
Citation: Werapun, W.; Karode, T.;

Suaboot, J.; Arpornthip, T.;

Sangiamkul, E. NativeVRF: A

Simplified Decentralized Random

Number Generator on EVM

Blockchains. Systems 2023, 11, 326.

https://doi.org/10.3390/

systems11070326

Academic Editor: Hamid Jahankhani

Received: 16 May 2023

Revised: 16 June 2023

Accepted: 21 June 2023

Published: 25 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

NativeVRF: A Simplified Decentralized Random Number
Generator on EVM Blockchains
Warodom Werapun 1 , Tanakorn Karode 1, Jakapan Suaboot 1,* , Tanwa Arpornthip 2

and Esther Sangiamkul 1

1 College of Computing, Prince of Songkla University, Phuket 83120, Thailand;
warodom.w@phuket.psu.ac.th (W.W.); s6230622001@phuket.psu.ac.th (T.K.); esther.j@phuket.psu.ac.th (E.S.)

2 Faculty of Technology and Environment, Prince of Songkla University, Phuket 83120, Thailand;
tanwa.a@phuket.psu.ac.th

* Correspondence: jakapan.su@phuket.psu.ac.th

Abstract: Smart contracts refer to small programs that run in a decentralized blockchain infras-
tructure. The blockchain system is trustless, and the determination of common variables is done
by consensus between peers. Developing applications that require generating random variables
becomes significantly challenging—for instance, lotteries, games, and random assignments. Many
random number generators (RNGs) for smart contracts have been developed for the decentralized
environment. The methods can be classified into three categories: on-chain RNG, Verifiable Random
Function (VRF), and the Commit–reveal scheme. Although the existing methods offer different
strengths and weaknesses, none achieves the three important requirements for an ideal RNG solution:
security, applicability, and cost efficiency. This paper proposes a novel RNG approach called Native
VRF, which offers application development simplicity and cost efficiency while maintaining strong
RNG security properties. Experimental results show that Native VRF has the same security properties
as the widely used RNG methods, i.e., Randao and Chainlink VRF. On top of that, our work offers a
much simpler setup process and lower hardware resources and developer expertise requirements.
Most importantly, the proposed Native VRF is compatible with all Ethereum virtual machine (EVM)
blockchains, contributing to the overall growth of the blockchain ecosystem.

Keywords: random number generator (RNG); on-chain RNG; verifiable random function (VRF);
smart contract; Ethereum; blockchain

1. Introduction

A random number generator (RNG) is essential in developing applications, such
as gaming [1], and gambling [2] applications, that ensure fair distribution of resources
and rewards [3]. These activities accumulate a huge amount of value. The non-fungible
token (NFT) market and blockchain gaming market value surpassed $44 million, according
to Chainalysis report [4]. NFTs are randomly generated and transferred to people who
pay to create them. People obtain NFTs with different rarities affecting their prices on
the market. Pooltogether, a blockchain-based lottery system, earns over $10 million per
week from users worldwide 1. It randomly distributes over $8000 weekly rewards for
participants. More importantly, the Ethereum Proof-of-Stake (POS) consensus algorithm
randomly selects a miner to record data on-chain. The blockchain relies on a decentralized
RNG to maintain network security. The Ethereum market cap accumulates $585 billion over
the network. Regarding the huge amount of value on the distributed network, a strong
RNG is necessary to maintain its security. The loss is tremendous if the network cannot
generate truly random numbers.

A smart contract refers to a collection of distributed software programs that is indepen-
dently responsible for its own verification and execution while being resistant to tampering.
Using the smart contract, developers can offer fewer intermediaries, lower costs, and new

Systems 2023, 11, 326. https://doi.org/10.3390/systems11070326 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11070326
https://doi.org/10.3390/systems11070326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-1915-036X
https://orcid.org/0000-0002-9519-0833
https://orcid.org/0000-0002-3615-5982
https://orcid.org/0000-0003-2157-679X
https://doi.org/10.3390/systems11070326
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11070326?type=check_update&version=2

Systems 2023, 11, 326 2 of 24

business or operational models [5]. Generating truly random numbers in the smart contract
needs to ensure the fairness and security of the applications [5–7]. However, generating
true random numbers in a blockchain is challenging. This is because a blockchain is a de-
centralized and trustless environment where the random number generation can easily be
manipulated or biased by any party in the network. To address the aforementioned issues,
various approaches have been proposed for generating pseudo-random numbers in smart
contracts, for example, public randomness source [8], random zoo [9], and randomness
beacons [10].

This paper classifies existing RNG approaches into three categories. In the first cate-
gory are on-chain RNGs, utilizing the naïve approach, and relying on sources of random-
ness available on the blockchain. This method does not require any external sources of
randomness and can be implemented in a decentralized manner. The widely used method
in this category is ERC721R [11], used in an NFT collection called Mphers. However, it has
been exploited using a smart contract brute force technique, where the attacker generates
multiple smart contracts to inject random inputs and guarantees minting a rare Mphers [12].

The second category consists of RNGs employing a cryptographic technique, called a
verifiable random function (VRF). Chainlink VRF [13] is the most used implementation in
this category. The verifiable off-chain random source makes Chainlink VRF more secure
than the on-chain RNG. It allows a prover to demonstrate to a verifier that a given output
was generated randomly without revealing the output itself. This solution is widely used
in many applications as a trusted, decentralized RNG, such as in [3,14–17]. However,
developing applications using Chainlink VRF requires high technical expertise because
of the complexity and system requirements. Most importantly, no guideline for adding
new networks on Chainlink VRF is provided. This makes it challenging to scale to other
new blockchains. Hence, an alternative developer-friendly, yet secure, RNG technique
is required.

The third category is that of the Commit–reveal scheme, which is one of the most used
RNG methods, and can be implemented natively on-chain. This method does not require
external data to be fed into the networks. Randao [18] is an instance of the Commit–reveal
scheme RNG, where participants “commit” a hash value to the Randao smart contract
and then reveal an actual value later. In other words, people can directly and easily
feed seed numbers to the Randao smart contract. This allows random numbers to be
generated in a decentralized manner. Randao offers certain benefits. Firstly, it does not
rely on any organization or development team. Secondly, there is no system requirement
or complicated setup to be prepared before joining it. Hence, it is easy to adopt and scale
to new blockchains. However, Randao’s significant limitation is the cost-efficiency issue.
Computing a random number using the Randao method invokes many transactions. Thus,
it is considered an expensive method compared to the others.

This paper proposes a novel approach to address the limitations of the three most
widely used RNG techniques, namely ERC721R, Chainlink VRF, and Randao. Specifi-
cally, the proposed approach is a decentralized Native VRF RNG that employs a verifiable
random function to ensure security and simplifies the participation process to reduce com-
plexity. The native in this context means the system does not rely on external infrastructure
to generate random numbers. An example of a non-native RNG is Chainlink VRF, which
requires the Chainlink network as the external trusted source of information. The primary
objectives of the study are the following: (i) to mitigate the security issue associated with
ERC721R, (ii) to alleviate the complexity issue of Chainlink VRF, and (iii) to reduce the
overhead cost issue of Randao. The efficacy of the proposed method is evaluated based on
three criteria: security, applicability, and cost efficiency. The contributions of this work are
as follows:

(i) Classify the decentralized random methods most commonly used by famous
platforms (Section 2.4).

(ii) Propose the novel Native VRF method that achieves a high-security property, is
practical for developers, and is cost-effective (see Section 3).

Systems 2023, 11, 326 3 of 24

(iii) Give insight analysis of random functions in a smart contract in Section 5.
(iv) Provide an implementation framework from our proposed solution on Github2.

Our Native VRF framework can be implemented on any Ethereum virtual machine
(EVM) compatible chain. It does not need any technical support to be adopted.
Developers can use the example source code provided in this paper to apply
this framework.

The rest of this paper is organized as follows. Section 2 discusses the state-of-the-art
and related issues. We explain Native VRF in Section 3. Section 4 describes our testing
methodology and how we measured the results. The testing results are then analyzed in
Section 5. Finally, we conclude the work in Section 6.

2. Literature Review

This section discusses related works from industry and academia. Firstly, our research
methodology for selecting benchmark RNGs is presented in Section 2.1. Then, we compare
centralized against decentralized RNGs in Section 2.2. In Section 2.3, we investigate many
RNG incidents and analyze the severity of RNG attacks. To understand the state-of-the-
art decentralized RNGs, we study existing RNGs widely used to date and examine their
strengths and weaknesses in Section 2.4.

2.1. RNG Benchmark Selection

Various sources from educational and industrial domains were studied to identify
the most used RNG methods in different categories. Since decentralized RNG was in an
early stage, we found a limited number of published research articles. Chatterjee et al. [19]
categorize the state-of-the-art into three groups: (1) using on-chain block hash and time
stamp (on-chain RNG), (2) using an oracle source, and (3) using the Commit–reveal scheme.
In regard to the first category, Wang et al. [20] stated that ERC721R is the main implemen-
tation of the on-chain RNG. It has also been deployed in production, such as in [12,21].
Meanwhile, Chainlink VRF is mentioned by researchers [22,23] as a trusted oracle RNG
source. Many decentralized applications [3,13–15] utilize Chainlink VRF as a core RNG.
On the other hand, Randao is an implementation classified as a Commit–reveal scheme
RNG by several research works [9,10,19]. Randao is also used as a base implementation
for the Ethereum proof of stake miner selection process, as mentioned in [18]. Hence, we
chose these RNG methods (i.e., ERC721R, Chainlink VRF, and Randao) to benchmark our
proposed work in this paper.

