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Abstract: In this study, we analyze the upside and downside risk connectedness among international
stock markets. We characterize the connectedness among international stock returns using the
Diebold and Yilmaz spillover index approach and compute the upside and downside value-at-
risk. We document that the connectedness level of the downside risk is higher than that of the
upside risk and stock markets are more sensitive when the stock market declines. We also find that
specific periods (e.g., the global financial crisis, the European debt crisis, and the COVID-19 turmoil)
intensified the spillover effects across international stock markets. Our results demonstrate that DE,
UK, EU, and US acted as net transmitters of dynamic connectedness; however, Japan, China, India,
and Hong Kong acted as net receivers of dynamic connectedness during the sample period. These
findings provide significant new information to policymakers and market participants.
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1. Introduction

In recent decades, there has been a significant increase in economic and financial inter-
dependence alongside the liberalization of financial markets. Most companies worldwide
import some of their intermediate inputs from foreign companies and obtain capital funds
from foreign investors. In today’s interconnected world, events in a country can quickly
affect the global economy. Thus, when markets are connected, if one sector faces risk, this
risk can affect others through strong links and contagion mechanisms, potentially causing
the risk to spread to the entire stock market [1–4].

For years, the global stock market has fluctuated under the influence of geopolitical
risk, energy price fluctuation, economic and monetary policies of large countries, infectious
diseases, and financial shocks, such as the global financial crisis (GFC) and the European
debt crisis (EDC); the impact of these events has been easily transmitted between markets.
Therefore, over the past few decades, researchers have focused on spillover effects between
international stock markets [5–11].

To this end, many researchers have conducted studies on the methodology, structure,
and dynamics of these spillover effects [11–19]. However, most of these studies explored
the overall spillover effects using returns and volatility and ignored the spread of tail risk.
Although the overall spillover effects of stock market returns are important, in some cases
extreme risk spillovers are more important. Extreme risks are unlikely to occur because
they originate from extreme stock market events. Once they occur, they have a tremendous
spillover effect on the stock market and economy as a whole. When market participants
invest in international stock markets, it is crucial to understand the intensity and direction
of the extreme risk connectedness between the markets as a whole.

Inspired by the growing financial literature focused on identifying risk networks in the
financial system [10,20–22], these studies aim to identify the international stock price network
and uncover the primary risk contributor and intensity of the interconnectedness of extreme
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risk within the network. Understanding the structure and dynamics of connectedness in the
international stock market network by measuring extreme risk spillovers is of great significance,
with this information being crucial for identifying early signs of systemic risk and enhancing
the stock price network’s resilience to systemic events. This information is also useful in terms
of profit and loss management and systematic risk management, providing new information
for assessing portfolio diversification opportunities and making decisions [11].

The DY approach has been applied to spillover studies on several financial markets.
For example, Babar et al. [23] examined spillover effects among agricultural commodities
and emerging stock markets during various crises, including the COVID-19 pandemic and
the Russian–Ukrainian war. Hussain et al. [24] analyzed the volatility connectedness of
GCC stock market returns and oil market returns. Li et al. [25] explored the returns and
volatility spillovers between Chinese oil market and green energy stock markets.

Recently, a few studies investigated the connectedness between tail risks [26,27]. A
previous study analyzed the connectedness of downside risks, whereas empirical analysis
of upside risks is scarce. Upside risks, similar to downside risks, are another type of
systemic financial risk as they can lead to future losses and high uncertainties [28]. In
addition, market participants’ ability to respond to market changes because of different
information is bound to vary depending on upside and downside risks. Thus, analyzing
and comparing upside and downside extreme risks together is useful in stabilizing the stock
market network and helping investors’ risk management strategies. In this context, it is
worth investigating the connectedness of upside and downside risks between international
stock markets.

Our findings provide evidence that the degree of connectedness is higher for downside
risks than for upside risks. Moreover, in the dynamic results, we find that the magnitude
of connectedness is more significant in the case of downside risks. Furthermore, we find
convincing evidence that specific periods (e.g., the GFC, EDC, and COVID-19 pandemic)
intensify risk spillover effects across international stock markets. Net connectedness also
showed that developed stock markets, such as those in Germany, UK, the EU, and the US,
were net transmitters of risk to all other markets, whereas Asian stock markets, including
China, India, and Japan, Hong Kong, were net receivers for upside and downside risks
during the sample period.

