min)

Fuel Consumption
Cost/(Yuan)

Carbon Emissions
Cost/(Yuan)

Vehicle Use
Cost/(Yuan)

Wage
Cost/(Yuan)

Carbon Emissions
Ratio/(%)

f ∗1 25,940.00 921.15 2945.40 627.10 18,425.00 3941.80 2.42
f ∗2 27,217.00 615.16 3116.20 663.45 19,303.00 4134.50 2.44

Table 6 shows that when the government department prefers the optimal total eco-
nomic cost, the corresponding total timeout time achieves a non-inferior solution, which is
49.74% higher than the minimum total timeout time. At this time, the carbon emissions
cost, fuel consumption cost, use cost and driver’s wage cost of the vehicle are 2945.40 yuan,
627.10 yuan, 18,425 yuan and 3941.80 yuan respectively; When the government prefers
the optimal total timeout, the corresponding total economic cost obtains a non-inferior
solution, which increases by 4.92% compared with the minimum total economic cost. At
this time, the fuel consumption cost, carbon emissions cost, use cost and driver’s wage cost
of the vehicle are 31,116.2 yuan, 663.45 yuan, 19,303 yuan and 4134.5 yuan respectively.

Table 6 shows that whether the economic cost is optimal or the total overtime time is
optimal, the cost of carbon emissions accounts for no more than 3% of the total cost, but the
cost of vehicle usage accounts for a large proportion, reaching more than 70%. Therefore, to
reduce the total economic cost, government departments should focus on reducing the cost
of vehicle use, reducing the use of vehicles and shortening the total service time of vehicles
on the basis of ensuring that the amount of garbage can be disposed of on the day, so as to
minimize the total economic cost and reduce expenses.

4.4. Solution Analysis

Table 7 shows the final vehicle path scheduling scheme that the program derives when
the government decision maker prefers the optimal total economic cost; Table 8 shows
the optimized vehicle removal time corresponding to the vehicle path scheduling scheme;
Table 9 shows the vehicle waste load at each station corresponding to the vehicle path
scheduling scheme.
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Table 7. Vehicle routing scheduling scheme.

Vehicle Number Vehicle Type Vehicle Scheduling Path Departure Times

1 heavy load 1–19–28–19–28–27–12–28–22–23–28–17–28–26–28–11–28–1 7
2 heavy load 1–19–28–19–28–4–28–6–22–28–5–28–18–28–11–28–1 7
3 heavy load 1–19–28–14–21–12–6–28–10–16–28–18–25–28–11–28–1 5
4 light load 1–19–28–27–28–4–28–23–28–17–28–25–26–28–7–28–1 7
5 heavy load 1–19–28–12–28–22–28–24–17–28–26–28–7–28–1 6
6 light load 1–19–14–28–6–28–24–28–2–28–7–28–1 5
7 heavy load 1–13–28–4–6–28–24–28–2–28–7–28–1 5
8 light load 1–13–28–6–28–24–28–2–28–7–28–1 5
9 heavy load 1–13–12–28–22–28–5–28–25–28–7–28–1 5

10 light load 1–12–28–6–28–24–28–18–28–15–28–1 5
11 heavy load 1–12–28–23–28–5–28–25–28–15–28–1 5
12 light load 1–4–28–23–28–5–17–2–28–15–28–1 4
13 light load 1–6–28–23–16–28–2–28–3–28–1 4
14 light load 1–6–28–20–24–28–18–28–3–28–1 4
15 heavy load 1–6–28–16–28–2–25–28–3–28–1 4
16 light load 1–22–28–24–28–25–28–3–28–1 4
17 light load 1–23–28–17–28–25–28–3–28–1 4
18 light load 1–23–28–2–28–1 2
19 light load 1–10–28–2–28–1 2
20 light load 1–16–17–28–25–28–1 2
21 light load 1–24–28–25–28–1 2
22 light load 1–26–28–1 1
23 light load 1–26–28–1 1
24 light load 1–26–28–1 1
25 light load 1–26–8–9–28–1 1
26 light load 1–8–28–1 1
27 light load 1–8–28–1 1
28 light load 1–9–28–1 1
29 light load 1–9–28–1 1
30 light load 1–9–28–1 1

Total 103

Table 8. Optimization table of vehicle clearance time.

Vehicle Number Vehicle Type Vehicle Clearance Time

1 heavy load 330–333.48–374.91–396.33–445.53–473.98–496.63–551.16–580.50–593.80–643.05–
668.31–713.57–735.19–776.80–899.58–949.16–969.31

2 heavy load 348–351.48–392.91–414.33–477.19–497.73–538.26–566.27–578.81–628.14–647.20–
686.26–709.11–751.97–899.58–949.16–969.31

3 heavy load 362–365.48–406.91–448.21–473.69–510.62–540.93–588.06–618.20–633.19–686.36–
709.21–725.74–768.19–899.58–949.16–969.31

4 light load 381–384.48–425.91–454.36–502.81–523.34–556.94–586.19–635.44–660.71–705.97–
728.43–740.41–782.02–890.98–931.96–952.11