2.2. Centralized versus Decentralized Random Number Generators

General RNGs have been used in a centralized environment for decades and, hence,
various random number algorithms are proposed for multiple domains, including network
security, electronics and mechanics [24–27]. Several RNG methods aim to provide high
data throughput [28–30], while ensuring at least similar security and simplicity. These
algorithms work fine in the off-chain environment, where private data (i.e., seed) can be
easily protected.

On the other hand, generating random numbers in a decentralized environment can
be challenging as developers need to ensure that the input values used for the RNG are
truly random and not predictable or biased by peers in the distributed network. Many RNG
approaches for the distributed context have been proposed and implemented in real-world
applications, such as [1–3]. Unfortunately, the general RNG approach cannot guarantee
the trust, integrity, verifiability, and availability required in the distributed applications,
particularly EVM blockchains, emphasized in this paper.

2.3. Attacks on the Decentralized Random Number Generator

RNG vulnerabilities can cause severe damage to the Ethereum ecosystem [31], espe-
cially when the system accumulates high values. NFT random distribution is a typical
case that holds a high value. According to Chainalysis research [4], the sales volume of the

Systems 2023, 11, 326 4 of 24

NFT market reached $44 billion in 2022. An important incident on NFT random mining
occurred in a project called Meebits, developed by a famous team, LavarLab. During the
incident, $765,000 worth of NFT was accidentally exploited using the random brute force
attack3. Meebits was launched on 3 May 2021. It contains 20,000 unique 3D characters,
which can be created (i.e., minting) in two ways: (i) community minting with CryptoPunks
NFT, and (ii) normal minting with Ethereum coins (ETH). Meebits minting involves an
on-chain random function, which obtains on-chain data to generate a random number, as
depicted in Figure 1.

Version June 16, 2023 submitted to Systems 4 of 23

that holds a high value. According to Chainalysis research [32], the sales volume of the 136

NFT market reached $44 billion in 2022. An important incident on NFT random mining 137

occurred in a project called Meebits, developed by a famous team, LavarLab. During the 138

incident, $765,000 worth of NFT was accidentally exploited using the random brute force 139

attack.3 Meebits was launched on May 3, 2021. It contains 20,000 unique 3D characters, 140

which can be created (i.e., minting) in 2 ways (i) the community minting with CryptoPunks 141

NFT, and (ii) the normal minting with Ethereum coin (ETH). Meebits minting involves an 142

on-chain random function, which obtains on-chain data to generate a random number, as 143

depicted in Figure 1. 144

1 /* This function computes a pseudo random number in a smart contract. The `

keccak256 ` function takes byte data as input and generates its hash

value that looks random. However , given the same byte data , the output

is identical. Attackers can pre -compute a random output in other smart

contracts using the same input data. When they get the desired output ,

they will invoke the NFT mint function to pick up a rare Meebit NFT. */

2 uint index = uint(keccak256(abi.encodePacked(nonce , msg.sender , block.

difficulty , block.timestamp))) % totalSize;

Figure 1. Meebits random function

Unfortunately, Meebits platform was exploited during May 3-9, 2021. The exploit 145

occurred in the community minting. The cause of the incident was that Meebits rarities 146

are publicly visible, and random function relies on the on-chain data. These allowed 147

an attacker to pre-compute the result using a smart contract. The attacker deployed the 148

contract containing brute-force minting and reverted if they could not get the desired 149

Meebits. In this incident, the attacker used the #4466 CryptoPunks to mint the rare #16647 150

Meebits, sold for 200 ETH ($765,000 worth during the attacking time). 151

A similar case also happened to the Mphers NFT collection [12] and Cryptogs [33]. 152

Mphers NFT collection contains 6,969 unique characters. There are eight (8) rare characters 153

among them. People pay some Ethereum coins to pick an NFT character from the pool 154

randomly. The process is on-chain and treated as true randomness. Unfortunately, the 155

attacker exploited Mphers by brute force random inputs to obtain the rare Mphers. After the 156

incident, developers improve ERC721R implementation by preventing function invocation 157

from a smart contract. Only an externally owned address (EOA), i.e., an account controlled 158

by a private key, most used at a crypto-wallet, can call the ERC721R smart contracts. This 159

workaround makes ERC721R more difficult to attack. However, it is still breakable by 160

dishonest miners if the reward is high enough for them. These incidents demonstrated that 161

an on-chain random function is vulnerable. Although many on-chain RNG solutions have 162

been invented since the early stage of blockchain development, only a few are adapted and 163

considered secure methods. 164

2.4. A Comparison of Blockchain-based Random Number Generation Methods 165

Figure 2 compares the strengths and weaknesses of the three existing methods that are 166

widely used as well as our proposed solution in this paper. The up (↑) and down (↓) arrows 167

demonstrate strengths and weaknesses, whereas the dash (–) refers to common attributes. 168

The methods ERC721R, Chainlink VRF, and Randao are commonly used in real-world 169

applications. However, they differ in the ways they generate random numbers. Firstly, 170

ERC721R is the simplest and cheapest method [11]. It is suitable for small and low-value 171

transactions. Using ERC721R with high-value applications is not recommended as it could 172

lead to severe damage like the incidents mentioned earlier in Section 2.3. Second, Chainlink 173

VRF is the most popular RNG method many applications use in the production stage. It 174

is usually the first option developers choose when RNG in a smart contract is needed. 175

While producing random numbers from Chainlink VRF is very simple, participating in 176

3 Meebits exploit was reported in https://cointelegraph.com/news/85-million-meebits-nft-project-exploited-
attacker-nabs-700-000-collectible.

Figure 1. Meebits random function.

Unfortunately, the Meebits platform was exploited ove4r thye period 3–9 May 2021.
The exploit occurred in the community minting. The cause of the incident was that
Meebits rarities are publicly visible, and random function relies on on-chain data. These
facts allowed an attacker to pre-compute the result using a smart contract. The attacker
deployed the contract containing brute-force minting and reverted if they could not get the
desired Meebits. In this incident, the attacker used the #4466 CryptoPunks to mint the rare
#16647 Meebits, sold for 200 ETH ($765,000 worth over the attacking period).

A similar case also happened to the Mphers NFT collection [12] and Cryptogs [32].
Mphers NFT collection contains 6969 unique characters. There are eight rare characters
among them. People pay Ethereum coins to pick an NFT character from the pool randomly.
The process is on-chain and treated as true randomness. Unfortunately, an attacker ex-
ploited Mphers by means of brute-force random inputs to obtain the rare Mphers. After
the incident, developers improved ERC721R implementation by preventing function in-
vocation from a smart contract. Only an externally owned address (EOA), i.e., an account
controlled by a private key, most used in a crypto-wallet, can call the ERC721R smart
contracts. This workaround makes ERC721R more difficult to attack. However, it is still
breakable by dishonest miners if the reward is high enough for them. These incidents
demonstrate that an on-chain random function is vulnerable. Although many on-chain
RNG solutions have been invented since the early stages of blockchain development, only
a few are adapted and considered secure methods.

2.4. A Comparison of Blockchain-Based Random Number Generation Methods

Figure 2 compares the strengths and weaknesses of the three existing methods that
are widely used, as well as those of our proposed solution in this paper. The up (↑) and
down (↓) arrows demonstrate strengths and weaknesses, whereas the dash (–) refers to
common attributes. The methods ERC721R, Chainlink VRF, and Randao are commonly
used in real-world applications. However, they differ in the ways they generate random
numbers. Firstly, ERC721R is the simplest and cheapest method [11]. It is suitable for
small and low-value transactions. Using ERC721R with high-value applications is not
recommended as it could lead to severe damage, such as the damage that ensued form
the incidents mentioned earlier in Section 2.3. Second, Chainlink VRF is the most popular
RNG method, used by many applications in the production stage. It is usually the first
option developers choose when RNG is necessary in a smart contract. While producing
random numbers from Chainlink VRF is very simple, participating in the Chainlink net-
work requires advanced technical skills, hardware requirements, and costly collateral [13].
This makes Chainlink VRF hard to scale in new blockchains due to the barrier for entry-
level participants. Another high-security RNG, which is considered a native solution, is
Randao [18]. It allows interested participants to join random number generation without

Systems 2023, 11, 326 5 of 24

hardware requirements. This method can be deployed in any blockchain without a complex
setup. However, Randao incorporates many transactions to generate a random number.
This makes Randao an expensive method compared to Chainlink VRF. Lastly, our proposed
Native VRF method preserves high security and simplicity, while maintaining moderate
cost efficiency.

ERC721R Chainlink

VRF

User User

Randao

User

EOA EOA EOAEOA

Native

VRF

User

Chainlink

Network

Low security

High simplicity

High cost efficiency

High security

Low simplicity

Moderate cost

efficiency

High security

Moderate simplicity

Low cost efficiency

High security

High simplicity

Moderate cost

efficiency

Figure 2. Native VRF: Pros & Cons vs. Existing Methods.

2.4.1. On-Chain Based Methods

The simplest way to generate a random number on-chain is to compute a hash of
blockchain data, such as smart contract states, timestamps, block numbers, and block
hashes. The ERC721R standard [11] extends the NFT random minting standard and utilizes
on-chain metadata to produce random numbers. This process involves processing hash
data using the keccak256 function, which obtains byte data parameters (see Figure 3).

ERC721RUser

Request random number

Fulfill random

result

random = uint256(

 keccak256(

 abi.encode(

 tx.gasprice,

 block.number,

 block.timestamp,

 block.difficulty,

 blockhash(block.number - 1),

 address(this)

)

)

);

Figure 3. The ERC721R procedure.

Although this function produces a seemingly random number, it is not truly random
because the block hash is deterministic depending on the contents of the block. The incident
referred to in Section 2.3 highlights a vulnerability in ERC721R, exploited by the attacker
using brute force to revert transactions until the desired random result was obtained.
To mitigate this vulnerability, the ERC721R standard was upgraded to disallow smart
contracts requesting random numbers [12]. This modification makes it more challenging
for defrauders to perform brute-force attacks. However, corrupted miners can still bypass
this modification by pre-calculating the random result and exploiting the system.