Our study contributes to the existing literature in the following ways: Firstly, we
investigate the extreme risk connectedness of international stock markets based on the
network approach, which differs from bivariate approaches, such as the correlation and
Granger causality approaches, which focus on the relationship between the two markets.
Secondly, we identify an international stock network from extreme risk connectedness
using a value-at-risk (VaR) measurement, which contrasts previous studies that focused
on the overall linkage of returns and volatility. To achieve our objective, we use the
Glosten–Jagannathan–Runkle Generalized Autoregressive Conditional Heteroskedasticity
(GJR-GARCH) model [29] to calculate the VaR for stock market returns and apply Diebold
and Yilmaz’s methods [30,31] to examine extreme risk connectedness in the international
stock market network. Thirdly, we measure downside and upside risks together, which can
consider the asymmetry of connectedness in the upside and downside risks. This study
differs from previous studies that have only examined negative risks by considering both
downside and upside risks. Finally, we examine how the COVID-19 pandemic affects risk
connectedness as our sample period includes the duration of the pandemic.

Our results present new evidence on how each market plays a role in the connected-
ness of extreme risks within the international stock market network. These findings are
significant for policymakers and market participants who attempt to stabilize the financial
market, manage risks and portfolio diversification, and make investment decisions. To the
best of our knowledge, this study is the first to investigate connectedness in an extreme-risk
network using the VaR of international stock markets.
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The remainder of this paper is organized as follows: Section 2 reviews the literature;
Section 3 explains the data employed and methods implemented in this study; Section 4
presents the empirical analysis; and Section 5 concludes the study.

2. Relevant Literature Review

For the past few years, the literature on risk connectedness in international stock
markets has explored the interdependence of risks across stock markets globally. Several
studies have found that risk connectedness tends to escalate during periods of market
stress, such as financial crises. Studies have also found that the degree of risk connectedness
between stock markets can vary depending on the specific markets considered and the
time period studied. Overall, the literature highlights the need to better understand risk
connectedness in international stock markets to inform investment strategies and public
policy decisions. We now examine previous studies on this subject more closely.

2.1. Financial Risk Network at the Firm or Sector Level

The interconnectedness of financial risks within a firm or sector occurs when a firm’s
financial risk has an indirect or direct influence on the financial risks facing other firms
within the same sector. For example, if a firm in a sector experiences financial difficulties,
this can lead to a cascade of financial losses throughout the sector because of exposure to
common risk factors, such as supplier disruptions or declining market demand. At the
firm level, financial risk networks can be used to analyze and manage the interdependence
of various financial risks, such as credit, liquidity, and market risks. Firms can use this
information to identify and address sources of systemic risk and make informed investment
decisions. At the sector level, a financial risk network analysis can inform public policy
decisions aimed at promoting stability and resilience in the financial system.

Many studies have analyzed the formation and structure of financial risk networks at
the firm or sector level. Among others, in a study on the stock market in China, Wu [32]
identified the financial, industrial, and energy sectors as the most significant contributors to
systemic risk, whereas Wu et al. [33] determined that the industrial sector had the greatest
systemic importance among Chinese stock market sectors. Additionally, Zhang et al. [34]
examined the tail risk network of Chinese sectoral markets and analyzed systemic risk
linkages using the conditional VaR (CoVaR) approach. Ngene [35] explored asymmetric
and time-varying volatility spillovers among US sector equities. Wu et al. [36] analyzed
systemic risk connectedness in a network of global energy companies and revealed that
US stock market volatility and financial market sentiment are the major drivers of time-
varying risks. Shen et al. [37] investigated risk spillovers within Chinese sectors using the
generalized variance decomposition framework of the vector autoregression (VAR) model.

2.2. Financial Risk Network Using a Bivariate Approach

To measure the network connectedness among financial markets, researchers have used
various methods, such as correlation analysis, the Granger causality approach, the transfer
entropy approach, and the variance decomposition of the VAR model. The most popular
method in financial network analysis is calculating pairwise correlations. In a network,
markets (sectors, institutions, or firms) are nodes and correlations are links. For example,
Chi et al. [38] built a network of US-listed stocks using the calculated cross-correlations of
price returns and trading volumes. Giroud and Mueller [39] used correlations to construct
internal networks of firms and examined the transmission of local shocks across regions in the
US through these networks. Zhou et al. [40] investigated special stock price behaviors in the
Chinese A-share stock market using correlation-based stock networks.

