
Citation: Gunay-Sezer, N.S.; Cakmak,

E.; Bulkan, S. A Hybrid Metaheuristic

Solution Method to Traveling

Salesman Problem with Drone.

Systems 2023, 11, 259. https://

doi.org/10.3390/systems11050259

Received: 9 April 2023

Revised: 7 May 2023

Accepted: 15 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

A Hybrid Metaheuristic Solution Method to Traveling
Salesman Problem with Drone
Noyan Sebla Gunay-Sezer 1,*, Emre Cakmak 2 and Serol Bulkan 3

1 Institute of Pure and Applied Sciences, Industrial Engineering Programme, Marmara University,
Istanbul 34722, Turkey

2 Department of Industrial Engineering, Istinye University, Istanbul 34396, Turkey; emre.cakmak@istinye.edu.tr
3 Department of Industrial Engineering, Marmara University, Istanbul 34722, Turkey; sbulkan@marmara.edu.tr
* Correspondence: seblagunay@marun.edu.tr

Abstract: The challenging idea of using drones in last-mile delivery systems of logistics addresses
a new routing problem referred to as the traveling salesman problem with drone (TSP-D). TSP-D
aims to construct a route to deliver parcels to a set of customers by either a truck or a drone, thereby
minimizing operational costs. Since TSP-D is considered NP-hard, using metaheuristics is one
of the most promising solutions. This paper presents a hybrid metaheuristic solution method of
TSP-D based on two state-of-the-art algorithms: the genetic algorithm and ant colony optimization
algorithm. Heuristics in TSP-D literature are based on two consequent decisions: truck routing and
drone assignment. Unlike those in the existing literature, the proposed metaheuristic constructs both
truck and drone routes simultaneously. Additionally, to the best of our knowledge, we introduce
for the first time a solution method on the basis of an ant colony optimization approach to TSP-
D. Additionally, we propose a binary pheromone framework for both drone and truck, diverging
from the traditional pheromone structure. Computational experiments indicate that the proposed
hybrid metaheuristic algorithm is able to generate optimal routes for provided instances of TSP-D
benchmarking. In addition, the algorithm improves the best-known solutions of some instances
found by rival heuristics.

Keywords: traveling salesman problem with drone; last-mile delivery; genetic algorithm; ant
colony optimization

1. Introduction

Technical developments in last-mile delivery systems in logistics over recent years
have resulted in enhanced use of unmanned air vehicles (UAVs), frequently referred to as
drones, in numerous regions. The innovative idea of using drones in delivery arrived and
began to draw attention on an international level when some of the primary online retailers
announced their drone-integrated delivery processes. Using drones in last-mile parcel
delivery is challenging, as they are faster than ground vehicles and are not affected by
traffic conditions in city centers. Moreover, in recent years, people’s consumption patterns
have indicated that purchasing preferences are more inclined toward online shopping.
Considering this rapid trade and the increasing number of online retailers, delivery speed
is of great importance. Hence, fast delivery is a competitive factor for retailers, and
combining the high capacity of trucks with the speed advantage of drones is challenging.

This idea purports to address a new routing problem with drones, referred to as
Traveling Salesman Problem with Drone (TSP-D), a variant of the well-known traveling
salesman problem (TSP). Prompted by the last-mile delivery process, Murray and Chu [1]
produced the first study that introduced the routing problem of a drone incorporated
with a truck, calling it the Flying Sidekick-Traveling Salesman Problem (FSTSP), and
Agatz et al. [2] presented a TSP-D much like the FSTSP. The TSP-D aims to construct a
route to deliver parcels to a given set of customer locations by either a truck or a drone,

Systems 2023, 11, 259. https://doi.org/10.3390/systems11050259 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11050259
https://doi.org/10.3390/systems11050259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0002-3406-3144
https://doi.org/10.3390/systems11050259
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11050259?type=check_update&version=1

Systems 2023, 11, 259 2 of 16

minimizing operational costs, which are generally considered to be greater, the longer
the total completion time of the tour. The basic distinction between these two variants of
drone-aided parceling problems is that TSP-D lets the truck visit a customer more than
once in order to meet the drone, whereas trucks and drones can serve just one customer
location without returning to the same node in FSTSP. Figure 1 denotes a TSP solution
versus a TSP-D solution for a customer number of 9, where customer 0 is the depot. As seen
in TSP-D tour representation, by serving some customer locations with the drone instead
of the truck, the total distance of the truck’s travel can be reduced. With this parallelization
of drone delivery tasks, the completion time of the tour can also be decreased.

Systems 2023, 11, x FOR PEER REVIEW 2 of 17

a truck, calling it the Flying Sidekick-Traveling Salesman Problem (FSTSP), and Agatz et

al. [2] presented a TSP-D much like the FSTSP. The TSP-D aims to construct a route to

deliver parcels to a given set of customer locations by either a truck or a drone, minimizing

operational costs, which are generally considered to be greater, the longer the total com-

pletion time of the tour. The basic distinction between these two variants of drone-aided

parceling problems is that TSP-D lets the truck visit a customer more than once in order

to meet the drone, whereas trucks and drones can serve just one customer location without

returning to the same node in FSTSP. Figure 1 denotes a TSP solution versus a TSP-D

solution for a customer number of 9, where customer 0 is the depot. As seen in TSP-D tour

representation, by serving some customer locations with the drone instead of the truck,

the total distance of the truck’s travel can be reduced. With this parallelization of drone

delivery tasks, the completion time of the tour can also be decreased.

Figure 1. (a) Graph of a TSP tour; (b) Graph of a TSP-D tour.

TSP-D is a combinatorial optimization problem considered in NP-hard. Exact solu-

tion methods for this class of problems based on integer programming are solvable only

for small-sized instances within a limited time. To obtain solutions within a reasonable

computation time for larger-scaled optimization problems, heuristic algorithms are

broadly applied. Heuristic algorithms proposed for traditional TSP solutions are divided

into two classes: classical heuristics and metaheuristics [3]. Classical heuristics consists of

the route construction and route improvement stages. These heuristics proposed in TSP-

D solutions also consist of two stages: first, merging a TSP route, and then gradually as-

signing drone nodes to this route. We see that these kinds of classical heuristic algorithms

have been primarily considered in most of the TSP-D studies reviewed. Comparably, me-

taheuristic methods have rarely been studied thus far in TSP-D (see Section 2). Motivated

by the limited number of studies in the area, a metaheuristic approach is considered to for

developing TSP-D. The presented metaheuristic solution approach in this paper is a com-

bination of a well-known genetic algorithm (GA) and an ant colony optimization (ACO)-

inspired algorithm: the genetic algorithm with ant search-based solution method (GA-

AS).

GA and ACO are population search-based metaheuristics; they generate a wide num-

ber of random solutions to explore promising regions of solution space simultaneously.

Whereas classical heuristics searches begin with a single solution and use broadly neigh-

borhood search rules, we would rather apply a population-based searching approach to

TSP-D (which is rarely presented), and present a comparison to those with single solution-

based searching heuristics, using neighborhood procedure.

GA is a robust technique that can adapt easily to any kind of problem instance, eval-

uate any kind of objective function, and is applicable for wide variety of optimization

problems; a limitation on GA is that it may need to be coupled with a local search method

[4]. With this in mind, we considered a hybridized application of GA. The ACO algorithm

is also widely used in NP-hard problems, more particularly in traditional TSP, resulting

Figure 1. (a) Graph of a TSP tour; (b) Graph of a TSP-D tour.