2.4.2. Verifiable Random Function-Based Methods

A more secure method for generating random numbers on the Ethereum blockchain
involves using a randomness beacon and verifiable random function (VRF). Chainlink

Systems 2023, 11, 326 6 of 24

VRF [13] is a service allowing users to obtain a truly random number from a decentralized
source. When a random number is requested, the smart contract sends a request to
Chainlink VRF. The random result is fulfilled in later blocks by a Chainlink node. Therefore,
Chainlink VRF relies on the Chainlink network to maintain its security and decentralization.
The Chainlink network is available for public participation. People can join it by following
the requirements and instructions on Chainlink’s official website. However, joining the
Chainlink network requires high technical expertise because of the complexity and system
requirements. Although several documents are well prepared, our research has yet to find
information for adding new networks on Chainlink VRF.

Figure 4 demonstrates the procedure of generating a random number on Chainlink
VRF. The process incorporates two (2) blockchain transactions. First, in step (1.1), a user
specifies “keyHash”, which associates with an off-chain random number generator. In
step (1.2), the user smart contract requests a random number from the Chainlink VRF
coordinator. A corresponding Chainlink node acknowledges the random number request,
i.e., step (2.1). It then iterates the computation of random proof using the “secp256k1”
algorithm. To make the random proof valid, the Chainlink node must follow the elliptic
curve requirements [33]. In step (2.2), the Chainlink node submits the random proof to
fulfill the pending random request on the VRF coordinator contract. The coordinator
contract verifies the random proof in step (2.3). Referring to step (2.4), if the proof is valid,
it returns the random result to the client’s smart contract. Otherwise, it rejects fulfillment.
This procedure guarantees that the provided data is truly random.

Furthermore, this method separates request and fulfillment transactions to prevent
brute-force attacks. Although Chainlink VRF provides secured and decentralized RNG,
joining the network requires a certain level of technical expertise. The system has complex
processes and system requirements. Additionally, this method does not natively support
all networks. It may require technical support to add a new chain. Hence, this approach
may not be suitable for scaling to new blockchains.

VRFConsumerUser

Chainlink Node

(1.1) Request random number

(specify `keyHash`)

(1.2) Request random number

proof = secp256k1(seed) * sk

keyHash = hashOfKey(pk)

isOnCurve(pk, gamma, c, s, seed)

VRFCoordinator

(2.1) Compute verifiable

random number

(2.2) Submit random proof

(2.3) Prove random proof

and record random number

(2.4) Return random number

Figure 4. The VRF procedure.

2.4.3. Commit–Reveal Scheme-based Methods

The Commit–reveal scheme is a decentralized alternative for generating random
numbers, which can be natively implemented on the Ethereum blockchain. Randao,
the main Commit–reveal RNG implementation, utilizes data feeds from the public and
incentivizes participation in random number generation. The Randao procedure comprises
four (4) steps, illustrated in Figure 5. First, the application requests a random number and
deposits a reward for generators, i.e., step (1). Second, EOAs participate in the random
request by uploading a hash value of the prepared data feed to ensure unpredictability,
step (2). Third, hash committers reveal their actual numbers to be used as random feed and
can withdraw their deposit and a portion of the reward upon successful reveal. Fourth,

Systems 2023, 11, 326 7 of 24

after the reveal phase, EOAs fulfill the random result by aggregating the numbers revealed
in step (3). Finally, every revealer claims deposits and rewards after completing the random
number generation in step (4).

Randao RNGUser

EOA EOA EOA

(1) Request random number
random = input_1 xor input_2

xor ... xor input_n

(2) Commit hash

(multiple transactions)

(3) Reveal number

(multiple transactions)

(4) Fulfill random number

Figure 5. The Randao procedure.

The Randao approach effectively prevents brute-force attacks by separating transac-
tions and keeping the actual input numbers hidden during the generation process. The
Randao approach operates on a decentralized network, where all participants have incen-
tives to generate random numbers and do not rely on any external infrastructure. This
makes Randao suitable for native blockchain implementation. However, due to the high
number of transactions required to generate a random number, Randao suffers from cost
inefficiency, which limits its adoption in several use cases.

Overall, we describe each widely used RNG method and highlight significant limi-
tations in detail. ERC721R is vulnerable for miners to extract values. Participating in the
secured Chainlink VRF network is difficult for typical users or entry-level developers. On
the other hand, using the native Randao method to generate numbers is expensive. Hence,
developers need to analyze the requirements and constraints of their applications when
adopting an RNG method. Unfortunately, selecting an optimized method for each use
case is not a simple task for most people. To fulfill the shortcomings mentioned above,
we propose a novel RNG method, named “Native VRF”. It is a decentralized RNG that
addresses the security issue of ERC721R, and the complexity issue of Chainlink VRF, as
well as Randao’s high-cost issue.

3. The Proposed Native VRF

Native VRF applies a verifiable random function and simplifies the process of partici-
pation. It combines on-chain data and random feed from the public to generate a random
number. In order to secure data feed, Native VRF requires data feeders to generate a
valid signature with a corresponding random input before publishing it to a blockchain.
The Native VRF system is easy to set up because it only needs one-time deployment.
Furthermore, it is open for anyone to feed random seeds to incentivize the generating of
random numbers. Native VRF is a native approach, so it can be implemented on any EVM
blockchain. Therefore, Native VRF provides secure random number generation, while
being simple for participants. Details of the Native VRF approach are discussed in the
following sections.

3.1. Random Number Generation Process

The random number generation process of Native VRF is more simple than that of
Randao. It involves only two main steps to process a random number compared to Randao,

Systems 2023, 11, 326 8 of 24

which requires four steps (refer to Section 2.4.3). Figure 6 demonstrates the Native VRF
random number generation process, which has the following details:

1. Request randomness: a user requests random number generation, Figure 6 (1.1). The
request is stamped into the smart contract and attached with an identifier number
(request_id). The smart contract then broadcasts the request to the public in step (1.2).

2. Fulfill result: once a request is recorded in a smart contract, anyone can feed random
data to that request by specifying request_id. Data feeders compute the signature
using their private key and a message, which takes random_input and the previous
random result as parameters, as shown in Figure 6 (2.1). The published information
must meet the following requirements in order to fulfill the request:

(i) The request_id must be valid (i.e., already have a requester).
(ii) The request_id must not have been fulfilled.
(iii) The prior request_id must have been fulfilled.
(iv) The data must be published by EOAs, see step (2.2). Data fed via a smart

contract is rejected to protect against brute-force attack.
(v) In step (2.3), the signature must be validated. Then, the random numbers

are generated using random_input, prior random result, and data from the
blockchain. Details of the data forming and signature verification processes
are discussed in Sections 3.2 and 3.3.

(vi) Finally, in step (2.4), data feeders publish the output random numbers to the
requester.

The proposed Native VRF is secure from pre-determination attack. Specifically, at-
tackers cannot try to execute the contract to simulate the results until the desired num-
ber is achieved because the random number result is created in different transactions
from feeders.

NativeVRF

Consumer

User

(1.1) Request random number
(1.2) Request random number

sig = keccak256(prev_rand, rand_input) * sk

verifySignature(sig, msg, pk)

require(uint256(sig) % difficultly == 0)

random = keccak256(onchain_data, rand_input)

NativeVRF

Generator

(2.1) Compute verifiable

random number

(2.2) Submit random input (rand_input)

 and signature (sig)

(2.3) Verify input and signature
then compute random number

(2.4) Return random number

EOA EOA EOA

Figure 6. The Native VRF procedure.

3.2. Data Forming

Figure 7 demonstrates a block diagram of Native VRF data forming. Each random
number takes a prior random result as a component. The prior random result is an input of
signatures generated by data feeders.

Systems 2023, 11, 326 9 of 24

Block data

BnBnBn-1 Bn+1 Bn+2 Bn

Bnr0 r1 r2 rn

. . .

. . .

Deployer EOA EOA EOA EOA

Random data

Figure 7. Native VRF data forming.

The Native VRF utilizes any EVM-compatible chains to deploy the smart contract
at a block number (Bn). The initial random seed is defined as the Deployer. The first
random data (r0) is computed using the initial random seed combined with blockchain
data at the deployment time. When there is any RNG request, anyone that owns EOA
can generate a verifiable random feed to the smart contract. The random results (i.e., r1
to rn) are computed using the feed data, previous random number, and blockchain data
during the generating time. The Native VRF smart contract continuously generates random
numbers after that.

3.3. Signature Verification Process

The Native VRF requires a data feeder to prove that the submitted random_input is
truly random. Hence, the signature requirement is established herein. The schema of the
Native VRF message is defined in Figure 8. Basically, a signature is created by using a
private key and a message. When a data feeder publishes random_input and signature to
the smart contract, the data validation process is as follows.

(i) The Native VRF smart contract computes a message_hash using a prior random
result and random_input.

(ii) The computed message_hash and the published signature are parameters in the
ecrecover function to obtain the signer public_key.

(iii) The recovered public_key and the transaction sender public key are compared. If
they are mismatched, the signature is invalid.

(iv) The smart contract requires the signature to be divided by the di f f iculty. The
signature is invalid if this condition is not satisfied. This process ensures that the
submitted signature is truly random.

The signature requirement ensures data feeders pay to generate a random number, i.e.,
computation cost. Specifically, they need to attempt to put random_input into the message
signing process to find a valid signature. The difficulty in generating a valid signature
is relative to the value of di f f iculty. The smart contract adjusts the di f f iculty to allow
legitimate data feeders to publish authentic signatures. Conversely, fraudulent data feeders
must pay a high price to manipulate the random number generation. In the following
section, we delve into the appropriate adjustment of the di f f iculty value.