The Granger causality network identifies causality by detecting the presence of infor-
mation flow in a linear relationship, as proposed by Granger [41]. As this approach has
the advantage of being based on statistical tests, many studies have applied this model.
For example, by applying the Granger causality network, Billio et al. [42] analyzed the
connectedness and system risk of four types of finance and insurance sectors, while Výrost
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et al. [43] analyzed the network between 20 stock markets. Wang et al. [44] employed
VaR and Granger causality risk test to construct an extreme risk spillover network that
measured connectedness among financial institutions and quantified the extent of extreme
risk spillovers.

The Granger causality approach only considers the direction of causality and not
the degree of causality in terms of the magnitude of information flow. If the quantity of
information flow between the two markets is of greater importance, the transfer entropy ap-
proach becomes more relevant. A transfer entropy approach is a useful tool for quantifying
information transfer within a network numerically [45]. Since Schreiber [46] proposed the
concept of transfer entropy, it has been applied in many fields. Sensoy et al. [47] applied the
transfer entropy method to investigate the intensity and direction of the information flow
between stock prices and foreign exchange rates in emerging countries. Gong et al. [48]
analyzed stock market connectedness and found that the total connectedness of the market
increased during periods of crisis. Nicola et al. [49] used daily stock data from 74 listed US
banks and investigated the US bank network. García-Medina and Luu Duc Huynh [50]
examined the predictive power of the determinants of Bitcoin prices by employing the
transfer entropy approach.

If tail risks are crucial, the copula approach is then suitable for building a tail-
dependence network. For example, Münnix and Schäfer [51] investigated the statistical
dependencies in the US stock market using a copula approach and revealed that many
dependencies are from the tails of the marginal distributions. Changqing et al. [52] ex-
plored risk contagion between international and Chinese stock markets using a dynamic
copula model and revealed that risk contagion is identified by lower tail dependence. Xixi
et al. [53] utilized copula tail correlation to construct a complex network for the Chinese
stock market and analyzed the network structure of the market. Wen et al. [54] employed a
copula model to investigate the edge information of a stock price network.

2.3. Financial Market Risk Network Using a Multivariate System Approach

The pairwise correlation and Granger causality approaches focus only on bivariate
linkage and, thus, fail to measure overall systemic connectedness. The VAR approach
can analyze the relationship in a multivariate system as a whole. Diebold and Yilmaz
(hereafter, DY) [12,30,31] suggest the most popular model of the VAR approach. Diebold
and Yilmaz [31] suggested a network topology employing the variance decomposition
method. They constructed stock returns and volatility networks by measuring the time-
varying connectedness of the stock return volatilities of major US financial institutions
using variance decomposition.

Recently, several techniques have been developed to improve the DY method.
Demirer et al. [55] introduced the Least Absolute Shrinkage and Selection Operator (LASSO)
method into high-dimensional networks to overcome the limitations of the VAR model in
constructing low-dimensional networks. They constructed a network of publicly traded
subsets of the world’s top 150 banks. Du et al. [27] also investigated multiscale tail risk
spillovers across global stock markets at different frequencies by employing LASSO-based
network connectedness. Baruník and Křehlík [56] introduced the DY framework, which
used the spectral representation of variance decompositions to measure the connected-
ness between financial variables resulting from heterogeneous frequency responses to
shocks. Baruník and Kocenda [57] applied an extended DY approach to high-frequency
intraday data and examined the total, asymmetric, and frequency connectedness between
oil and foreign exchange markets. Youssef et al. [11] used the time-varying parameter
VAR (TVP-VAR) of the DY method and investigated the dynamic connectedness between
the eight stock indices affected by the COVID-19 pandemic. They also analyzed how eco-
nomic policy uncertainty affected this connectedness. Chatziantoniou et al. [58] examined
sectoral stock market connectedness in India by employing a TVP-VAR connectedness
approach and revealed that connectedness was strongest during the GFC. Zhou et al. [59]
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used a TVP-VAR DY model, constructed a network in Chinese sectoral stock markets, and
analyzed sectoral risk spillovers based on high-frequency data.

Some studies have focused on measuring the system risk in a financial network.
Adrian and Brunnermeier [60] introduced the CoVaR method to measure system risk
according to the institutions’ leverage, size, and maturity mismatch. Wu et al. [61] analyzed
the tail risks of 28 stock markets using the conditional autoregressive value-at-risk model.