5 heavy load 397–400.48–453.81–489.51–545.21–574.55–623.88–649.54–665.41–710.67–732.28–
773.89–890.98–931.96–952.11

6 light load 412–415.48–443.73–518.13–556.19–603.33–628.99–674.64–702.00–749.36–890.98–
931.96–952.11

7 heavy load 425–439.44–512.23–532.76–560.03–607.17–632.82–678.48–705.84–753.19–890.98–
931.96–952.11

8 light load 436–450.44–523.23–558.75–605.88–631.54–677.19–704.55–751.91–890.98–931.96–952.11

9 heavy load 453–467.44–496.03–550.86–580.20–629.54–648.59–687.65–710.11–752.56–890.98–
931.96–952.11

10 light load 468–481.14–536.84–565.55–612.69–638.34–684.00–706.85–749.71–895.70–941.41–961.56
11 heavy load 485–498.14–551.92–581.17–630.42–649.48–688.54–711–753.45–895.71–941.41–961.56
12 light load 500–520.12–555.33–584.58–633.83–652.89–670.44–693.75–741.11–895.70–941.41–961.56
13 light load 519–533.61–580.74–610.00–623.94–677.09–704.45–751.81–893.12–936.23–956.38
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Table 8. Cont.

Vehicle Number Vehicle Type Vehicle Clearance Time

14 light load 533–543.80–590.94–620.60–638.07–683.73–706.58–749.43–893.12–936.23–956.38
15 heavy load 541–548.30–595.44–628.60–681.76–709.12–728.09–770.54–893.12–936.23–956.38
16 light load 561–570.26–619.59–645.25–690.90–713.36–755.82–893.12–936.23–956.38
17 light load 576–585.24–634.49–659.76–705.02–727.48–769.93–893.12–936.23–956.38
18 light load 592–601.24–650.49–677.85–725.21–890.15
19 light load 602–612.05–662.18–689.54–736.90–890.15
20 light load 623–636.18–658.49–703.76–726.22–768.67–890.15
21 light load 639–644.52–690.17–712.63–755.08–890.15
22 light load 848–849.65–891.26–911.41
23 light load 849–850.65–892.26–912.41
24 light load 860–861.65–903.26–923.41
25 light load 861–862.64–881.54–894.88–943.66–963.81
26 light load 865–873.87–919.96–940.11
27 light load 870–878.87–924.96–945.11
28 light load 875–885.06–933.84–953.99
29 light load 878–888.06–936.84–956.99
30 light load 888–898.06–946.84–966.99

Table 9. Comparison of results of different preferences.

f*
1

Total Driving
Distance/(km)

Total Fuel
Consumption/(L)

Total Service
Time/(min)

Number of Vehicles
Used/(Vehicle)

Total Number of
Departures/(Times)

f1 3111.08 458.67 7962.56 30 103
f2 3266.19 479.41 8268.94 31 108

It can be seen from Table 7 that: 1. Although the Urban Authority has 45 garbage
trucks, in fact only 30 are used. This program greatly reduces the use of garbage trucks and
saves costs and financial expenses to a large extent. 2. The scheme put all the heavy-duty
garbage trucks (8 in total) into use, and 22 light-duty garbage trucks were used. In reality,
government departments use heavy-duty garbage trucks as much as possible to improve
the efficiency of cleaning and transportation. 3. From the results of vehicle scheduling
path, the total number of departures is 103 times, in the actual situation, the government
departments may be more than 120 times a day, which can be compared to the scheduling
scheme of this paper can effectively reduce the number of departures.

Table 8 shows the time when the garbage truck arrives at each station corresponding
to the path plan of each vehicle in the table. From the distribution of garbage removal
time, it can be seen that: 1. A total of 21 garbage trucks were sent out in the morning and
9 in the afternoon. Among the 30 garbage trucks sent out, the latest time to return to the
City Administrative is 969.31, and 30 garbage trucks were guaranteed to return to the City
Administrative parking lot before 18:00 at night. 2. Among the 30 garbage trucks issued,
only the first 14 entered the 7:00–9:00 morning peak congestion period, but avoided the
17:00–18:00 evening peak congestion period, and the remaining 16 garbage trucks could
avoid both periods. If according to the traditional vehicle routing problem, all vehicles
start from the same time, all vehicles cannot avoid the morning congestion period. This
shows that the model and the improved DCD-DE-NSGAII algorithm constructed in this
paper can reasonably optimize the vehicle clearance time according to the time window
characteristics of each garbage station, effectively avoid the traffic congestion period, and
improve the efficiency of garbage clearance.

Similarly, when the government decision makers prefer the optimal total timeout
time, the corresponding vehicle routing scheduling scheme table, vehicle clearance time
optimization table, will also be obtained. Due to the length problem, it will not be displayed.
Table 9 gives the comparison of the results of total distance traveled, total service time
when decision makers prefer different goals.
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Table 9 shows that when decision makers prefer the optimal total timeout time, the
total driving distance, total fuel consumption, total service time, the number of vehicles
used and the total number of departures of garbage trucks are significantly higher than
the optimal total economic cost, which are 155.19 km more, 24.81 L more gasoline and
306.34 min more, 1 more garbage truck and 5 more trains. When the decision maker prefers
the optimal total timeout time, the increase of the total driving distance and total fuel
consumption of the vehicle will increase the cost of fuel consumption and carbon emissions,
and the increase of the total service time and the use of the vehicle will increase the cost of
vehicle use, thus increasing the total economic cost.