Version June 16, 2023 submitted to Systems 9 of 23

Block data

BnBnBn-1 Bn+1 Bn+2 Bn

Bnr0 r1 r2 rn

. . .

. . .

Deployer EOA EOA EOA EOA

Random data

Figure 7. Native VRF data forming

The Native VRF utilizes any EVM-compatible chains to deploy the smart contract at 302

a block number (Bn). The initial random seed is defined as Deployer. The first random 303

data (r0) is computed using the initial random seed combined with blockchain data at the 304

deployment time. When there is any RNG request, anyone that owns EOA can generate 305

a verifiable random feed to the smart contract. The random results (i.e., r1 to rn) are 306

computed using the feed data, previous random number, and blockchain data during the 307

generating time. The Native VRF smart contract continuously generates random numbers 308

after that. 309

3.3. Signature Verification Process 310

The Native VRF requires a data feeder to prove that the submitted random_input is 311

truly random. Hence, the signature requirement is established here. The schema of the 312

Native VRF message is defined in Figure 8. Basically, a signature is created by using a 313

private key and a message. When a data feeder publishes random_input and signature to 314

the smart contract, the data validation process is as follows. 315

1 keccak256(

2 abi.encodePacked(

3 prevRand ,

4 randomInput

5)

6);

Figure 8. Native VRF message schema

(i) The Native VRF smart contract computes a message_hash using a prior random 316

result and random_input. 317

(ii) The computed message_hash and the published signature are parameters in the 318

ecrecover function to get the signer public_key. 319

(iii) The recovered public_key and the transaction sender public key are compared. If 320

they are mismatched, the signature is invalid. 321

(iv) The smart contract requires dividing the signature value by the di f f iculty value. 322

The signature is invalid if this condition is not satisfied. This process ensures that 323

the submitted signature is truly random. 324

The signature requirement ensures data feeders pay for generating a random number, 325

i.e., computation cost. Specifically, they need to attempt putting random_input into the 326

message signing process to find a valid signature. The difficulty to generate a valid 327

signature is relative to the di f f iculty value. The smart contract adjusts the di f f iculty value 328

to allow legitimate data feeders to publish authentic signatures. Conversely, fraudulent 329

data feeders must pay a high price to manipulate the random number generation. In the 330

next section, we will discuss how to appropriately adjust the di f f iculty value. 331

Figure 8. Native VRF message schema.

Systems 2023, 11, 326 10 of 24

3.4. Difficulty Adjustment

By definition, the di f f iculty is the number of attempts to generate a valid signature
within a specific period. Usually, the period is 15–30 s per 1–2 blocks. This value is deter-
mined based on the regular fulfillment period in other RNG frameworks (e.g., Chainlink
VRF and Randao). Therefore, the higher the value of di f f iculty, the more attempts to
generate a valid signature (i.e., the harder to attack) and the longer the time to generate
the valid signature. The probability of generating a valid signature can be determined as
in Equation (1), wherein P(success) is the probability of generating a valid signature. The
larger the value of di f f iculty, the harder it is to generate a valid signature.

P(success) =
1

di f f iculty
(1)

The relationship between the signature verification process and the di f f iculty is
shown in Figure 9. A Native VRF smart contract validates signatures submitted by EOAs.
Initially, signatures are represented in a 130-bytes hex string. They are then converted
into an unsigned integer format and validated. Transactions are successful when the
submitted signature is evenly divided by di f f iculty (i.e., signature mod di f f iculty equals
zero). Otherwise, transactions fail.

0

difficulty = 100

100 200 300 400

EOA EOA

signature % difficulty != 0

(failed)

signature % difficulty == 0

(success)

Figure 9. Likelihood of successful signature validation vs. di f f iculty.

The Native VRF automatically optimizes the value of di f f iculty using a smart contract
by adjusting the amount of effort to generate a valid random input. The ideal random
fulfillment should not be too simple to guess or take too long to calculate. Hence, the
likelihood of guessing the correct value and the calculation time must be adjusted to yield
the optimal di f f iculty value. We designed an adjustment model in Equation (2),

di f f iculty = t f ul f ill × rhash × (n f ul f ills/nblocks), (2)

where t f ul f ill denotes the expected duration for random fulfillment, and rhash is the esti-
mated average hash rate of data feeders. The configurations t f ul f ill and rhash are defined
by the smart contract owner (e.g., maintainers or decentralized autonomous organiza-
tions (DAOs)). Then, n f ul f ills stores the amount of random fulfillment in the last block.
Lastly, nblocks accumulates the number of blocks until the random request is fulfilled. The
smart contract automatically adjusts the di f f iculty to align it with the expected fulfillment
time (t f ul f ill) and the average hash rate of data feeders (rhash). The value of di f f iculty is
recomputed according to Equation (2) every time a new random number is generated.

Figure 10 illustrates an example of di f f iculty adjustment. The value is initially 1500,
which is the expected value. Then, a random data feeder successfully generates five random
outputs within one block. This rate is considered too fast for the current configuration
(i.e., t f ul f ill = 15 and rhash = 100). Thus, the smart contract increases the di f f iculty to 7500.
Random feeders need more attempts to generate a valid signature with this di f f iculty
value. It is assumed there are no random outputs generated in Block 2. After this, some
people can submit valid signatures to the smart contract. The di f f iculty decreases because
the generation rate is closer to the expectation (3 outputs within two blocks or 1.5 outputs

Systems 2023, 11, 326 11 of 24

per block). This mechanism stabilizes the system’s security and applicability. When more
participants interact in the network, Native VRF is more secure.

difficulty

Random

fulfillments

Block 1 Block 2 Block 3 Block 4 Block 5Block 5

5

1500 7500 2250 1500

0 3 1 2

tfulfill = 15

rhash = 100

nfulfill = 1

nblocks = 1

nfulfill = 5

nblocks = 1

nfulfill = 3

nblocks = 2

nfulfill = 1

nblocks = 1

Figure 10. Difficulty adjustment diagram.

4. Evaluation Model, Observation Scope, and Experimental Procedure

This section benchmarks several aspects of the proposed Native VRF system, namely,
the security, simplicity, and cost efficiency of various random number generation (RNG)
methods. Details of security model formulations and experimental settings are discussed.

4.1. Definition of Security Models

The term “security level”, in the context of the security level of an RNG, is the ability
to protect random output determination. This means the RNG method that produces
hard-to-predict outputs has a high-security level. Therefore, the output determination
attack was used to simulate attacks against RNG methods so as to analyze the security
level. Specifically, we defined probability models that reflected the probability of successful
attacks against each RNG method. The lower the successful attack probability, the higher
the security level of the approach.

4.1.1. ERC721R

The ERC721R algorithm utilizes the hash output of on-chain data to generate random
numbers. It mitigates brute-force attacks using smart contracts by preventing attackers from
iterating the RNG on-chain until a predictable outcome is achieved in a single transaction.
However, off-chain pre-computation of random results remains possible. In the case of the
variables depicted in Figure 1, certain variables fluctuate during transaction submission,
such as the block.timestamp, which may vary slightly for each block of data.

Figure 11 illustrates an ERC721R attack technique where an attacker employs brute
force to generate a desired random number. In step Ê, an attacker generates new wallets
and computes a random output using a hash function and inputs. Upon obtaining the
desired random output, in step Ë, the attacker calls the ERC721R smart contract through
the generated wallets to trigger an action using the desired random number.

Systems 2023, 11, 326 12 of 24

ERC721R

Attacker

.

.

w1

w2

w3

wn

1

2

Figure 11. ERC721R attack scenario.

The ERC721R security model can be expressed as Equation (3), where Rr represents the
range of random numbers and Rb denotes the number of block time ranges. The probability
of a successful ERC721R attack depends on the block time range, and the likelihood of an
attack exponentially increases with a broader random output range.

PERC721R = (
1

Rb
)

Rr

(3)

The probability of a successful ERC721R attack depends on the range of the random
output. The broader the random output range, the more computational power is required.
Another variable affecting an attack’s completion rate is the block time value, which
fluctuates, based on network congestion, over a given period. Table 1 presents each
blockchain network’s block time range values at the time of the investigation. This variable
influences the completion rate of an attack because the attacker must select a block time
value as an input for random number computation, and the attack fails if the wrong block
time value is selected.

Table 1. Block time range on 22 January 2023.

Blockchain Network Possible Block Time (s) Range

ETH 12 1

BSC 3 1

Arbitrum 0, 1 2

Optimism 0, 15 2

4.1.2. Chainlink VRF

The VRF is an effective technique for generating truly random numbers in the Chain-
link protocol. Since the VRF accepts off-chain pseudo-random generation and relies on the
strong cryptography function secp256k1 and elliptic curve requirements [33], the strength of
the secp256k1 algorithm is used to determine the security level of the Chainlink VRF model.

However, the data feeder for the Chainlink VRF is chosen by the consumer. This poses
a potential vulnerability as the requesters may select their nodes as data feeders. This allows
them to attempt to pre-compute and feed the desired random output. Figure 12 illustrates
the technique used in attacking the Chainlink VRF RNG. An attacker may follow the steps
below to pre-compute random numbers via Chainklink VRF. In step Ê, the attacker requests
random generation from the smart contract and selects their data feeder nodes. Then, in
step Ë, the feeder attacker attempts to compute the desired random number that satisfies
the elliptic curve requirements within a defined time limit (e.g., normally 15–30 s or 2 block

Systems 2023, 11, 326 13 of 24

time). Once the desired random input is found, the attacker can submit the transaction to
the smart contract in step Ì.