In addition, by applying the dynamic model averaging approach, Dong et al. [6]
explored how the interdependent structures between economic factors and stock markets
changed during the COVID-19 outbreak. Their findings revealed that the dependence
structures experienced significant changes during the COVID-19 outbreak and economic
factors had a stronger impact on developed stock markets than on emerging Asian markets.

Remarkably, previous studies have mainly concentrated on examining the connect-
edness of downside risks and have not considered upside risks and asymmetry in risk
connectedness. In the stock market network, upside risk connectedness is another type
of systemic risk, which can lead to future losses and high uncertainty [28]. In this con-
text, it is important to measure and analyze the upside and downside risk connectedness
together and utilize the information in policy-making for stock market stabilization and
international investors’ risk management. There have been several studies on this topic.
Baruník et al. [62] suggested a method to estimate asymmetries in volatility spillovers
and revealed that asymmetries emerge because of bad and good volatility in the US stock
market. BenSaïda [63] investigated asymmetric volatility spillovers across the G7 stock
markets and discovered that asymmetric connectedness was time-varying. Li [64] dissected
the influence of COVID-19 on global stock markets by employing the DY approach and
discovered that volatility spillovers were time-varying, crisis-sensitive, and asymmetric.
Mensi et al. [65] investigated the asymmetric volatility connectedness among stock markets
by analyzing high-frequency data from 16 stock markets and found that bad volatility
dominated good volatility. Mensi et al. [66], employing the DY spillover index, investi-
gated the dynamic asymmetric volatility connectedness among US equity sector markets
and revealed that the network of connectedness among sectors demonstrated asymmetric
behaviors. Using high-frequency data from the COVID-19 period, Shahzad et al. [67]
analyzed asymmetric volatility spillovers among Chinese stock markets and discovered
that bad volatility spillover shocks dominated good volatility spillover shocks.

As mentioned in previous studies, various models have been applied and analyzed
between markets (or industries) to determine the risk spillover effects. However, the
model for calculating the extreme risks was not applied, while the analysis of the spillover
effect was insufficient when applying the upper risk. Therefore, this study provides a new
framework for computing networks and connectedness by applying the VaR model, which
can estimate extreme risks (upside and downside risks).

3. Data and Method
3.1. Data

To discover international stock market risk connectedness, we analyzed the daily
closing prices of 10 stock markets: the United States (US, S&P500), Japan (JP, Nikkei
225), China (CN, Shanghai Composite Index), Hong Kong (HK, HANG SENG Index),
India (IN, BSE Sensex), the European Union (EU, EURO STOXX 50), Germany (DE, DAX),
the United Kingdom (UK, FTSE 100), Switzerland (CH, Swiss Stock Market Index), and
Canada (CA, S&P/TSX Composite Index). We selected stock exchanges with high market
capitalization, focusing on Europe, Asia, and North America. The sample consisted of
10 stock markets operating between 5 January 2000, and 30 July 2022, with 4579 obser-
vations. Daily returns are calculated as the logarithmic difference between two consec-
utive daily prices. All data were obtained from Infomax (https://news.einfomax.co.kr,
accessed on 5 August 2022).

Table 1 displays the summary statistics for all the stock returns. The UK, HK, and
the EU had the lowest mean returns, whereas IN exhibited the highest mean returns. In

https://news.einfomax.co.kr
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addition, according to the standard deviation (Std. Dev), CN was the riskiest market,
followed by DE and IN. By contrast, CH had the lowest risk, followed by CA and the US.
As skewness had a negative value, all countries, except HK, were skewed to the left. It also
had excessive kurtosis in all stock markets, indicating a thick-tailed leptokurtic distribution.
According to the Jarque-Bera (J-B) statistics that test normality, all stock market returns
deviate from a normal distribution. We conducted an augmented Dickey–Fuller (ADF) test
to determine the presence of unit roots in each return series. The results are presented in
the final column. All the stock market returns were stationary at the 1% level. Figure 1
shows the returns for the 10 stock markets. As demonstrated, the returns of all stock
markets experienced abrupt fluctuations during the GFC and the COVID-19 pandemic.
The financial crisis and pandemic had a greater impact on American and European stock
markets than on Asian markets.

Table 1. Indicators of summary statistics.