TSP-D is a combinatorial optimization problem considered in NP-hard. Exact solu-
tion methods for this class of problems based on integer programming are solvable only
for small-sized instances within a limited time. To obtain solutions within a reasonable
computation time for larger-scaled optimization problems, heuristic algorithms are broadly
applied. Heuristic algorithms proposed for traditional TSP solutions are divided into two
classes: classical heuristics and metaheuristics [3]. Classical heuristics consists of the route
construction and route improvement stages. These heuristics proposed in TSP-D solutions
also consist of two stages: first, merging a TSP route, and then gradually assigning drone
nodes to this route. We see that these kinds of classical heuristic algorithms have been
primarily considered in most of the TSP-D studies reviewed. Comparably, metaheuristic
methods have rarely been studied thus far in TSP-D (see Section 2). Motivated by the
limited number of studies in the area, a metaheuristic approach is considered to for devel-
oping TSP-D. The presented metaheuristic solution approach in this paper is a combination
of a well-known genetic algorithm (GA) and an ant colony optimization (ACO)-inspired
algorithm: the genetic algorithm with ant search-based solution method (GA-AS).

GA and ACO are population search-based metaheuristics; they generate a wide num-
ber of random solutions to explore promising regions of solution space simultaneously.
Whereas classical heuristics searches begin with a single solution and use broadly neighbor-
hood search rules, we would rather apply a population-based searching approach to TSP-D
(which is rarely presented), and present a comparison to those with single solution-based
searching heuristics, using neighborhood procedure.

GA is a robust technique that can adapt easily to any kind of problem instance, evaluate
any kind of objective function, and is applicable for wide variety of optimization problems;
a limitation on GA is that it may need to be coupled with a local search method [4]. With this
in mind, we considered a hybridized application of GA. The ACO algorithm is also widely
used in NP-hard problems, more particularly in traditional TSP, resulting in promising
solutions. Because it was the first problem the ACO algorithm attempted to solve, TSP is
crucial to ACO [5]. The following factors are some of those that led to the selection of ACO
to be applied to TSP-D: (i) TSP-D can be adapted to the ant behavior metaphor relatively
easily, and is well-suited to the features of ACO; (ii) traditional TSP is the one most studied
on ACO algorithms, with encouraging results [6]; and (iii) ACO implementation in TSP-D
has not yet been studied in the existing literature.

Systems 2023, 11, 259 3 of 16

The main contributions of this paper are as follows:

• Heuristic methods in the TSP-D solution literature are based on two separate decisions:
truck routing (route construction) and drone assignment (route improvement). A
traditional TSP route is constructed at the first step, in which drones are neglected, and
then drone nodes are determined by using heuristics to obtain a TSP-D route. Unlike
the TSP-D literature, both truck and drone routes are developed simultaneously with
the proposed GA-AS algorithm.

• The binary pheromone framework in GA-AS is presented differently from the tradi-
tional pheromone structure of ACO. TSP-D consists of two different types of vehicles,
and thus two different paths appear in a route: truck paths and drone paths. Each vehi-
cle lays down its own type of pheromone along the paths by using binary pheromone
formulations in the proposed algorithm.

The remaining parts of the paper are structured as follows: Section 2 discusses the
works related to TSP-D, based on heuristic solution approaches. Section 3 defines the
proposed hybrid metaheuristic GA-AS. Section 4 reports the experimental results and
Section 5 concludes the paper.

2. Related Works

In this section, in alignment with the scope of this paper, we focused on TSP-D studies
in the literature, addressing routing with a single truck and a single drone, and reviewing
solutions and approaches presented for these. The existing solutions to TSP-D in the
literature can be reviewed as exact methods and heuristic/metaheuristic methods. Exact
methods solve the problem by using integer linear programming (ILP) formulations which
generate optimal solutions for limited-sized instances. Considering the problem is NP-hard,
to reach feasibly good solutions for larger-sized instances heuristic/metaheuristic methods
have been presented in the current reviewed literature that follows.

The two works [1,2] are the first presentation of FSTSP and TSP-D, and serve as the
basis for various extensions of drone-aided truck delivery problems in the literature. The
basic distinction between these two variants is that TSP-D allows more than one visit to
the customer to meet the drone, whereas trucks and drones can serve just one customer
without returning the same node in FSTSP. The authors also presented a mathematical
formulation of these problems. Ref. [5] proposed a mixed ILP formulation that solved
problem instances with as many as ten customers while requiring numerous hours. In
order to generate better solutions, they also presented a heuristic approach and benchmark
instances. Ref. [6] proposed an integer linear programming formulation that is capable of
solving instances with up to just 10 customers in 1 h. They also presented two heuristics
based on local search techniques and new benchmarking instances.

Exact solution approaches based on ILP formulations of the problem [7–9] are able
to solve small-sized instances optimally. In [10], the authors, much like in the first intro-
duced TSP-D, extended their work by presenting a dynamic programming model solvable
for larger-sized instances. Yurek and Ozmutlu [11] proposed an iterative optimization
algorithm based on decomposition, producing a better computational time. Several stud-
ies [12–14] can be viewed as exact solutions to the problem.

Regarding the computational limitations of exact solutions, heuristic approaches are
generally used to achieve feasible solutions to larger-sized instances of TSP-D. Heuristics
are commonly classified as classical heuristics and metaheuristics. Classical heuristic
algorithms consisting of route construction and route improvement stages have been used
in most of the TSP-D studies reviewed. As well as the first proposed TSP-D heuristic
by Agatz et al. [2] consists of a route-first, cluster-second approach. A truck route is
constructed, in which drones are neglected at the first step, generally by using the Concorde
solver, which finds a traditional TSP tour; then, drone nodes are generally determined
using neighborhood search heuristics. Ponza [15] implemented a heuristic approach in
his thesis to the FSTSP solution based on simulated annealing. Ha et al. [16] considered
a different objective of the problem, aiming to reduce operational costs and to reduce the

Systems 2023, 11, 259 4 of 16

truck waiting time for the drone; consequently, two heuristic approaches were developed.
TSP-LS uses local search procedures after an optimal truck route is found as a TSP tour;
GRASP selects drone nodes to set up a TSP-D solution from a TSP tour in the construction
step. They concluded through computational tests that GRASP obtained better solutions
in terms of quality than TSP-LS. Marinelli et al. [17] modified this GRASP, considering a
new assumption that the drone can launch and meet the truck along an arc, not just on a
customer node. Freitas and Penna [18] presented a heuristic named HGVNS based on a
neighborhood search to add drone deliveries after an optimal TSP tour found by a mixed
ILP solution. Almuhaideb et al. [19] also followed a route-first, partition-second procedure
in their study, and proposed a GRASP that includes two variants used as a local search
procedure: hill-climbing and simulated annealing. Gozalez et al. [20] described a greedy
heuristic working through an iterative procedure based on simulated annealing, allowing
multiple drone visits between consequent rendezvous nodes, and also considering battery
limitations that were not formulated before. Baniasadi et al. [21] considered a clustered
generalized TSP as an extended variant of TSP, and proposed a transformation model.
They also adapted their model to drone-assisted delivery problems. They separated the
problem nodes into clusters and subclusters, in which the truck just visits one node in a
subcluster, while drones visit every other node. This presents a disparate solution method
to the problem.

Heuristic approaches are primarily considered in most TSP-D studies, while meta-
heuristics have rarely been studied so far in TSP-D. Ha et al. [22] introduced a hybrid
genetic algorithm named HGA, which includes the use of a genetic algorithm and local
search procedure combined to solve TSP-D, considering two objectives: min-cost and
min-time. The genetic algorithm has an education step to improve the solution quality by
exploring neighborhoods. HGA outperforms the previously proposed GRASP and existing
methods. Another genetic algorithm implemented in TSP-D is the work of Ferrandez
et al. [23], wherein a genetic algorithm was used to solve a TSP route for a truck, and a
K-means algorithm was used to determine drone launch nodes. Finally, Tong et al. [24]
also worked with a metaheuristic as a modification of the traditional tabu search algorithm.
They changed the neighborhood structure of the tabu search, which extends the search
range. The waiting times of trucks at launch nodes were also considered in their model.