VRFConsumerAttacker

Attacker

(feeder)

1

2

3

Figure 12. Chainlink VRF attacking scenario.

The success of this attack relies on the attacker’s ability to find the desired random
number within the defined time limit. However, if the attacker has enough computing
power and time, they may be able to successfully pre-compute the desired output. The
probability of successfully generating the predicted random output can be determined
from Equation (4),

PCH_VRF = Pec
Rr , (4)

where Pec denotes the probability of successfully generating a random proof that complies
with the elliptic curve requirements. The probability value is referred to in [34].

4.1.3. Randao

Randao employs a transparent and open approach to prevent fraudulent random
number generation. This technique uses the so-called “interruption layer,” and requires
attackers to recompute their attack inputs each time new participants enter the system,
effectively disrupting their attempts to generate pre-computed random outputs.

Figure 13 demonstrates the method attackers use to generate a desired random output
via the Randao RNG. To successfully generate a desired random output, the attacker first
initiates a request for a random generation to the Randao smart contract (step Ê). In step Ë,
the attacker observes the hash commitment values submitted by other nodes (i.e., EOAs)
and extracts the actual value of the committed hashes. The attacker calculates an input
value that yields the expected output when aggregated with the current inputs submitted
by other nodes in step Ì. Finally, in step Í, the attacker submits the hash of the calculated
value to the smart contract, ensuring no further commitment from other nodes occurs after
the transaction is submitted. Otherwise, the expected output is not obtained.

Before calculating the probability of a successful attack on Randao, it is necessary
to determine the current interruption rate, which can be calculated by considering the
likelihood of a new participant joining the random number generation process. The rate is
computed based on the remaining commit time (tr), the total incentive amount (rw), the
total commit time (tc), the total transaction cost for generating an input (chrandao), and the
number of current commitments (nc), as shown in Equation (5).

Pinterruption1 =
tr× rw

tc× chrandao × (nc + 1)
(5)

When computing the interruption layer, the number of commitments must be adjusted
by adding one to the total number of commitments, as the reward is distributed among all

Systems 2023, 11, 326 14 of 24

pledges. The probability of successfully generating a desired random number on Randao
can be expressed by Equation (6).

PRandao = (
1

Rr
)

Rr+nc+1
× (1− Pinterruption1) (6)

The attack steps are as follows. First, the attacker must extract all committed hashes,
where nc represents the current number of commitments, and Rr denotes the input data
range. Next, the attacker must compute another input number with the desired random
output. In the last step, the attacker must commit the data to bypass the interruption layer.

Randao RNGAttacker

EOA

Interruption layer

EOAEOA

1

2

3

4

Figure 13. Randao attacking scenario.

4.1.4. Native VRF

The Native VRF presents a simplified process for generating random numbers while
preserving system security. Like the Randao, our approach uses an interruption layer,
which hinders attacks from malicious feeders. Since users must submit a request to ob-
tain a random number before the public can feed a random number into the system, an
attacker seeking to generate a desired random number must quickly compute an input
and be the first to provide data in a specific row. Therefore, the attacker must win all
legitimate data feeders in the network. Particularly, the Native VRF relies on the network’s
decentralized hashing power derived from economic incentives. When the cost and reward
ratio is acceptable, more legitimate participants contribute to the random network, which
enhances security.

Additionally, our approach enables the creation of pre-computed random numbers
at a high cost while keeping the process of generating honest random input inexpensive.
The system is designed to prevent fraudulent data feeders from generating a signature that
provides the desired random output. In the meantime, the smart contract only allows honest
random data feeders who generate a valid signature with minimum computation power.
Although we cannot 100% guarantee honest feeders, to successfully attack the system, the
adversary needs to compromise more than 50% of the network’s computation power.

Figure 14 illustrates the steps involved in an attack on the Native VRF RNG. An
attacker must undertake the following steps to generate the expected random output. First,
the attacker requests random generation to the Native VRF smart contract (step Ê). After
that, they compute an input value aggregated with the message hash, signature, previous
random output, and on-chain data. The attacker obtains the desired output in step Ë. They
submit the transaction using the computed input value in Ì at the final step. The attacker
must complete all steps before other nodes fulfill the random request. In this scenario, the
attacker obviously needs to control the network’s computational power to successfully
attack the Native VRF RNG.

Systems 2023, 11, 326 15 of 24

NativeVRF

Consumer

Attacker

EOA

Interruption layer

EOAEOA

1

2

3

Figure 14. Native VRF attacking scenario.

Equation (7) demonstrates the calculation of the Native VRF interruption layer, which
is essentially the network’s computational power. The interruption layer reduces the
opportunity to attack random number generation. Anyone who attempts to attack the
system must dominate computational power over the network (i.e., EOAs in Figure 14).
Here, Pinterruption2 is the probability when some nodes successfully fulfill a random request
before attackers, rw represents the total reward for a data feeder, ch denotes the cost per
hash, and the attacker’s hash rate is denoted as rh.

Pinterruption2 =

{
rw

ch×rh , if rw < (ch× rh)
0, otherwise.

(7)

The data feeders must comply with the signature requirements (See Section 3.3) to
validate the random input. The Native VRF adjusts the optimal di f f iculty value to ensure
system security, as stated in Equation (1). The probability of a successful attack on the
Native VRF is determined by Equation (8),

PNativeVRF = (
1

di f f iculty
)Rr × (1− Pinterruption2). (8)

Here, the attacker must repeatedly inject an input that delivers the desired random
output. The current value is denoted as di f f iculty, and Rr represents the range of random
input values. This means attackers must attempt to generate a valid signature regarding
the di f f iculty. Moreover, they need to keep trying multiple rows regarding the Rr value.
The attack is deemed successful only if the attacker can feed the computed input faster
than other feeders in the network.

4.2. Simplicity

The simplicity of RNG methods is crucial in determining their practicality and ap-
plicability. An ideal RNG method should be easy to use, so as to encourage more people
to adopt it. Intuitively, in the distributed system, the larger the group of participants, the
stronger the RNG network. Two criteria determine the simplicity of RNG methods.

1. Resource requirements: assets, tooling, and infrastructure.
2. Technical requirements: the basic knowledge for setting up the system, the specific

understanding of each method, and code complexity.

We observed all the requirements from the list of references provided on Chainlink of-
ficial website4 and GitHub repositories (ERC721R5, Chainlink6, Randao7 and Native VRF8).

4.3. Cost Efficiency

To assess the cost efficiency of the RNG methods, token cost and processing time were
used. The experiment was conducted as follows.

Systems 2023, 11, 326 16 of 24

1. Implementation of a Test Script: the test script was implemented using Node.js.
The test script was used to submit multiple transactions for the four methods (i.e.,
ERC721R, Chainlink VRF, Randao, and Native VRF).

2. Results collection: multiple transactions were submitted to the network, and the test
script recorded each method’s token cost and speed.

3. Ethereum network was used to perform the simulations: smart contracts were
deployed on the Ethereum Goerli Test Network. For experimental purposes, the
Alchemy free-tier RPC endpoint was selected. A public Chainlink node on the
Ethereum Goerli Network was also used to generate random numbers.

5. Results

The security aspect, implementation simplicity, and cost efficiency are discussed in
this section, based on the experimental results and analyses, and detailed below.

5.1. Security Comparison

Since each method had different parameters, affecting the security aspect, several
parameters were adjusted to normalize the differences for this comparison. The values of
the various parameters are listed in Table 2.

Table 2. Configuration for RNG methods.

Parameter Method Value Description

Rr Every method 100 Range of random input values.

Rb ERC721R 2 Possible block time difference in a period

Pec Chainlink VRF 0.05 Probability of successfully generating a set of inputs
that satisfies the elliptic curve requirement

tc Randao 24 Total commitment time

tr Randao 12 Remaining time before ending of commitment period

nc Randao 1 Current number of participants

ch (Randao) Randao 15 Cost

rw Randao, Native VRF 30 Reward

D Native VRF 200 Difficulty

ch (Native VRF) Native VRF 6 Cost per hash

rh Native VRF 1000 Attacker hash power

First, the random output range Rr was set to 100 for all methods to highlight the
differences when comparing the methods. Too large or too small Rr differences would
result in too huge or too small gaps. The Rb value was suggested by Ethereum.9 This
parameter only affected the ERC721 method. The Pec probability value was suggested
by [34]. This parameter affected the result of the Chainlink VRF method.

Concerning the Randao method, tc was set to two block times (i.e., 24 s), because
the Chainlink VRF usually spends the duration of two block times to generate a random
output.10 Meanwhile, tr was set to 12 s, the middle of the maximum and the minimum. The
number of participants (nc) was set to 1 person to simulate the opportunity of having more
participants in the commitment period. Note that this value must be considered along
with cost (ch) and reward (rw) values. From our experiment, the cost per hash of Randao
was $15, and the reward was then set to $30 to incentivize participants (explained in the
next section).

Native VRF parameters were set as follows. The reward (rw) was equal to Randao’s.
The di f f iculty (i.e., D) was 200 hashes, since our machine could produce this in around
12 s of block time. The cost per hash (ch) was about $6, whereas the attacker hash power
(rh) was five (5) times that of the generic computer (i.e., 1000 hash per second).

Systems 2023, 11, 326 17 of 24

Based on security models (i.e., Equations (3)–(8) and parameters in Table 2), the
security levels of each RNG were compared, and are provided in Figure 15. The chart uses a
random output range as an input and provides the hash power required for attacking each
method. Note that the Y axis is in the log scale. The experimental results demonstrated
that Randao required the most hash power to be attacked. Native VRF, Chainlink VRF, and
ERC721R offered lower security levels. When the highest hash rate of the Ethereum network
was 1126 TH/s (11.26× 1014),11 the security level of each method was high compared to the
network hash rate. This meant that these RNG methods were protected against brute-force
attack. Specifically, the proposed method, Native VRF, was at a similar security level to the
currently popular methods. Similar to Randao, the Native VRF also relies on the number of
random data feeders. Hence, the security level of both methods could be low when the
number of participants is small. Conversely, they are both secure when many feeders join
a network.