Minimum Maximum Mean Standard
Deviation Skewness Kurtosis J-B ADF

US −0.1378 0.1042 0.0002 0.0136 −0.5470 14.6547 26,144 *** −32.9848
***

JP −0.1292 0.1323 0.0001 0.0161 −0.4801 9.8654 9168 *** −67.6401
***

CN −0.0926 0.0940 0.0002 0.0167 −0.2386 7.6583 4183 *** −67.3128
***

HK −0.1358 0.1680 0.0000 0.0161 0.1181 12.7150 18,017 *** −66.5190
***

IN −0.1718 0.1611 0.0005 0.0162 −0.4024 13.3090 20,400 *** −66.2381
***

EU −0.1324 0.1295 0.0000 0.0160 −0.1547 9.5916 8308 *** −68.4671
***

DE −0.1305 0.1346 0.0002 0.0163 −0.1927 9.9620 9276 *** −32.2282
***

UK −0.1276 0.1111 0.0000 0.0131 −0.3189 12.3819 16,871 *** −69.8792
***

CH −0.1274 0.1576 0.0001 0.0128 −0.1021 16.2633 33,571 *** −67.4280
***

CA −0.1700 0.1129 0.0002 0.0125 −1.1556 25.6797 99,156 *** −32.6103
***

Notes: Jarque-Bera normality test is denoted by J-B, while Augmented Dickey-Fuller unit root test is denoted by
ADF. Symbol *** denotes rejection of null hypothesis at 1% significance level.
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3.2. Methodology

VaR is widely used to calculate the risk for stock markets; a common approach to VaR
measures is to use econometric models. Thus, to estimate the upside and downside VaR
of stock markets, we used the ARMA (1, 1)-GJR-GARCH (1, 1) model. The upside and
downside risks for the log-returns of the stock markets are given as follows:

VaRU
i,t = µi,t + t−1

v (1− α)σi,t (1)
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VaRD
i,t = µi,t + t−1

v (α)σi,t (2)

Equations (1) and (2) are the upside and downside risk equations, where µi,t and
σi,t represent the average returns and the standard deviation of stock market returns,
respectively. t−1

v (1− α) and t−1
v (α) are the (1− α)th and αth quantiles of a Student-t

distribution with v degrees of freedom, respectively.
The approach used in this study was developed by Diebold and Yilmaz [30,31] and is widely

applied in many areas of economic analysis. Based on this approach, we analyzed the risk
connectedness of international stock markets using the VaR estimates obtained from Equations (1)
and (2). This approach relied on the use of the VAR model and generalized forecast error variance
decomposition (GFEVD). This approach analyzed the total, directional, and net connectedness
among international stock markets. The VAR (p) model with n variables is expressed as

Yt = ∑p
i=1 ΦiYt−i + εt (3)

where Yt is the vector of endogenous variables at time t. Φi, i = 1, · · · , p, are matrices of
autoregressive coefficients, and εt is the vector of the error terms. This VAR model can be
expressed in terms of the vector moving average (VMA) model as follows:

Yt = ∑∞
i=0 Aiεt−i (4)

where Ai is the matrix of the coefficients of the moving average representation. This coefficient
was used to generate the variance decomposition. Thus, the H-step ahead GFEVD was calculated
using the generalized approach proposed by Koop et al. [68] and Pesaran and Shin [69]. The
variable j’s contribution of variable j to H-step-ahead GFEVD for variable i is defined as

θH
ij =

σ−1
jj ∑H−1

h=0

(
e′i Ah ∑ ej

)2

∑H−1
h=0

(
e′i Ah ∑ A′hei

) (5)

where σjj is the standard deviation of the jth equation in the VAR model and ∑ is the
variance matrix of the error vector εt. ei is the selection vector, which has values equal to 1
for element i and 0 elsewhere. Ah is the coefficient matrix multiplying the h-lagged shock
vector in the infinite moving-average representation of the non-orthogonalized VAR.

However, the row sums of the variance decomposition matrix are not necessarily equal
to 1. Thus, the normalized H-step ahead GFEVD can be expressed as

θ̃H
ij =

θH
ij

∑n
j=1 θH

ij
(6)

where
n
∑

j=1
θ̃H

ij = 1 and
n
∑

i,j=1
θ̃H

ij = n. θ̃H
ij is the variance share of the other variables. Us-

ing Equation (6), we constructed several types of connectedness indices. The total risk-
connectedness index is calculated as follows:

TSH =
∑n

i,j=1,i 6=j θ̃H
ij

∑n
i,j=1 θ̃H

ij

× 100 (7)

Additionally, we can gauge the directional spillovers of risks. The FROM directional connect-
edness