Drone-aided routing problems, of which TSP-D is a variant, have some other variants,
for instance, problems extended by the use of multiple drones and/or multiple trucks [25–28],
or parallel drone scheduling problems [29,30]. We also refer interested readers to the surveys
of Macrina et al. [31] and Otto et al. [32] for a comprehensive literature review of drone-aided
routing problems with some other variants and solution methods.

As a consequence of reviewing the literature, it can be seen up to now that heuristic
approaches are primarily focused on TSP-D studies, because ILP solutions call for sig-
nificant computational times. Researchers have tried to generate solutions to instances
involving many more nodes, attempting to solve them within an acceptable computation
time. An additional factor is that metaheuristics are rarely studied in comparison with
classical heuristics.

Another significant inference is that most of the heuristic algorithms mentioned here in
TSP-D literature solve the problem in two stages: first, route construction, and second, route
improvement. These algorithms consist of an improvement stage starting from a traditional
TSP tour. Route construction is the first step to obtaining a traditional TSP tour using a
Concorde solver or a heuristic algorithm. Route improvement consists of determining the
drone nodes on the route to finalize it as a TSP-D tour. These improvements are generally
based on neighborhood search procedures.

To the best of our knowledge, a method that constructs truck and drone routes in
a single stage has not previously appeared in the current literature. Considering the
use of such an algorithm, optimization can be simultaneously held on the route, while
determining truck and drone nodes at the same time. As opposed to staggered algorithms,
it could not be more appropriate for a problem of this nature.

Systems 2023, 11, 259 5 of 16

3. The Genetic Algorithm with Ant Search-Based Solution Method to TSP-D

Here, we described a metaheuristic method to solve TSP-D based on the GA which
works in parallel with an ant search (AS) procedure inspired by the traditional ACO al-
gorithm that we call the genetic algorithm with ant search-based solution (GA-AS). The
framework follows the classical GA optimization steps, whereas a new searching proce-
dure inspired by ACO has been developed. The GA generates solutions and determines
truck and drone delivery nodes, whereas the AS algorithm finds out the min-cost TSP-D
routes. The proposed AS algorithm uses a new procedure based on a binary pheromone
formulation variously from the pheromone structure of classical ant colony optimization.
The framework of the proposed GA-AS is described in Algorithm 1.

Algorithm 1: The GA-AS algorithm

1: Initialize Population
2: iter = 0
3: for (iter < maxiter)
4: gpop = 0;
5: Generate truckphmtrx and dronephmtrx
6: for (gpop = 0, gpop < maximum number of population, gpop++)
7: Select the chromosome (gpop)
8: Apply AS algorithm (gpop, truckphmtrx and dronephmtrx)
9: Generate the route and fitness of each chromosome
10: end
11: for (until the max number of crossover)
12: Select the parents P1 and P2
13: Generate offspring individual O from P1 and P2
14: Replace unwilling chromosome with offspring O
15: end
16: for (until the max number of mutation)
17: Select the random allele on the chromosome
18: Mutate the selected allele
19: end
20: update truckphmtrx and dronephmtrx
21: end

In detail, at the beginning, the algorithm initializes the genetic population (line 1), and
each chromosome in the GA population goes through the AS algorithm to be constructed as
the TSP-D route (line 8). The AS algorithm will be defined exhaustively in Section 3.2. Each
chromosome is evaluated in line 9 to obtain a fitness value corresponding to its tour cost.
In line 12, chromosomes are selected to be parents for reproduction via the roulette wheel
method. Lines 13 to 18 present the reproduction part of GA, consisting of the crossover and
mutation processes; elitism is also applied to the population (line 14). Child chromosomes
after the reproduction part generate the new population of GA, and the algorithm returns
to line 2. The algorithm repeats until the given maximum number of iterations is reached.
At the end, the algorithm returns the solution found with min-cost. All the processes of the
proposed algorithm will be explained in detail through the following sections. In addition,
the given diagram in Figure 2 displays the flow of the algorithm.

Systems 2023, 11, 259 6 of 16

Systems 2023, 11, x FOR PEER REVIEW 6 of 17

cost. All the processes of the proposed algorithm will be explained in detail through the

following sections. In addition, the given diagram in Figure 2 displays the flow of the

algorithm.

Figure 2. Flow diagram of GA-AS algorithm.

3.1. Solution Representation in GA

The representation of the genetic solution is the main decision component of our GA,

because choosing the right encoding greatly affects the performance of the algorithm. En-

coding each solution represents a unique and feasible random point in the solution space

of the problem.

Binary representation is applied for our GA, wherein each chromosome is encoded

as a string of bits. Alleles on the chromosome can take the value of 0 or 1, and thus many

possible solution representations may be generated using a small number of alleles. In our

solution representation with a binary encoded chromosome, 0 represents any customer

node that will be served by truck; 1 represents any customer node that will be served by

drone. Figure 3 illustrates this solution representation for a randomly generated string in

our GA. The length of the chromosome is equal to the total number of customer nodes (n)

in the problem. Each gen location I of chromosomes corresponds to the customer node i,

where i is from 1 to n. There, two separate arrays are generated in the algorithm to deter-

mine whether customers will be served by a truck or drone: truck delivery node (TD) and

drone delivery node (DD) arrays. In a random chromosome generated by GA, if gen loca-

tion i takes the value of 0, the customer node i will be served by a truck, and node i will

be added to the TDarray; otherwise, it will be added to the DDarray. In this step of the

algorithm, the chromosome determines only truck deliveries and drone deliveries, as the

customer node id’s representation does not contain the delivery sequence.

Figure 2. Flow diagram of GA-AS algorithm.

3.1. Solution Representation in GA

The representation of the genetic solution is the main decision component of our
GA, because choosing the right encoding greatly affects the performance of the algorithm.
Encoding each solution represents a unique and feasible random point in the solution space
of the problem.

Binary representation is applied for our GA, wherein each chromosome is encoded
as a string of bits. Alleles on the chromosome can take the value of 0 or 1, and thus many
possible solution representations may be generated using a small number of alleles. In our
solution representation with a binary encoded chromosome, 0 represents any customer
node that will be served by truck; 1 represents any customer node that will be served by
drone. Figure 3 illustrates this solution representation for a randomly generated string in
our GA. The length of the chromosome is equal to the total number of customer nodes (n)
in the problem. Each gen location I of chromosomes corresponds to the customer node
i, where i is from 1 to n. There, two separate arrays are generated in the algorithm to
determine whether customers will be served by a truck or drone: truck delivery node (TD)
and drone delivery node (DD) arrays. In a random chromosome generated by GA, if gen
location i takes the value of 0, the customer node i will be served by a truck, and node i
will be added to the TDarray; otherwise, it will be added to the DDarray. In this step of the
algorithm, the chromosome determines only truck deliveries and drone deliveries, as the
customer node id’s representation does not contain the delivery sequence.

Systems 2023, 11, x FOR PEER REVIEW 7 of 17

Figure 3. Illustration of a solution representation in GA.

3.2. Ant Search Algorithm (AS)

The AS step of the algorithm GA-AS constructs TSP-D routes corresponding to de-

livery types of nodes determined by GA. The AS algorithm transforms each chromosome

solution of GA into a feasible TSP-D solution. The following parts describe the ant search

procedure of the algorithm in detail.

3.2.1. Supportive Structure for AS Procedure

We first decided to separate the transportation types in a TSP-D route. TSP-D

acknowledges that a path between two customer nodes may be taken in three ways: by

truck alone, by drone alone, or by a truck with a drone standing on it. Figure 4 shows a

TSP-D route with all possible transportation types. The route’s construction will be based

on these types of transportation. We define four transportation types on the TSP-D route,

as explained below.