4.5. Comparative Analysis of Different Models

In this paper, comparisons are made under the same working conditions and other
conditions. Figure 3 shows the comparison of Pareto fronts for single and hybrid models
obtained by using the DCD-DE-NSGAII algorithm, and are shown in Table 10 shows the
results of the two models.
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Table 10. Comparison of the results of the two models.

Vehicle Type Total Economic
Cost/(Yuan)

Total Timeout
/(min)

Fuel Consumption
Cost/(Yuan)

Carbon Emissions
Cost/(Yuan)

Vehicle
Cost /(Yuan)

Wage Cost
/(Yuan)

Single model 31,784.04 1675.84 3693.41 786.35 22,474.04 4830.24
Hybrid model 26,503.38 748.51 3003.42 639.45 18,847.31 4013.21

Optimized ratio% 16.61 55.34 18.68 18.68 16.14 16.91

Figure 3 shows that the Pareto optimal solution obtained by using a single (5 tons)
vehicle model is significantly larger than the optimal solution obtained by using a hybrid
(5 tons and 8 tons) vehicle model in terms of total timeout time and total economic cost.
It can be concluded from Table 10 that the total economic cost, total overtime, carbon
emissions cost, fuel consumption cost, vehicle use cost and wage cost of single vehicle are
16.61%, 55.34%, 18.68%, 18.68%, 16.14% and 16.91% higher than those of hybrid vehicle. It
can be seen that government departments use hybrid models for clearing and transportation
to save economic costs.

To further explore the differences between the two types of vehicles in terms of total
driving distance, total fuel consumption, total service time, etc., this paper compares
and analyzes the results obtained by decision makers when they prefer the optimal total
economic cost, and obtains other results for different models as shown in Table 11; The
comparative analysis of the single model and the hybrid model when the decision maker
prefers the optimal total timeout time is similar to the previous one, which is not explained
due to the space problem.
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Table 11. Comparison of other results of different models.

Vehicle Type Total Driving
Distance/(km)

Total Fuel
Consumption/(L)

Total Service
Time/(min)

Number of Vehicles
Used/(Vehicle)

Total Number of
Departures/(Time)

Single model 3822.9 565.94 9636.01 39 129
Hybrid model 31,11.08 458.67 7962.56 30 103

Optimized ratio% 18.62 18.95 17.37 23.08 20.16

It is obvious from Table 11 that the total driving distance, total fuel consumption,
total service time, total number of vehicles used and total number of departures of hybrid
models are significantly lower than those of single models, which are 18.62%, 18.95%,
17.37%, 23.08% and 20.16% lower than those of single models respectively. Therefore, it
can be seen that the use of mixed models by government departments can not only reduce
the driving distance, save fuel consumption, reduce vehicle use, but also reduce the total
service time and total number of departures, and effectively improve the efficiency of
garbage removal.

5. Conclusions

This paper studies the scheduling problem of MSW removal vehicles with the factors
of carbon emissions and time-dependent vehicle speed added. From the actual situation of
MSW removal, the constraints of multiple models, multiple vehicle visits, different vehicle
departure moments and time windows are considered, and a multi-objective model con-
sidering the economic cost and waste removal efficiency (the total overtime time response
is the waste removal efficiency) is established, and an improved NSGA-II algorithm is
proposed for the solution. The simulation results show that:

1. The model comprehensively considers environmental protection, economy and time-
liness, and balances the interests between the government and garbage removal
enterprises. The proposed optimization model is more in line with the actual situation
of the current urban solid garbage removal and has strong practicability;

2. The dynamic congestion ranking strategy and differential variation operation are
introduced into the NSGA-II algorithm, which improves the solution performance of
the algorithm to some extent;

3. The model and algorithm proposed can effectively solve the vehicle scheduling
problem of MSW removal considering the effect of time-dependent speed and carbon
emissions. It can provide decision basis for decision makers with different preferences
to choose reasonable waste removal paths and waste collection schemes.

4. In this paper, the results of the single model and the mixed model are compared and
analyzed. The results show that the number of vehicles, the total driving distance,
the total fuel consumption, the total service time and the cost of the mixed model
are greatly reduced compared with the single model. It shows that the government
departments can increase more heavy-duty garbage trucks, which can improve the
efficiency of garbage removal, reduce the use of vehicles and reduce expenses;

5. In this paper, the different departure time of the vehicle is optimized reasonably,
which can effectively avoid the traffic congestion period, shorten the driving time of
the vehicle, improve the efficiency of garbage removal and reduce the economic cost.

The author established a multi-objective vehicle scheduling model for MSW removal
from the static road network level which can be combined with GIS and other technologies
to study the garbage collection and transportation problem of dynamic road network,
making the research more realistic.
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