(
DSH

i←�

)
estimates risk spillovers from all other stock markets to ith stock market as

DSH
i←� =

∑n
j=1,j 6=i θ̃H

ij

∑n
i,j=1 θ̃H

ij

× 100 (8)
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The TO directional connectedness (DSH
i→�) estimates risk spillovers from ith stock

market to all other stock markets as

DSH
i→� =

∑n
j=1,j 6=i θ̃H

ji

∑n
i,j=1 θ̃H

ji

× 100 (9)

In addition, the net total directional connectedness of risks for ith stock market can be
computed as the difference between Equations (9) and (8) and is expressed as

NSH
i = DSH

i→� − DSH
i←� (10)

This index determined whether a given stock market is a recipient or transmitter of
risk. If NSH

i > 0, the risk of ith stock market affected the stock market risk more than it was
affected by all other stock market risks. If NSH

i < 0, then the opposite was true. Finally, the
net pairwise directional connectedness of risk was calculated using the following formula:

NPSH
ij =

 θ̃H
ji

∑n
i,k=1 θ̃H

ik

−
θ̃H

ij

∑n
j,k=1 θ̃H

jk

× 100 (11)

4. Empirical Results
4.1. Upside and Downside VaR Measurement Results

Using the GJR-GARCH (1,1) model, we measured the downside and upside risks associated
with all the stock markets. Figure 2 shows the upside and downside VaRs of the 10 international
stock markets. Based on the figures, changes in VaR estimates for downside and upside risks
were basically similar, though the range of fluctuations in the upside VaR (absolute value)
was higher than the downside VaR. Additionally, the downside and upside VaRs underwent
significant fluctuations during the initial phases of the GFC and the COVID-19 pandemic. Unlike
the other two events, all countries experienced significant fluctuations during the GFC. However,
during the COVID-19 outbreak, while there were significant fluctuations in the Americas and
Europe regions, CN, HK, and JP experienced relatively small fluctuations. In particular, JP
experienced significant fluctuations during the GFC. Moreover, CN showed great fluctuations
between 2015 and 2016 because of the stock market bubble and the decline in the economic
growth rate. Furthermore, the rapid changes that occurred in 2002 and 2004 were driven by
factors such as economic openness, increased foreign investment, and political instability.
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4.2. Connectedness Results

The results in this section were calculated using the VAR (2) model and a 10-step
ahead GFEVD. The risk connectedness results based on VaR among the 10 global stock
markets are presented in Tables 2 and 3. The finding presented in Table 2 for upside risk
shows that the total upside risk connectedness reaches 68.99%, which suggests international
stock markets are exposed to high levels of upside risk contagion and are not independent
of each other. We find that the US, EU, DE, UK, CH, and CA stock markets are net risk
transmitters, whereas the remaining stock markets are risk receivers. DE is the highest
transmitter of connectedness, whereas the EU is the highest receiver of connectedness. By
contrast, CN is the least significant transmitter and receiver of connectedness in the risk
network. CN has the highest contribution of risk to its own market (67.02%), whereas, in
the case of other stock markets, own market risk connectedness is approximately 20–30%.
According to Table 3, the total downside risk connectedness reached 69.66%. As with
the upward risk results, it was found that there was downside risk contagion and that
these results were not independent of each other. We find that the US, EU, DE, UK, CH,
and CA are net risk transmitters, whereas the remaining stock markets are risk receivers.
This is similar to the results in Table 2. In addition, CN is high (72.29%) according to the
contribution of risk to its own market. This indicates that the risk of CN is influenced more
by its own risks than by external market risks in the upside and downside risks.
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Table 2. Connectedness for upside risks in international stock markets.

US JP CN HK IN EU DE UK CH CA From

US 24.86 3.17 0.73 3.49 3.06 12.46 13.01 13.43 9.94 15.84 74.12
JP 8.73 26.25 1.38 9.07 4.75 10.47 12.05 10.45 8.45 8.40 73.33

CN 1.59 2.24 67.02 10.56 3.15 3.30 3.29 3.64 3.66 1.56 27.71
HK 7.30 7.52 3.78 29.22 9.13 8.41 9.10 10.97 6.27 8.30 71.22
IN 6.82 4.89 1.52 10.80 36.85 7.14 8.58 8.27 5.53 9.58 61.82
EU 10.50 4.21 0.85 3.89 2.86 21.57 19.55 15.47 13.10 8.00 78.05
DE 10.42 4.54 0.76 3.98 3.26 18.91 22.46 14.21 12.82 8.65 77.20
UK 11.14 3.59 0.94 4.66 3.29 15.81 14.84 22.34 13.33 10.05 77.53
CH 10.18 4.83 0.91 3.59 2.83 15.45 16.03 14.98 24.26 6.95 76.80
CA 16.80 3.04 0.72 4.33 4.83 10.42 11.20 12.51 7.59 28.56 72.13
To 90.82 43.22 10.29 45.24 28.74 105.13 109.00 106.46 74.82 76.18 68.99