0 200 400 600 800 1000
10−300

10421

101142

101863

102584

103305

Range of random number output

H
as

h
po

w
er

fo
r

at
ta

ck
in

g
(#

of
ha

sh
es

) ERC721R
Chainlink VRF

Randao
Native VRF

Figure 15. Random function manipulation effort.

Figure 16 depicts the security sensitivity of both systems using the number of partici-
pants as inputs to calculate the hash power required to attack both RNGs. The Y axis is a
log scale. While Randao and Native VRF had different variables related to the number of
participants, they could be compared based on the following parameters. For Randao, the
number of participants represented the number of commitments (i.e., tc = participants).
For Native VRF, each participant contributed approximately 200 hashes per second (i.e.,
D = 200× participants). Except for some variables, most parameters used in this chart
were equal (see Table 2). The inputs for Randao and Native VRF were tc and D, respectively.
The random output range was fixed at 100. Here, we observed that the number of random
feeders directly affected the security level of both RNG methods. Native VRF provided a
higher security level when there were more data feeders. Compared to the Ethereum hash
power benchmark (i.e., 11.26× 1014), both RNGs offered high security, even with only one
random data feeder. This meant that only a few participants were sufficient to protect both
RNGs from brute-force attacks.

Systems 2023, 11, 326 18 of 24
Version June 16, 2023 submitted to Systems 18 of 23

0 5 10 15 20
10189

10226

10263

10300

10337

10374

Random number feeders (nodes)

H
as

h
po

w
er

fo
r

at
ta

ck
in

g
(#

of
ha

sh
es

) Randao
Native VRF

Figure 16. Randao security sensitivity

specifications costs around $3,120.42 per month. On the other hand, other methods can 585

run on a minimal server, which costs only $6 per month. ERC721R did not require a node 586

operator. Thus, there was no cost for operating the ERC721R system. Node operators 587

required ETH coins to pay transaction fees (gas) when fulfilling random results. Chainlink 588

VRF and Randao required some collateral to maintain the good behaviors of RNG nodes. 589

Native VRF did not need any collateral because it opens for data feed publicly in one 590

transaction. Regarding resource requirements, Chainlink VRF was the most expensive 591

compared to the others. 592

Table 3. RNGs resource requirements comparison

Topic Chainlink VRF Randao Native VRF ERC721R
Server 2 cores; 4 GB RAM 1 core; 512 MB RAM 1 core; 512 MB RAM None

($1,552.71) ($6) ($6)
Database 2 cores; 4 GB RAM None None None

and 100 GB storage
($1,567.71)

Blockchain node External service External service External service None
Gas ETH coin ETH coin ETH coin None
Collateral Link token ETH coin None None

5.2.2. Employee technical knowledge requirements 593

Technical skill requirements to set up random feeder nodes are listed in Table 4. All 594

methods require Solidity and TypeScript skills, i.e., the fundamental decentralized applica- 595

tion development knowledge. Chainlink VRF requires more technical skills to maintain 596

its nodes. Node operators must understand Rust language to set some configurations in 597

TOML files. Chainlink VRF requires an understanding of the Job Scheduler to determine 598

node functionality. The operator must correctly configure jobs for nodes to keep its per- 599

formance. DevOps best practices are required for Chainlink VRF node operators. They 600

must understand how to use Docker and maintain an AWS server properly. Randao and 601

Native VRF can be operated using Vanilla Node.js. Docker and AWS knowledge is used to 602

reduce deployment errors in many environments. Chainlink introduces many proprietary 603

specifications, such as Operator contracts, Forwarder contracts, jobs, address white listings, 604

and payment subscriptions. Conversely, other RNG methods do not require that technical 605

knowledge but can still provide a similar level of security. According to the necessary 606

technical skills, Chainlink VRF can be treated as a complex system compared to the others. 607

Figure 16. Randao security sensitivity.

5.2. Simplicity of Implementation

The ease of participating in an RNG network is crucial and relates to the security
level of each method. As demonstrated previously, methods with more feeders are con-
sidered more secure. To compare the simplicity of implementation, we considered two
aspects, resource and technical requirements. Therefore, our chosen criteria were hardware
requirements, the employees’ technical expertise, and the source code’s complexity.

5.2.1. Hardware Resource Requirements

Table 3 compares each RNG method’s resource requirements (i.e., minimum require-
ments). Chainlink VRF required participants to prepare a server and database capable of
handling Chainlink network node operation. Operating a Chainlink node with minimum
specifications costs around $3120.42 per month. On the other hand, other methods can
run on a minimal server, which costs only $6 per month. ERC721R did not require a node
operator. Thus, there was no cost for operating the ERC721R system. Node operators
required ETH coins to pay transaction fees (gas) when fulfilling random results. Chainlink
VRF and Randao required some collateral to maintain the good behavior of RNG nodes.
Native VRF did not need any collateral because it opens for data feed publicly in one
transaction. Regarding resource requirements, Chainlink VRF was the most expensive
compared to the others.

Table 3. RNGs resource requirements comparison.

Topic Chainlink VRF Randao Native VRF ERC721R

Server 2 cores; 4 GB RAM 1 core; 512 MB RAM 1 core; 512 MB RAM None
($1552.71) ($6) ($6)

Database 2 cores; 4 GB RAM None None None
and 100 GB storage
($1567.71)

Blockchain node External service External service External service None

Gas ETH coin ETH coin ETH coin None

Collateral Link token ETH coin None None

Systems 2023, 11, 326 19 of 24

5.2.2. Employee Technical Knowledge Requirements

Technical skill requirements to set up random feeder nodes are listed in Table 4. All
methods require Solidity and TypeScript skills, i.e., the fundamental decentralized applica-
tion development knowledge. Chainlink VRF requires more technical skills to maintain
its nodes. Node operators must understand Rust language to set some configurations
in TOML files. Chainlink VRF requires an understanding of the Job Scheduler to deter-
mine node functionality. The operator must correctly configure jobs for nodes to keep
its performance. DevOps best practices are required for Chainlink VRF node operators.
They must understand how to use Docker and maintain an AWS server properly. Randao
and Native VRF can be operated using Vanilla Node.js. Docker and AWS knowledge are
used to reduce deployment errors in many environments. Chainlink introduces many
proprietary specifications, such as Operator contracts, Forwarder contracts, jobs, address
white listings, and payment subscriptions. Conversely, other RNG methods do not require
that technical knowledge but can still provide similar levels of security. According to the
necessary technical skills, Chainlink VRF can be treated as a complex system compared to
the others.

Table 4. Technical knowledge required for feeder node setup.

Topic Chainlink VRF Randao Native VRF ERC721R

Solidity 3 3 3 3

TypeScript 3 3 3 3

Rust 3 7 7 7

Job Scheduler 3 7 7 7

Docker 3 7 a 7 a 7

AWS 3 7 a 7 a 7

Proprietary spec. 3 7 7 7
a Beneficial, but not mandatory.

5.2.3. Source Code Complexity

Aside from staff technical skills, code complexity is usually an essential consideration
for the development team. Table 5 compares each method’s line of codes (LOC) in each
component (i.e., Generator and Feeder). The implementation of the Feeder varies among
the different RNG methods. Specifically, the Chainlink VRF utilizes Go lang for Feeder de-
velopment, while Randao, Native VRF, and ERC721R rely on TypeScript. Our observations
revealed that Chainlink VRF was the most complex method, exhibiting the highest LOC,
having a more significant number of components, and a deeper depth of inheritance. At
the same time, Randao, Native VRF, and ERC721R were relatively simple methods with a
much smaller number of LOC.

Table 5. Line counts of RNG methods.

Method Component Languages LOC Total LOC

ERC721R Generator Solidity 257 257

Chainlink VRF Generator Solidity 2372 304,744
Feeder Go 302,372

Randao Generator Solidity 229 504
Feeder TypeScript 275

Native VRF Generator Solidity 139 293
Feeder TypeScript 154

Systems 2023, 11, 326 20 of 24

5.3. Cost Efficiency

Figure 17 illustrates the transaction cost of producing random numbers for each RNG
method based on the number of random numbers and the accumulated token cost used
in generating them. Note that the gas price used in the experiment was 20 GWEI, and
the Ethereum coin price was $1570 at the time of writing. Randao was found to be the
most expensive method, due to the requirement for multiple transactions and the number
of participants. In contrast, Chainlink VRF was less expensive than Randao but incurred
additional costs due to the enforcement by Chainlink nodes and the need to maintain
incentives for the Chainlink network. The Native VRF method was cheaper than Chainlink
VRF as it is a pure solution that does not require additional costs. Lastly, ERC721R was the
cheapest method as it is the smallest solution requiring only one transaction.

0 200 400 600 800 1000
0

0.5

1

1.5

2
104

Number of outputs

C
os

t(
$U

S)

RC721RE
inlink VRFCha
Randao
tive VRFaN

×

Figure 17. Random function transaction cost.

On the other hand, the speed of producing the random number was also compared.
Figure 18 shows the throughput of each RNG. The x-axis represents the time elapsed in min-
utes. The y-axis indicates the number of random outputs generated in a period. ERC721R
offered the highest throughput because it was the most straightforward method that only
incurred one transaction per random generation. ERC721R could produce 3.3 outputs per
minute. Native VRF provided higher speed than Chainlink VRF and Randao. This was
because it only required two main transactions, request and fulfill. As a simplified process,
Native VRF maintained a high speed with 1.67 random outputs per minute. Chainlink VRF
was much slower than Native VRF because it incorporated Chainlink network operation,
which was a complex process. It could generate 0.5 output per minute. Lastly, Randao
was the slowest method since it contained five transactions for each random generation.
It produced 0.25 output per minute. Overall, Native VRF was fast compared to other
popular methods.