Figure 4. Transportation types of a TSP-D route.

Figure 3. Illustration of a solution representation in GA.

Systems 2023, 11, 259 7 of 16

3.2. Ant Search Algorithm (AS)

The AS step of the algorithm GA-AS constructs TSP-D routes corresponding to delivery
types of nodes determined by GA. The AS algorithm transforms each chromosome solution
of GA into a feasible TSP-D solution. The following parts describe the ant search procedure
of the algorithm in detail.

3.2.1. Supportive Structure for AS Procedure

We first decided to separate the transportation types in a TSP-D route. TSP-D ac-
knowledges that a path between two customer nodes may be taken in three ways: by truck
alone, by drone alone, or by a truck with a drone standing on it. Figure 4 shows a TSP-D
route with all possible transportation types. The route’s construction will be based on
these types of transportation. We define four transportation types on the TSP-D route, as
explained below.

• Type 1: (truck alone) The truck moves from customer i alone, takes path ij and serves
customer j alone; meanwhile, the drone is having its own sortie to serve another
customer node.

• Type 2: (drone alone) The drone has a sortie between customer i and j, serves customer
j alone, and lands on another (rendezvous) node to meet the truck again.

• Type 3: (truck and drone together) A path ij is taken by a truck carrying a drone on
top. A truck moves from customer i to serve customer j. Delivery will be completed
by a truck while the drone will be standing by.

• Type 4: (drone with return) The drone sortie follows the i-j-i path. A drone is located
on top of a truck at node i, launches from i to serve customer j alone, and returns to its
launch node i to land on a truck.

* If a node with type 1 will be a rendezvous node in the algorithm, then its type will
transform into type 3.

Systems 2023, 11, x FOR PEER REVIEW 7 of 17

Figure 3. Illustration of a solution representation in GA.

3.2. Ant Search Algorithm (AS)

The AS step of the algorithm GA-AS constructs TSP-D routes corresponding to de-

livery types of nodes determined by GA. The AS algorithm transforms each chromosome

solution of GA into a feasible TSP-D solution. The following parts describe the ant search

procedure of the algorithm in detail.

3.2.1. Supportive Structure for AS Procedure

We first decided to separate the transportation types in a TSP-D route. TSP-D

acknowledges that a path between two customer nodes may be taken in three ways: by

truck alone, by drone alone, or by a truck with a drone standing on it. Figure 4 shows a

TSP-D route with all possible transportation types. The route’s construction will be based

on these types of transportation. We define four transportation types on the TSP-D route,

as explained below.

Figure 4. Transportation types of a TSP-D route. Figure 4. Transportation types of a TSP-D route.

3.2.2. Solution Representation in AS

An array is generated for thte candidate solution in the AS algorithm, which represents
a TSP-D route. The elements of the array consist of a customer node id, which is placed,
respectively, in the visiting sequence. The first and last element of the array belong to the
depot (0). Each element of the array also has a label which represents its transportation
type. An example of a solution array in AS, the transformation of a GA solution to a TSP-D
route, and the corresponding graph is illustrated in Figure 5.

Systems 2023, 11, 259 8 of 16

Systems 2023, 11, x FOR PEER REVIEW 8 of 17

• Type 1: (truck alone) The truck moves from customer i alone, takes path ij and serves

customer j alone; meanwhile, the drone is having its own sortie to serve another cus-

tomer node.

• Type 2: (drone alone) The drone has a sortie between customer i and j, serves cus-

tomer j alone, and lands on another (rendezvous) node to meet the truck again.

• Type 3: (truck and drone together) A path ij is taken by a truck carrying a drone on

top. A truck moves from customer i to serve customer j. Delivery will be completed

by a truck while the drone will be standing by.

• Type 4: (drone with return) The drone sortie follows the i-j-i path. A drone is located

on top of a truck at node i, launches from i to serve customer j alone, and returns to

its launch node i to land on a truck.

* If a node with type 1 will be a rendezvous node in the algorithm, then its type will trans-

form into type 3.

3.2.2. Solution Representation in AS

An array is generated for thte candidate solution in the AS algorithm, which repre-

sents a TSP-D route. The elements of the array consist of a customer node id, which is

placed, respectively, in the visiting sequence. The first and last element of the array belong

to the depot (0). Each element of the array also has a label which represents its transpor-

tation type. An example of a solution array in AS, the transformation of a GA solution to

a TSP-D route, and the corresponding graph is illustrated in Figure 5.

Figure 5. Solution representation in AS.

3.2.3. Two-Pheromone Framework of AS

AS initializes N numbers of ant at each iteration, which is equal to a number of indi-

viduals in each GA population. For k = 1,..,N, each ant k is assigned to chromosome k gen-

erated in GA step. Thereby, each ant k in AS also uses the information in TDarray k and

DDarray k.

Our AS, out of the classical framework of ACO, has two separate pheromones, one

for the drone and the other for the truck. Therefore, two pheromone matrices are gener-

ated in the algorithm. One is the truck pheromone (Pt) matrix and one is the drone pher-

omone (Pd) matrix for nxn size of each, where n is the number of customer nodes. 𝑃𝑡𝑖𝑗
value

gives the current pheromone amount on the truck path between node i and node j;

𝑃𝑑𝑖𝑗
value gives the current pheromone amount on the drone path between node i and

node j (i = 1,..,n; j = i,..,n for each). 𝑃𝑡𝑖𝑗
 and 𝑃𝑑𝑖𝑗

values are used in the selection process, as

will be defined in the following section. At the beginning of the first iteration in the AS

algorithm, 1/n is assigned to each 𝑃𝑡𝑖𝑗
 and 𝑃𝑑𝑖𝑗

 value, and at the end of each iteration will

be updated by a defined formula which will be presented in Section 3.4.

chromosome k: solution array k:

0 0 0 0 1 1 1 0 0 0 8 2 6 5 3 9 1 4 7 0

transportation type array k:

3 3 3 4 2 1 3 3 3 2 3

truck delivery nodes:

2 9 8 1 4 3

drone delivery nodes:

6 5 7

transformed

GA solution

into a TSP-D

route

in AS

4

27

6

1

9

3

5

0

8

represented

TSP-D

solution on a

graph

determining customer

nodes served by truck

either drone in GA

Figure 5. Solution representation in AS.

3.2.3. Two-Pheromone Framework of AS

AS initializes N numbers of ant at each iteration, which is equal to a number of
individuals in each GA population. For k = 1,..,N, each ant k is assigned to chromosome k
generated in GA step. Thereby, each ant k in AS also uses the information in TDarray k and
DDarray k.

Our AS, out of the classical framework of ACO, has two separate pheromones, one for
the drone and the other for the truck. Therefore, two pheromone matrices are generated in
the algorithm. One is the truck pheromone (Pt) matrix and one is the drone pheromone (Pd)
matrix for nxn size of each, where n is the number of customer nodes. Ptij value gives the
current pheromone amount on the truck path between node i and node j; Pdij

value gives
the current pheromone amount on the drone path between node i and node j (i = 1,..,n;
j = i,..,n for each). Ptij and Pdij

values are used in the selection process, as will be defined
in the following section. At the beginning of the first iteration in the AS algorithm, 1/n is
assigned to each Ptij and Pdij

value, and at the end of each iteration will be updated by a
defined formula which will be presented in Section 3.4.