Net 16.70 −30.11 −17.42 −25.97 −49.31 27.08 31.47 29.66 2.69 7.19

Table 3. Connectedness for downside risks in international stock markets.

US JP CN HK IN EU DE UK CH CA From

US 25.88 3.61 0.54 2.54 2.01 13.24 13.59 14.08 8.90 15.60 75.14
JP 9.87 26.67 1.06 7.14 3.58 11.12 12.48 11.03 8.53 8.52 73.75

CN 1.07 2.09 72.29 9.87 3.05 2.38 2.44 2.62 3.11 1.08 32.98
HK 7.69 9.18 3.71 28.78 8.06 8.63 9.05 10.98 5.75 8.17 70.78
IN 6.59 5.88 1.73 10.59 38.18 6.81 8.10 8.25 4.80 9.08 63.15
EU 11.99 4.58 0.61 2.73 1.77 21.95 20.09 16.04 12.16 8.08 78.43
DE 11.65 4.92 0.59 2.87 2.26 19.51 22.80 14.78 12.04 8.56 77.54
UK 12.88 4.06 0.69 3.40 2.18 16.44 15.39 22.47 12.29 10.19 77.66
CH 11.67 5.35 0.74 2.40 1.81 16.02 16.39 15.51 23.20 6.90 75.74
CA 17.41 3.56 0.61 3.70 4.02 10.96 11.46 13.16 7.24 27.87 71.44
To 83.48 38.02 11.59 54.37 37.15 102.38 107.65 103.93 80.69 77.34 69.66

Net 8.34 −35.72 −21.39 −16.41 −41.28 23.95 29.99 28.19 9.25 7.68

By comparing Tables 2 and 3, we obtain some noteworthy results. Firstly, the degree
of total connectedness for downside risks is relatively higher than that for upside risk
connectedness, indicating a high level of risk contagion for downside risks. Therefore,
downside risks have a greater impact on connectedness strength than upside risks in an
international stock market network. In addition, the risk contribution to one’s own stock
market is higher for downside risks.

Secondly, there is a change in the connectedness between some stock markets. Our
results show that the risk transmission for major stock markets to other markets reduces
the downside risk. For example, the TO directional risk connectedness of the US fell from
90.82% (Table 2) to 83.48% (Table 3). This result persists for five stock markets (US, JP, the
EU, DE, and the UK), whereas for other stock markets the TO directional risk connectedness
increases. In contrast, the FROM directional risk connectedness of the US increased in the
case of downside risks from 74.12% (Table 2) to 75.14% (Table 3). This means that there is
an asymmetric spillover effect in the international stock market, which suggests that the
response of market participants to positive and negative news may differ depending on
the country due to variations in the underlying economic and financial conditions.

Thirdly, these results display that while the importance of Asian stock markets in
the global economy is growing, the influence of Asian stock markets on developed stock
markets remains relatively insignificant. The results also confirm the importance of distin-
guishing between upside and downside risks when analyzing risk connectedness and risk
management.

Figure 3 displays the estimation results of the net pairwise directional connectedness
within the international stock market network. The size of a circle (or node) indicates the
level of connectedness. If the circle’s color is red, it denotes that the stock market is a risk
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transmitter; if it is blue, it implies that the stock market is a risk receiver. The arrow (or link)
indicates the direction of risk connectedness, whereas the thickness of the arrows indicates
the intensity of the net pairwise connectedness. For upside risks, the net connectedness
of DE is the largest, followed by the EU and the UK. Thus, the European stock market is
the network’s major market for pairwise risk connectedness. However, CN and IN have
been shown to act as risk receivers. Figure 3b illustrates that the net risk connectedness of
the stock market remains unchanged even at downside risks. The intensity of net pairwise
connectedness from developed economies (DE, the EU, and the UK) to other countries
appears similar in both upside and downside risk networks.
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However, with the exception of HK, Asian countries have shown a decrease in their
size of connections. This connectedness between Asian countries is lower in the case of
downside risk networks. The findings revealed that the degree of connectedness depends
on the risk situation. It is also observed that developed stock markets are closely associated
with both risk networks.