Systems 2023, 11, 326 21 of 24

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

Number of output

G
en

er
at

io
n

ti
m

e
(m

in
ut

es
)

ERC721R
Chainlink VRF

Randao
Native VRF

Figure 18. Random function throughput.

5.4. Our Insights

Table 6 summarizes three main aspects of the existing decentralized RNG methods
compared to our proposed Native VRF approach. Overall, the Native VRF is excellent
in simplicity and security while maintaining acceptable cost efficiency. Although our
approach is not the best in all aspects, it is the best overall RNG approach with high security
and simplicity. As discussed in Section 5.1, when considering security the Native VRF and
Randao are the most secure decentralized RNGs, which are resilient against brute-force
attacks given a limited number of network participants. However, the critical limitation
of Randao is the high transaction cost. This is why Randao has not been very popular
compared to less secure methods, i.e., Chainlink VRF. Our experiment showed that Native
VRF offered cheaper transaction costs and was faster than Chainlink VRF. Hence, our
approach is the best choice for security and cost efficiency.

Table 6. RNG key aspects summary.

Key Aspect
RNG Method Chainlink VRF Randao Native VRF ERC721R

Simplicity − 0 + +
Security + + + −
Cost efficiency 0 − 0 +

When considering the simplicity property, we can rank RNG methods from easiest to
hardest applicability as follows: ERC721R, Native VRF, Randao, and Chainlink VRF. We
observed that Chainlink VRF was particularly hard to scale in existing and new networks.
At the time of writing, there were 300 active Chainlink nodes.12 The nodes produced
approximately 30,000 random requests per day.13 The number of nodes was relatively
low compared to the number of requests. This was caused by the resource and technical
requirements, which introduced barriers to entry for participants. Chainlink VRF was hard
to scale in the existing and new networks. Setting up Chainlink VRF in a new network
cannot be done publicly. It required the Chainlink team to handle this.

In contrast, the other methods were easy to set up. Most importantly, they could
be deployed and maintained by anyone. With the simplicity of Randao, ERC721R, and
Native VRF, these methods can be scaled easily in any network. Moreover, the simplicity
encourages overall security of the RNGs as they have more participants in the network
(hence more secure).

Systems 2023, 11, 326 22 of 24

A limitation of this work was that it solely focused on discussing RNGs within EVM-
compatible blockchain chains. This narrow scope was justified by the prevalence of such
chains in the current landscape of blockchain applications. However, it is important to
acknowledge that other blockchain networks, such as Solana, Near protocol, Cosmos, and
numerous others, possess distinct infrastructures that may introduce unique challenges
and approaches to RNG implementation. While these aspects were not covered in this
work, they present intriguing topics that warrant further exploration.

6. Conclusions

This work investigated random number generators in decentralized systems. Since
blockchain is a trustless system, producing truly random numbers is challenging. To date,
three popular RNG methods are used in real projects, namely ERC721R, Chainlink VRF, and
Randao. These methods have their strengths and weaknesses. We analyzed the pros and
cons and proposed a novel RNG method, named Native VRF. This method overcomes the
inadequacies of the previous techniques while maintaining their strengths. We conducted
experiments to measure each RNG’s security, simplicity, and scalability. The results of the
experiments indicated that Native VRF carries the same level of protection as Randao and
Chainlink VRF against brute-force attacks. It offers a high level of simplicity, compared to
the complex Chainlink VRF. Native VRF does not require many resources and technical
skills. The code base of Native VRF is much simpler than that of Chainlink VRF. Finally, it
maintains a cheap transaction cost and high speed in producing random numbers. Native
VRF is portable to any EVM-compatible blockchain network. Therefore, the proposed
Native VRF is a good alternative for many applications that need decentralized RNG.

In future work, we have two primary objectives for enhancing our proposed approach.
Firstly, we aim to address the issue of throughput in generating random numbers. It is
well-known that throughput is an inherited limitation for all blockchain-based applications,
and Native VRF RNG is no exception. We will explore strategies to optimize our RNG’s
efficiency and speed to increase throughput. Additionally, we plan to investigate methods
to reduce the cost of generating random numbers. One potential approach for achieving
this is integrating zero-knowledge proofs into the signature verification process. Hence,
we could streamline the verification process and potentially lower the cost of generating
random numbers. This strategy will be explored further to enhance the cost-effectiveness
of our proposed RNG solution.

Author Contributions: W.W.: Conceptualization, methodology, validation, investigation, resource,
data curation, writing—review and editing, supervising, project administration, and funding ac-
quisition. T.K.: Conceptualization, methodology, software, validation, investigation, data curation,
writing—original draft, and visualization. J.S.: validation, investigation, visualization, writing—
review, editing and supervision. T.A.: writing—review and editing. E.S.: writing—review and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Science, Research and Innovation Fund
(NSRF) and Prince of Songkla University (Grant No. COC6601136S) and the College of Computing,
Prince of Songkla University (Grant No. COC6304156S).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code repository of the Native VRF RNG is available on
GitHub here: https://github.com/Native-VRF/native-vrf (accessed on 1 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 https://app.pooltogether.com/deposit (accessed on 23 January 2023).
2 https://github.com/Native-VRF/native-vrf (accessed on 1 May 2023).

https://github.com/Native-VRF/native-vrf
https://app.pooltogether.com/deposit
https://github.com/Native-VRF/native-vrf

Systems 2023, 11, 326 23 of 24

3 https://cointelegraph.com/news/85-million-meebits-nft-project-exploited-attacker-nabs-700-000-collectible (accessed on 23
March 2022).

4 https://docs.chain.link/chainlink-nodes (accessed on 17 May 2022).
5 https://github.com/erc721r/ERC721R (accessed on 17 May 2022).
6 https://github.com/smartcontractkit/Chainlink (accessed on 17 May 2022).
7 https://github.com/randao/randao (accessed on 17 May 2022).
8 https://github.com/Native-VRF/native-vrf (accessed on 17 May 2022).
9 According to https://etherscan.io/chart/blocktime (accessed on 17 May 2023), the Ethereum average block time from September

2022 to April 2023 was 12 and 13 s, and the block time range value was 2.
10 According to the real transactions. The request transaction was invoked in block 7,878,699 (https://goerli.etherscan.io/tx/0x261

e82b2a157cc184a675e9dfa6d55c1054f876b5a75b8ebf3e728fd5960e422, accessed on 13 May 2022), and the fulfill transaction was
resolved in block 7,878,701 (https://goerli.etherscan.io/tx/0x87ccaf5785d93cf87f99a2570c6f0fedaf082df259a3b8f8de36e543f4
0cfc58) (accessed on 13 May 2022).

11 The highest Ethereum hash rate was recorded on Friday, 13 May 2022, at https://etherscan.io/chart/hashrate (accessed on 13
May 2022).

12 Chainlink nodes were active in various networks https://market.link/overview (accessed on 12 January 2023).
13 The daily request dashboard can be found here https://market.link/vrf (accessed on 12 January 2023).

References
1. Bartoletti, M.; Pompianu, L. An Empirical Analysis of Smart Contracts: Platforms, Applications, and Design Patterns. In

Proceedings of the Financial Cryptography and Data Security, Sliema, Malta, 7 April 2017; pp. 494–509. [CrossRef]
2. Azzolini, D.; Riguzzi, F.; Lamma, E. Modeling Smart Contracts with Probabilistic Logic Programming. In Proceedings of the

International Conference on Business Information Systems, Colorado Springs, CO, USA, 8–10 June 2020; pp. 86–98.
3. Cusack, L. Pool Together. 2022. Available online: https://medium.com/pooltogether/pooltogether-101-eaf9b1b759dc (accessed

on 23 January 2023).
4. Metav.rs. NFT Market–Statistics 2021–2023. 2022. Available online: https://metav.rs/blog/nft-market-statistics-2021-2022

(accessed on 19 December 2022).
5. Mohanta, B.K.; Panda, S.S.; Jena, D. An overview of smart contract and use cases in blockchain technology. In Proceedings of the

2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India,
10–12 July 2018; pp. 1–4.

6. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and
platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]

7. Peng, K.; Li, M.; Huang, H.; Wang, C.; Wan, S.; Choo, K.K.R. Security Challenges and Opportunities for Smart Contracts in
Internet of Things: A Survey. IEEE Internet Things J. 2021, 8, 12004–12020. [CrossRef]

8. Bonneau, J.; Clark, J.; Goldfeder, S. On Bitcoin as a Public Randomness Source. Cryptology ePrint Archive, Paper 2015/1015;
2015. Available online: https://eprint.iacr.org/2015/1015 (accessed on 12 January 2023).

9. Lenstra, A.K.; Wesolowski, B. Trustworthy public randomness with sloth, unicorn, and trx. Int. J. Appl. Cryptogr. 2017, 3, 330–343.
[CrossRef]

10. Bünz, B.; Goldfeder, S.; Bonneau, J. Proofs-of-delay and randomness beacons in Ethereum. In Proceedings of the Crypto
Economics Security Conference (CESC), Berkeley, CA, USA, 2–3 October 2017; pp. 1–11.

11. Lehman, T. ERC721R. 2022. Available online: https://github.com/erc721r/ERC721R#readme (accessed on 20 December 2022).
12. RogerPodacter. ERC721R: A New ERC721 Contract for Random Minting So People Don’t Snipe All the Rares! 2022. Available

online: https://medium.com/@dumbnamenumbers/erc721r-a-new-erc721-contract-for-random-minting-so-people-dont-snipe-
all-the-rares-68dd06611e5 (accessed on 20 December 2022).