3.2.4. Restrictions on Selection

An ant is located at the depot at the beginning of the route’s construction, and selects
its next visiting node using a probability function until all customer nodes are sequenced.
There are some restrictions on the selection of the next visiting node j from the located node
i, which depend on the transportation type of node i. Choosing the next node is restricted
due to which vehicle was used in the last transportation. For instance, if a node is served
by a truck alone, transportation to the next node can only be taken by a truck again. All
these restrictions are given below.

• If node i is type 1, then node j may only be one of: type 1 or type 3.
• If node i is type 2, then node j may only be type 3.
• If node i is type 3, then node j may only be one of: type 3, type 2 or type 4.
• If node i is type 4, then node j may only be one of: type3 or type 2.

Ant k, located at node i, selects the next node j to construct a TSP-D route in the AS
algorithm. To select the next visiting node j in the route, at first, possible paths from nodes i
to j should be determined. Possible paths are generated according to the transportation
type of node i as defined in the following requisites.

1. If the transportation type of node i is type 3 or type 2 or type 4, the next node j may
become either a truck node and drone node; this means any unsequenced node from
TDarray and DDarray is a candidate node to be j. All unsequenced drone paths and
truck paths from i to j should be determined for evaluation.

2. If the transportation type node i is type 1, the next node j may become a truck node or
rendezvous node; this means any unsequenced node from only TDarray may become
j. Only possible truck paths should be determined for evaluation.

Systems 2023, 11, 259 9 of 16

After determining candidate nodes for j, each should be evaluated through a selection
mechanism to determine which one will be selected as the next node in the TSP-D route.
This selection mechanism of route construction is described in Section 3.2.5.

3.2.5. Selection Mechanism

Ant k located at node i chooses the next visiting customer node j proportional to the
pheromone amount and distance of the path between i and j. For each candidate path from
i to j, a selection value υij is computed as defined in Equation (1). Recalling, if customer j
belongs to the truck deliveries array determined before by the GA, the truck pheromone
amount Ptij is taken into calculation; otherwise, the drone pheromone amount Pdij

is taken.
dij gives the Euclidian distance between i and j. α and β are pre-given parameters regulating
how much the pheromone amount and distance will influence the selection of the next
node in the calculation.

υij =

{
Ptij

∝ × 1/dij
β, j ∈ TD array

Pdij
∝ × 1/dij

β, j ∈ DD array
(1)

After assigning υij for each possible path ij, the probability of node j becoming the
next customer node is computed as in Equation (2) by using the probability equation;
each possible node j has a value between 0–1 to be used in the selection. At this step, the
algorithm generates a random number r between 0–1, and takes the cumulative sum S of
all probabilities until S ≥ r; for p(i, j), the value of path ij wherein S exceeds r. j is chosen to
be the next node in the sequence.

p(i, j) =
υij

∑ υij
(2)

The algorithm repeats this framework until all customer nodes have been ordered in
a solution array k, which is the TSP-D route solution corresponding to chromosome k. N
number of solution arrays are generated corresponding to N number of individuals in a
GA population, which forms one iteration of the algorithm.

3.3. Individual Evaluation

Customer locations are given as an input data matrix consisting of the x- and y-
coordinates of each customer node. The coordinate matrix is transformed to a distance
matrix d, where each dij is the Euclidean distance between the customer nodes i and j.
Using the fact that the speed of the truck TS and speed of the drone DS differs, instead of
accounting costs in terms of distance traveled, costs are specified over the time traveled.
Two separate cost matrices, truck cost matrix TC and drone cost matrix DC, are identified,
wherein TCij gives the total delivery time of the truck launching from customer i and
arriving to customer j. DCij is the total sortie time of the drone launching from customer i
and landing to customer j. These values computed as in Equations (3) and (4), respectively.

TCij =
dij

TS
(3)

DCij =
dij

DS
(4)

The objective function of the problem, which is to be optimized, is also used to
evaluate individuals. Our objective is to minimize the total delivery time required to serve
all customers, where the depot is both the starting and finishing node. According to our
objective function, each Pk, after sequencing as a TSP-D tour by AS, obtains an evaluation
value denoted as fitness measurement fk. To measure the fitness of each Pk, the total cost
(TCostPk) of the TSP-D tour must be computed as the total delivery time of the sequenced
nodes in chromosome k. The total cost is calculated as follows. At the beginning, the truck

Systems 2023, 11, 259 10 of 16

where and drone are located together at the depot, node i = 0 for the depot and i = 1, . . . , n,
where n is the number of customers. Let customer i be a launch node and customer j be the
next visiting node in the sequence. If node j is a type 3 or type 1 node, then TCij is added
to TCostPk ; if node j is a type 4 node, then sortie time DCij is multiplied by two and added
to TCostPk ; if node j is a rendezvous node, then the maximum of TCij and DCij is added to
TCostPk . Then, the fitness value is calculated for each individual by Equation (5).

fk = 1/TCostPk (5)

3.4. Pheromone Update

At the end of each AS iteration, the pheromone amount on path ij will be changed
after all ants have completed their tours. This change is called the pheromone update, and
it takes two forms: pheromone deposit and pheromone evaporation. Proportionally to the
appearance frequency of path ij as an edge of the tour in solution array k, the pheromone
amount will be deposited. The deposited pheromone amount on a path ij depends on how
much path ij is taken by ant k. Evaporation is a decrease in the amount of pheromone on
path ij at iteration t, while the pheromone amount at iteration t + 1 is updated using an
evaporation constant e, where 0 < e < 1. As we established a two-pheromone framework in
the algorithm, the pheromone amounts also need to be updated in two cases, for both truck
paths and drone paths, separately.

If path ij belongs to solutionarray k and if the node j belongs to TDarray, this means
path ij is taken by the truck. Thus, the pheromone amount on the truck path ij (Ptij) should
be updated by the formula given in Equation (6).

Ptij(t + 1) = Ptij(t)e +
N

∑
k=1

∆Pk
tij

(6)

∆Pk
tij

refers to the change in pheromone amount on the truck path ij at the current
iteration and computed by Equation (7), which is inversely proportional to the total cost of
the tour found in solutionarray k, denoted as the fitness of individual k and formulated as
fk = 1/TCostPk

before.

∆Pk
tij
=

{
fk, j ∈ TDarray and path ij ∈ solutionarrayk
0, otherwise

(7)

If path ij belongs to solutionarray k, and if node j belongs to DDarray, then path ij will
be taken by the drone. Thus, the pheromone amount on the drone path ij (Pdij

) should be
updated by the formula given in Equations (8) and (9).

Pdij(t + 1) = Pdij(t)e +
N

∑
k=1

∆Pk
dij

(8)

∆Pk
dij

=

{
fk, j ∈ D Darray and path ij ∈ solutionarrayk
0, otherwise

(9)

3.5. Parent Selection

The selection operator of GA processes is characteristically similar to natural selection
in biological systems. Individuals in the population reach different levels of fitness, and the
selection mechanism drives the search for better solutions by preferring individuals with
higher fitness. In each iteration of our GA, individuals are selected to the mating pool to
become a parent by the roulette wheel method, which is a selection method proportionate
to fitness. The least fit individuals also have a chance of being selected as a parent in this
scheme, which provides genotypic diversity, thereby preventing the convergence of the
algorithm. Each individual Pk in the population contains N number of members, and

Systems 2023, 11, 259 11 of 16

obtains a probability of selection proportional to its fitness over the total fitness of the
population. The fitness probability is assigned to each individual Pk by the given formula
in Equation (10).

p(f k) =
fk

∑N
k=1 fk

(10)

Once parent chromosomes are selected for reproduction, they are replaced in the newly
generated population by their offspring, which allows the loss of super-fit individuals
by crossover, and the possibility of replacing them with inferior solutions. Keeping the
k-number of best-fitted members in the current population and copying them directly to the
new population without undergoing reproduction, known as elitism, is applied in our GA.