To investigate how extreme risk connectedness between international stock markets
varies over time, we estimated the dynamic connectedness of extreme risk using the rolling-
window method. We chose 200 days (approximately one year) as the rolling window length.

The time-series plot in Figure 4 illustrates the total connectedness within the upside
and downside risk networks over time. Blue and gray indicate the results for the downside
and upside risks, respectively. Overall, we observe that, in the case of downside risks,
the strength of connectedness is larger; however, we can conclude that movements and
magnitudes in the total connectedness for upside and downside risks are similar. The
total connectedness for the upside and downside risk networks varies over time but is
higher than 50% during the sample period. We observe higher total connectedness during
specific periods (e.g., the GFC, EDC, and the COVID-19 pandemic). Our analysis reveals
that the total connectedness within both networks reached the highest level (over 87%)
during the GFC, followed by the COVID-19 pandemic. These results indicate that the
international stock market exhibits strong interconnections and that interdependence
increases significantly during periods of crisis.
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To better understand the time-varying movements of connectedness, we investigated
net connectedness, revealing information about the direction of connectedness for the
10 stock markets. A positive value refers to a transmitter of risk to other stock markets;
negative values are the opposite. Figure 5 shows the net dynamic connectedness between
international stock markets for upside and downside risks. The plot distinguishes between
upside and downside risks using gray and blue, respectively. We observed that all stock
markets showed significant time-varying patterns; however, they were found to have a
greater magnitude on the stock market in the case of downside risks. Our results show am-
ple evidence of asymmetric connectedness. Each stock market shows this pattern because
it is event-driven or affected by the way it responds to crises, economic characteristics, and
geographical proximity. Although the net connectedness of all stock markets fluctuates
between positive and negative values in response to specific events, overall, the US, the
EU, DE, and the UK are the net transmitters and JP, CN, HK, and IN the net receivers of
upside and downside risks. These results indicate that the European stock markets are
less affected by spillover effects from other stock markets and confirm that the German
stock market has the greatest influence on other stock markets. This finding aligns with the
results of Youssef [11] and Zhang [70,71]. Thus, the developed stock markets continued
to be net transmitters of risk during the sample periods, except for CH and CA, whereas
Asian stock markets were net receivers. Although the importance of Asian stock markets
has been growing recently, their influence on developed countries is relatively weak and
has not increased significantly over time.
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5. Conclusions

This study analyzed the dynamic connectedness of the international stock market
network based on extreme risks (upside and downside risks) measured using the VaR.
To the best of our knowledge, this was the first study to examine an extreme-risk net-
work in international stock markets. We applied the DY model and used daily prices
between 5 January 2000, and 30 July 2022.

This study obtained several important results. Firstly, for the static analysis approach
the connectedness level of downside risks is relatively higher than that of upside risks,
which implies that international stock markets are more sensitively associated with the fall
of global stock prices. The dynamic results also show that the magnitude of connectedness
is more significant in the case of downside risks, indicating that stock market networks are
more likely to transmit downside risks. This finding is similar to the results of BenSaïda [70],
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who found that stock markets transmit more bad volatility than good volatility. Secondly,
we revealed that economic crisis periods (e.g., the GFC, EDC, and the COVID-19 pandemic)
intensified risk spillover effects across international stock markets. This indicates that
the international stock market network is strengthened during crisis periods. Thirdly, the
results of the net dynamic connectedness of extreme risks show that the EU, DE, and the
US act as net transmitters of dynamic spillovers, whereas JP, CN, and IN act as net receivers
of dynamic spillovers. DE is the most influential international stock market in the world.
Thus, developed stock markets are net transmitters of risk for all other markets, whereas
Asian stock markets are net receivers of upside and downside risks.

These findings provide significant new information to policymakers and market par-
ticipants. Under upside and downside risks, policymakers and risk managers should
devise measures to stabilize the stock market and minimize the risk impact on the global
stock market. Investors need risk management skills to minimize losses. Our analysis
will be valuable for investors in mitigating significant losses and developing strategies
for long-term profitability. In particular, as shown in Figure 5, the dynamics of net con-
nectedness of upside and downside risk networks are time-varying. Therefore, investors
should continuously monitor changes in market risk and its cross-border connectivity and
incorporate them into their portfolio optimization.
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