3.6. Crossover and Mutation

After randomly choosing two parents from the mating pool, a crossover operator is
applied to reproduction in the algorithm. The method to be used in this operator differs
by problem type. As usual, the solution of TSP by GA, as a combinatorial optimization
problem, has to be represented by permutation encoding of strings. Thus, it drives the
necessity to develop appropriate crossover and mutation operators. With a difference in
our GA for TSP-D, the specific use of binary coding removes this need and also exerts a
better computational effort. An often-used crossover method for GAs, the single-point
crossover, is applied to our binary strings. A single point on the binary string is chosen
randomly and is called a crossover point. The gene sequence of the first parent chromosome
before this crossover point and the gene sequence of the second parent chromosome after
the crossover point are copied directly as they are, and the first offspring is generated.
The second offspring is generated using the same crossover point and only changing the
gene sequence of parents. After crossover, offspring are subjected to a mutation, wherein
we applied single-bit mutation for binary represented strings, inversing a bit from 0 to
1 or 1 to 0. Arrays of truck delivery nodes and drone delivery nodes are also updated,
corresponding to newly generated chromosomes.

4. Experimental Results and Discussions

This section presents computational experiments to evaluate the performance of the
proposed algorithm GA-AS. The GA-AS was implemented in Visual Studio C++, and
experiments were run on an Intel Core i7 processor with 4.00 GHz and 16 GB RAM.

Since the TSP-D has been recently studied, commonly used benchmarking instances for
problems with optimal solutions are not available in the literature. Yet, Bouman et al. [33]
provided a set of test data to TSP-D containing a set of instances with different numbers of
customers (n) in the range of 5 to 250, and 10 different instances for each problem size n. We
experimented on the second type of instance provided in [33], the so-called single-center.
Distances between a pair of locations are computed as Euclidian distances. The alpha value
indicates the relative speed of the drone/truck. As a default, alpha = 2 is assumed, meaning
the drone is two times faster than the truck. Each location is eligible to be serviced by both
the drone and truck. The service time of the vehicles and the launch time of the drones are
set to 0. Drone endurance is assumed to be infinite. Experiments in sections are organized
as follows. In Section 4.1, we first determined the algorithm parameters before conducting
experiments. In Section 4.2, the GA-AS was primarily evaluated on a small-sized problem;
then, in Section 4.3, the GA-AS was compared with three rival existing algorithms in the
context of larger-sized problems.

4.1. Parameter Setting

Prior to the computational testing of the algorithm, we first carried out a design
of experiment to determine the best values of the GA-AS parameters using the Taguchi
method. The different parameter values used to experiment are classified as parameter
levels and given in Table 1. The levels were determined according to the references
of [34,35]. Each GA population size was set to 100, and each run consists of 1000 iterations

Systems 2023, 11, 259 12 of 16

of the algorithm. Any increase in them only incurs additional computational time due to
experimental trials.

Table 1. Parameter levels for experimental design.

Parameter Level 1 Level 2 Level 3

Crossover rate 0.6 0.7 0.8
Mutation rate 0.1 0.2 0.3

Evaporation constant 0.5 0.7 0.9
α 1 2 3
β 3 4 5

The “singlecenter-62-n20” problem from [33] was used in the parameter-setting exper-
iments. The results of the experimental design are evaluated through S/N ratios obtained
using the Taguchi analysis. The highest S/N value indicates the best level of parameters to
be used. Figure 6 graphically presents the effects of the parameter values. Considering the
results of the analysis, the parameters of the GA-AS algorithm are set as reported in Table 2.

Table 2. Parameter set of GA-AS.

Parameter Value

Crossover rate 0.8
Mutation rate 0.3

Evaporation constant 0.9
α 1
β 5

Systems 2023, 11, x FOR PEER REVIEW 13 of 17

Table 2. Parameter set of GA-AS.

Parameter Value

Crossover rate 0.8

Mutation rate 0.3

Evaporation constant 0.9

α 1

β 5

Figure 6. Main effects plot for S/N ratios.

4.2. Results of GA-AS on Small-Sized Instances

Bouman et al. provided a set of instances in [33] with optimal solutions given only

for problems with a maximum of nine customers (n = 9). The data set contains ten different

instances for each problem, and size n indicates the customer numbers. There are a total

of 50 single-center instances where alpha = 2 is used to test GA-AS in this section. Table 3

presents the numerical results of the experiments. Instances used in experiments are given

in the first column. The instance size is represented by column “n”. The values reported

in the column “GA-AS” are the best value of the objective function in terms of time (secs)

obtained over 30 runs of the algorithm for each instance. The optimal solution of each

problem instance is presented in column “IP”. These optimal solutions provided in [33]

have been solved by using the IP formulation of the problem. The column “GAP%” com-

putes the percentage difference between the best-found solution of GA-AS and the opti-

mal solution of that problem instance.

Table 3. Results of GA-AS for Bouman et al. [33] instances.

Instance n IP GA-AS %GAP Instance n IP GA-AS %GAP

1 5 154.26 154.26 0.00 26 7 98.71 98.77 0.06

2 5 140.54 140.54 0.00 27 7 177.86 177.10 0.43

3 5 52.67 52.92 0.46 28 7 169.77 170.97 0.71

4 5 108.94 108.94 0.00 29 7 193.34 193.34 0.00

5 5 122.15 122.15 0.00 30 7 177.10 177.10 0.00

6 5 162.22 162.22 0.00 31 8 155.20 155.48 0.18

7 5 133.95 133.95 0.00 32 8 107.20 107.20 0.00

Figure 6. Main effects plot for S/N ratios.

4.2. Results of GA-AS on Small-Sized Instances

Bouman et al. provided a set of instances in [33] with optimal solutions given only for
problems with a maximum of nine customers (n = 9). The data set contains ten different
instances for each problem, and size n indicates the customer numbers. There are a total
of 50 single-center instances where alpha = 2 is used to test GA-AS in this section. Table 3
presents the numerical results of the experiments. Instances used in experiments are

Systems 2023, 11, 259 13 of 16

given in the first column. The instance size is represented by column “n”. The values
reported in the column “GA-AS” are the best value of the objective function in terms of
time (secs) obtained over 30 runs of the algorithm for each instance. The optimal solution
of each problem instance is presented in column “IP”. These optimal solutions provided
in [33] have been solved by using the IP formulation of the problem. The column “GAP%”
computes the percentage difference between the best-found solution of GA-AS and the
optimal solution of that problem instance.

As for numerical results, the performance of the GA-AS algorithm is successful in its
ability to find optimal solutions, which are provided only for small-sized instances. GA-AS
found the optimal solutions in 37 out of the 50 problem instances tested, and obtained
acceptably close to optimal results in the remaining instances. Experiments demonstrated
that GA-AS can generate optimal TSP-D tours in instances tested with an average of 0.80%
gap, compared to IP solutions of these instances.

Table 3. Results of GA-AS for Bouman et al. [33] instances.

Instance n IP GA-AS %GAP Instance n IP GA-AS %GAP

1 5 154.26 154.26 0.00 26 7 98.71 98.77 0.06
2 5 140.54 140.54 0.00 27 7 177.86 177.10 0.43
3 5 52.67 52.92 0.46 28 7 169.77 170.97 0.71
4 5 108.94 108.94 0.00 29 7 193.34 193.34 0.00
5 5 122.15 122.15 0.00 30 7 177.10 177.10 0.00
6 5 162.22 162.22 0.00 31 8 155.20 155.48 0.18
7 5 133.95 133.95 0.00 32 8 107.20 107.20 0.00
8 5 81.50 81.50 0.00 33 8 172.85 177.06 2.44
9 5 143.15 143.15 0.00 34 8 226.91 226.91 0.00

10 5 140.40 140.40 0.00 35 8 188.46 188.46 0.00
11 6 128.01 128.01 0.00 36 8 181.37 181.37 0.00
12 6 125.94 125.94 0.00 37 8 134.62 134.62 0.00
13 6 215.91 215.91 0.00 38 8 286.71 286.71 0.00
14 6 119.24 147.71 23.87 39 8 181.07 181.07 0.00
15 6 169.62 169.62 0.00 40 8 214.90 217.51 1.21
16 6 117.84 117.84 0.00 41 9 116.93 116.93 0.00
17 6 263.03 263.03 0.00 42 9 316.25 318.84 0.82
18 6 258.65 258.65 0.00 43 9 226.28 238.26 5.29
19 6 188.80 188.80 0.00 44 9 228.28 233.03 2.08
20 6 122.17 122.17 0.00 45 9 279.66 279.66 0.00
21 7 208.34 208.34 0.00 46 9 214.02 216.19 1.01
22 7 178.38 178.38 0.00 47 9 277.73 282.98 1.89
23 7 116.24 116.24 0.00 48 9 200.95 200.96 0.00
24 7 152.59 152.59 0.00 49 9 349.49 349.49 0.00
25 7 130.50 130.50 0.00 50 9 196.84 196.84 0.00

4.3. Results of Comparison with Rival Algorithms

Here, we present an evaluation of the GA-AS’s performance over larger-sized problem
instances in [33], in which optimal solutions for instances bigger than n = 9 are not provided;
thus, our algorithm was compared with the best-found solutions of three rival algorithms:
LS [2], HGVNS [18], and two variants of the GRASP algorithm presented in [19].

The experiment used a total of 40 problem instances with n sizes of 10, 20, 50, and
75 customers, where each size contains 10 different instance sets. Table 4 presents the
best-found solution values of each referenced algorithm. The reported results in the table
present the mean value of the best-found solutions obtained over 10 problem instances of
each n-sized problem type. We also report the computation time of the proposed GA-AS
algorithm for each tested n-size of problem instances in Table 5.

Systems 2023, 11, 259 14 of 16

Table 4. Results of GA-AS in larger-sized instances from Bouman et al. [33], and comparison among
rival algorithms [2,18,19].

n LS [2] HGVNS [18] GRASP-HCLS [19] GRASP-SA [19] GA-AS

10 278.22 291.36 287.13 295.49 263.50
20 384.87 364.08 416.47 428.09 399.73
50 554.58 593.54 617.43 723.88 649.61
75 741.38 754.43 861.21 1030.92 978.25

The proposed GA-AS algorithm outperformed four algorithms and improved the
best-found solution in the n = 10-sized problem instances. The GA-AS algorithm obtained
better results than the best-found solutions of the GRASP-SA variant on overall instances,
and performed better than the GRASP algorithm in instances in which n = 20. We observed
that GA-AS is an efficient algorithm in smaller-sized instances, whereas it obtains worse
or close results in larger-sized ones. We were not able to separately compare solutions
of each ten instances in each n problem set, owing to relevant studies presenting their
solutions over average values instead of presenting each independently. Otherwise, we
would provide more specific results and a more intense analysis of the performance of
the algorithm.

Table 5. Computation time of the GA-AS algorithm on different n-sizes of instances.

n Time (Sec.) n Time (Sec.)

5 0.45 10 1.64
6 0.61 20 6.65
7 0.91 50 74.91
8 1.09 75 197.27
9 1.36

5. Conclusions

In this study, we addressed the TSP-D and presented a hybrid metaheuristic solution
method based on two state-of-the-art algorithms, the genetic algorithm and ant colony
optimization algorithm, named GA-AS. Unlike heuristics, metaheuristic methods have
rarely been studied so far in TSP-D; we proposed this algorithm to contribute to the
literature’s appraisal of the problem. TSP-D heuristic solutions almost wholly consist
of truck routing and drone assignment decisions carried out separately. A traditional
TSP route is constructed before drone nodes are determined by a heuristic to obtain the
TSP-D tour. The main contribution of this study presents a varying solution method,
where the GA-AS simultaneously constructs a TSP-D tour while two algorithms determine
the truck and drone nodes. In addition, we may state that ant colony optimization has
herein been applied for the first time to solving TSP-D, as the GA-AS uses it in its searching
methodology. Finally, a binary pheromone framework in GA-AS is implemented differently
from the traditional pheromone structure of the ant colony algorithm.

Numerical experiments have demonstrated that the proposed metaheuristic algorithm
can generate optimal TSP-D routes for provided instances with solutions. In addition, the
algorithm improved the best-known solutions of some instances found by state-of-the-art
heuristics in the literature. Overall, we indicate that the proposed metaheuristic method
is comparable with classical heuristics in TSP-D solutions. Furthermore, the proposed
method still has the potential for performance improvement in larger-sized instances. We
limited this study on TSP-D by working with a single truck and a single drone; in further
studies, the algorithm may be extended in order to implement it in delivery problems
dealing with multiple drones and trucks. Another limitation of this study is that the battery
recharge time is negligible, and the drone’s endurance is set to infinite. Further studies may
consider the remaining battery charge and drone endurance.

Systems 2023, 11, 259 15 of 16

Author Contributions: Conceptualization, N.S.G.-S.; methodology, N.S.G.-S. and E.C.; software,
E.C.; formal analysis, N.S.G.-S.; investigation, N.S.G.-S.; resources, E.C.; writing—original draft
preparation, N.S.G.-S.; supervision, E.C. and S.B.; project administration, S.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Benchmarking instances used in this study for computational ex-
periments are publicly available in “Instances for the TSP with Drone (and some solutions)” at
https://doi.org/10.5281/zenodo.1204676 [26].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Murray, C.C.; Chu, A.G. The Flying Sidekick Traveling Salesman Problem: Optimization of Drone-Assisted Parcel Delivery.

Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109. [CrossRef]
2. Agatz, N.; Bouman, P.; Schmidt, M. Optimization Approaches for the Traveling Salesman Problem with Drone. Transp. Sci. 2018,

52, 965–981. [CrossRef]
3. Laporte, G.; Gendreau, M.; Potvin, J.-Y.; Deâ, F.; Semet, R. Classical and Modern Heuristics for the Vehicle Routing Problem. Int.

Trans. Oper. Res. 2000, 7, 285–300. [CrossRef]
4. Sivanandam, S.N.; Deepa, S.N. Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2008.
5. Dorigo, M.; Di Caro, G. Ant Colony Optimization: A New Meta-Heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; pp. 1470–1477. [CrossRef]
6. Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
7. Poikonen, S.; Golden, B. Multi-Visit Drone Routing Problem. Comput. Oper. Res. 2020, 113, 104802. [CrossRef]
8. Roberti, R.; Ruthmair, M. Exact Methods for the Traveling Salesman Problem with Drone. Transp. Sci. 2021, 55, 315–335. [CrossRef]
9. Vásquez, S.A.; Angulo, G.; Klapp, M.A. An Exact Solution Method for the TSP with Drone Based on Decomposition. Comput.

Oper. Res. 2021, 127, 105127. [CrossRef]
10. Bouman, P.; Agatz, N.; Schmidt, M. Dynamic Programming Approaches for the Traveling Salesman Problem with Drone. Networks

2018, 72, 528–542. [CrossRef]
11. Es Yurek, E.; Ozmutlu, H.C. A Decomposition-Based Iterative Optimization Algorithm for Traveling Salesman Problem with

Drone. Transp. Res. Part C Emerg. Technol. 2018, 91, 249–262. [CrossRef]
12. Boccia, M.; Masone, A.; Sforza, A.; Sterle, C. A Column-and-Row Generation Approach for the Flying Sidekick Travelling

Salesman Problem. Transp. Res. Part C Emerg. Technol. 2021, 124, 102913. [CrossRef]
13. Dell’Amico, M.; Montemanni, R.; Novellani, S. Algorithms Based on Branch and Bound for the Flying Sidekick Traveling

Salesman Problem. Omega 2021, 104, 102493. [CrossRef]
14. Schermer, D.; Moeini, M.; Wendt, O. A Branch-and-Cut Approach and Alternative Formulations for the Traveling Salesman

Problem with Drone. Networks 2020, 76, 164–186. [CrossRef]
15. Ponza, A. Optimization of Drone-Assisted Parcel Delivery. Master’s Thesis, Universita Degli Studi Di Padova, Padova, Italy, 2015.
16. Ha, Q.M.; Deville, Y.; Pham, Q.D.; Hà, M.H. On the Min-Cost Traveling Salesman Problem with Drone. Transp. Res. Part C Emerg.

Technol. 2018, 86, 597–621. [CrossRef]
17. Marinelli, M.; Caggiani, L.; Ottomanelli, M.; Dell’Orco, M. En Route Truck-Drone Parcel Delivery for Optimal Vehicle Routing

Strategies. In IET Intelligent Transport Systems; Institution of Engineering and Technology: Stevenage, UK, 2018; Volume 12,
pp. 253–261. [CrossRef]

18. de Freitas, J.C.; Penna, P.H.V. A Variable Neighborhood Search for Flying Sidekick Traveling Salesman Problem. Int. Trans. Oper.
Res. 2020, 27, 267–290. [CrossRef]

19. Almuhaideb, S.; Alhussan, T.; Alamri, S.; Altwaijry, Y.; Aljarbou, L.; Alrayes, H. Optimization of Truck-Drone Parcel Delivery
Using Metaheuristics. Appl. Sci. 2021, 11, 6443. [CrossRef]

20. Gonzalez-R, P.L.; Canca, D.; Andrade-Pineda, J.L.; Calle, M.; Leon-Blanco, J.M. Truck-Drone Team Logistics: A Heuristic Approach
to Multi-Drop Route Planning. Transp. Res. Part C Emerg. Technol. 2020, 114, 657–680. [CrossRef]

21. Baniasadi, P.; Foumani, M.; Smith-Miles, K.; Ejov, V. A Transformation Technique for the Clustered Generalized Traveling
Salesman Problem with Applications to Logistics. Eur. J. Oper. Res. 2020, 285, 444–457. [CrossRef]

22. Ha, Q.M.; Deville, Y.; Pham, Q.D.; Hà, M.H. A Hybrid Genetic Algorithm for the Traveling Salesman Problem with Drone.
J. Heuristics 2020, 26, 219–247. [CrossRef]

23. Ferrandez, S.M.; Harbison, T.; Weber, T.; Sturges, R.; Rich, R. Optimization of a Truck-Drone in Tandem Delivery Network Using
k-Means and Genetic Algorithm. J. Ind. Eng. Manag. 2016, 9, 374–388. [CrossRef]

24. Tong, B.; Wang, J.; Wang, X.; Zhou, F.; Mao, X.; Zheng, W. Optimal Route Planning for Truck–Drone Delivery Using Variable
Neighborhood Tabu Search Algorithm. Appl. Sci. 2022, 12, 529. [CrossRef]

25. Cavani, S.; Iori, M.; Roberti, R. Exact Methods for the Traveling Salesman Problem with Multiple Drones. Transp. Res. Part C
Emerg. Technol. 2021, 130, 103280. [CrossRef]

https://doi.org/10.5281/zenodo.1204676
https://doi.org/10.1016/j.trc.2015.03.005
https://doi.org/10.1287/trsc.2017.0791
https://doi.org/10.1111/j.1475-3995.2000.tb00200.x
https://doi.org/10.1109/CEC.1999.782657
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1016/j.cor.2019.104802
https://doi.org/10.1287/trsc.2020.1017
https://doi.org/10.1016/j.cor.2020.105127
https://doi.org/10.1002/net.21864
https://doi.org/10.1016/j.trc.2018.04.009
https://doi.org/10.1016/j.trc.2020.102913
https://doi.org/10.1016/j.omega.2021.102493
https://doi.org/10.1002/net.21958
https://doi.org/10.1016/j.trc.2017.11.015
https://doi.org/10.1049/iet-its.2017.0227
https://doi.org/10.1111/itor.12671
https://doi.org/10.3390/app11146443
https://doi.org/10.1016/j.trc.2020.02.030
https://doi.org/10.1016/j.ejor.2020.01.053
https://doi.org/10.1007/s10732-019-09431-y
https://doi.org/10.3926/jiem.1929
https://doi.org/10.3390/app12010529
https://doi.org/10.1016/j.trc.2021.103280

Systems 2023, 11, 259 16 of 16

26. Dell’Amico, M.; Montemanni, R.; Novellani, S. Modeling the Flying Sidekick Traveling Salesman Problem with Multiple Drones.
Networks 2021, 78, 303–327. [CrossRef]

27. Murray, C.C.; Raj, R. The Multiple Flying Sidekicks Traveling Salesman Problem: Parcel Delivery with Multiple Drones. Transp.
Res. Part C Emerg. Technol. 2020, 110, 368–398. [CrossRef]

28. Salama, M.R.; Srinivas, S. Collaborative Truck Multi-Drone Routing and Scheduling Problem: Package Delivery with Flexible
Launch and Recovery Sites. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102788. [CrossRef]

29. Dell’Amico, M.; Montemanni, R.; Novellani, S. Matheuristic Algorithms for the Parallel Drone Scheduling Traveling Salesman
Problem. Ann. Oper. Res. 2020, 289, 211–226. [CrossRef]

30. Montemanni, R.; Dell’Amico, M. Solving the Parallel Drone Scheduling Traveling Salesman Problem via Constraint Programming.
Algorithms 2023, 16, 40. [CrossRef]

31. Macrina, G.; Di Puglia Pugliese, L.; Guerriero, F.; Laporte, G. Drone-Aided Routing: A Literature Review. Transp. Res. Part C
Emerg. Technol. 2020, 120, 102762. [CrossRef]

32. Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization Approaches for Civil Applications of Unmanned Aerial
Vehicles (UAVs) or Aerial Drones: A Survey. Networks 2018, 72, 411–458. [CrossRef]

33. Bouman, P.; Agatz, N.; Schmidt, M. Instances for the TSP with Drone (and Some Solutions); Zenodo: London, UK, 2018; (v1.2).
[CrossRef]

34. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 1996, 26, 29–41. [CrossRef]

35. Srinivas, M.; Patnaik, L.M. Genetic Algorithms: A Survey. Computer 1994, 27, 17–26. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/net.22022
https://doi.org/10.1016/j.trc.2019.11.003
https://doi.org/10.1016/j.tre.2022.102788
https://doi.org/10.1007/s10479-020-03562-3
https://doi.org/10.3390/a16010040
https://doi.org/10.1016/j.trc.2020.102762
https://doi.org/10.1002/net.21818
https://doi.org/10.5281/zenodo.1204676
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/2.294849

	Introduction
	Related Works
	The Genetic Algorithm with Ant Search-Based Solution Method to TSP-D
	Solution Representation in GA
	Ant Search Algorithm (AS)
	Supportive Structure for AS Procedure
	Solution Representation in AS
	Two-Pheromone Framework of AS
	Restrictions on Selection
	Selection Mechanism

	Individual Evaluation
	Pheromone Update
	Parent Selection
	Crossover and Mutation

	Experimental Results and Discussions
	Parameter Setting
	Results of GA-AS on Small-Sized Instances
	Results of Comparison with Rival Algorithms

	Conclusions
	References