13. Chainlink. Chainlink VRF: On-Chain Verifiable Randomness. 2020. Available online: https://blog.chain.link/chainlink-vrf-on-
chain-verifiable-randomness/ (accessed on 20 December 2022).

14. Infinity, A. Axie Infinity Integrates Chainlink Oracles! 2020. Available online: https://axieinfinity.medium.com/axie-infinity-
integrates-chainlink-oracles-aa93d3d0983e (accessed on 20 December 2022).

15. Editor, C. Chainlink VRF Used by Centaur to Deploy New Standard for Enhanced Transparency in Public Sale Lotteries.
2020. Available online: https://medium.com/centaur/chainlink-vrf-used-by-centaur-to-deploy-new-standard-for-enhanced-
transparency-in-public-sale-3cc0fa5b10e6 (accessed on 20 December 2022).

16. Bored Ape Yacht Club. THE MAYC DROP. 2021. Available online: https://boredapeyachtclub.com/#/mayc/info (accessed on
20 December 2022).

17. Blockmine. Blockmine Integrates Chainlink VRF. 2021. Available online: https://blockmine.medium.com/blockmine-integrates-
chainlink-vrf-66685473e19c (accessed on 20 December 2022).

18. Kelvin’s Ethereum Book. RANDAO. 2020. Available online: https://eth2.incessant.ink/book/06__building-blocks/02__
randomness.html (accessed on 19 December 2022).

https://cointelegraph.com/news/85-million-meebits-nft-project-exploited-attacker-nabs-700-000-collectible
https://docs.chain.link/chainlink-nodes
https://github.com/erc721r/ERC721R
https://github.com/smartcontractkit/Chainlink
https://github.com/randao/randao
https://github.com/Native-VRF/native-vrf
https://etherscan.io/chart/blocktime
https://goerli.etherscan.io/tx/0x261e82b2a157cc184a675e9dfa6d55c1054f876b5a75b8ebf3e728fd5960e422
https://goerli.etherscan.io/tx/0x261e82b2a157cc184a675e9dfa6d55c1054f876b5a75b8ebf3e728fd5960e422
https://goerli.etherscan.io/tx/0x87ccaf5785d93cf87f99a2570c6f0fedaf082df259a3b8f8de36e543f40cfc58
https://goerli.etherscan.io/tx/0x87ccaf5785d93cf87f99a2570c6f0fedaf082df259a3b8f8de36e543f40cfc58
https://etherscan.io/chart/hashrate
https://market.link/overview
https://market.link/vrf
http://doi.org/10.1007/978-3-319-70278-0_31
https://medium.com/pooltogether/pooltogether-101-eaf9b1b759dc
https://metav.rs/blog/nft-market-statistics-2021-2022
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1109/JIOT.2021.3074544
https://eprint.iacr.org/2015/1015
http://dx.doi.org/10.1504/IJACT.2017.089354
https://github.com/erc721r/ERC721R#readme
https://medium.com/@dumbnamenumbers/erc721r-a-new-erc721-contract-for-random-minting-so-people-dont-snipe-all-the-rares-68dd06611e5
https://medium.com/@dumbnamenumbers/erc721r-a-new-erc721-contract-for-random-minting-so-people-dont-snipe-all-the-rares-68dd06611e5
 https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/
 https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/
https://axieinfinity.medium.com/axie-infinity-integrates-chainlink-oracles-aa93d3d0983e
https://axieinfinity.medium.com/axie-infinity-integrates-chainlink-oracles-aa93d3d0983e
https://medium.com/centaur/chainlink-vrf-used-by-centaur-to-deploy-new-standard-for-enhanced-transparency-in-public-sale-3cc0fa5b10e6
https://medium.com/centaur/chainlink-vrf-used-by-centaur-to-deploy-new-standard-for-enhanced-transparency-in-public-sale-3cc0fa5b10e6
https://boredapeyachtclub.com/#/mayc/info
https://blockmine.medium.com/blockmine-integrates-chainlink-vrf-66685473e19c
https://blockmine.medium.com/blockmine-integrates-chainlink-vrf-66685473e19c
https://eth2.incessant.ink/book/06__building-blocks/02__randomness.html
https://eth2.incessant.ink/book/06__building-blocks/02__randomness.html

Systems 2023, 11, 326 24 of 24

19. Chatterjee, K.; Goharshady, A.K.; Pourdamghani, A. Probabilistic Smart Contracts: Secure Randomness on the Blockchain. In
Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Republic of Korea,
14–17 May 2019; pp. 403–412.

20. Wang, K.; Wang, Q.; Boneh, D. ERC-20R and ERC-721R: Reversible Transactions on Ethereum. arXiv 2022, arXiv:2208.00543.
21. Larva Lab. CryptoPunks. 2017. Available online: https://cryptopunks.app/ (accessed on 20 December 2022).
22. Simunic, S.; Bernaca, D.; Lenac, K. Verifiable Computing Applications in Blockchain. IEEE Access 2021, 9, 156729–156745.

[CrossRef]
23. Qian, P.; He, J.; Lu, L.; Wu, S.; Lu, Z.; Wu, L.; Zhou, Y.; He, Q. Demystifying Random Number in Ethereum Smart Contract:

Taxonomy, Vulnerability Identification, and Attack Detection. arXiv 2023, arXiv:2304.12645.
24. Peyravian, M.; Matyas, S.M.; Roginsky, A.; Zunic, N. Generating user-based cryptographic keys and random numbers. Comput.

Secur. 1999, 18, 619–626. [CrossRef]
25. Cao, T.; Lin, D.; Xue, R. A randomized RSA-based partially blind signature scheme for electronic cash. Comput. Secur. 2005,

24, 44–49. [CrossRef]
26. Szczepanski, J.; Wajnryb, E.; Amigó, J.; Sanchez-Vives, M.V.; Slater, M. Biometric random number generators. Comput. Secur.

2004, 23, 77–84. [CrossRef]
27. Bouteghrine, B.; Tanougast, C.; Sadoudi, S. A Survey on Chaos-Based Cryptosystems: Implementations and Applications. In

Proceedings of the 14th Chaotic Modeling and Simulation International Conference, Athens, Greece, 8–11 June 2021; Springer:
Cham, Switzerland, 2021; pp. 65–80.

28. Karataş, O.; Ergün, S. A Digital Random Number Generator Based on Four Regional Examination of Double Scroll Chaos. In
Proceedings of the 2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS), Santiago, Chile, 1–4 March 2022;
pp. 1–4.

29. Li, S.; Liu, Y.; Ren, F.; Yang, Z. Design of a high throughput pseudo-random number generator based on discrete hyper-chaotic
system. IEEE Trans. Circuits Syst. II Express Briefs 2022, 70, 806–810.

30. Wang, X.; Liang, H.; Wang, Y.; Yao, L.; Guo, Y.; Yi, M.; Huang, Z.; Qi, H.; Lu, Y. High-throughput portable true random number
generator based on jitter-latch structure. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 741–750. [CrossRef]

31. Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts SoK. In Proceedings of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, 22–29 April 2017; pp. 164–186. [CrossRef]

32. Song, J. Attack on Pseudo-Random Number Generator (PRNG) Used in Cryptogs, an Ethereum (CVE-2018–14715). 2018.
Available online: https://medium.com/coinmonks/attack-on-pseudo-random-number-generator-prng-used-in-cryptogs-an-
ethereum-cve-2018-14715-f63a51ac2eb9 (accessed on 2 December 2022).

33. Papadopoulos, D.; Wessels, D.; Huque, S.; Naor, M.; Velk, J.; Reyzin, L.; Goldberg, S. Can NSEC5 be practical for DNSSEC
deployments? In Proceedings of the DNS Privacy Workshop 2017, San Diego, CA, USA, 26 February 2017; pp. 1–18.

34. Galbraith, S.D.; McKee, J. The Probability that the Number of Points on an Elliptic Curve over a Finite Field is Prime. J. Lond.
Math. Soc. 2000, 62, 671–684. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://cryptopunks.app/
http://dx.doi.org/10.1109/ACCESS.2021.3129314
http://dx.doi.org/10.1016/S0167-4048(99)82040-9
http://dx.doi.org/10.1016/j.cose.2004.05.008
http://dx.doi.org/10.1016/S0167-4048(04)00064-1
http://dx.doi.org/10.1109/TCSI.2020.3037173
http://dx.doi.org/10.1007/978-3-662-54455-6_8
https://medium.com/coinmonks/attack-on-pseudo-random-number-generator-prng-used-in-cryptogs-an-ethereum-cve-2018-14715-f63a51ac2eb9
https://medium.com/coinmonks/attack-on-pseudo-random-number-generator-prng-used-in-cryptogs-an-ethereum-cve-2018-14715-f63a51ac2eb9
http://dx.doi.org/10.1112/S0024610700001502

	Introduction
	Literature Review
	RNG Benchmark Selection
	Centralized versus Decentralized Random Number Generators
	Attacks on the Decentralized Random Number Generator
	A Comparison of Blockchain-Based Random Number Generation Methods
	On-Chain Based Methods
	Verifiable Random Function-Based Methods
	Commit–Reveal Scheme-based Methods

	The Proposed Native VRF
	Random Number Generation Process
	Data Forming
	Signature Verification Process
	Difficulty Adjustment

	Evaluation Model, Observation Scope, and Experimental Procedure
	Definition of Security Models
	ERC721R
	Chainlink VRF
	Randao
	Native VRF

	Simplicity
	Cost Efficiency

	Results
	Security Comparison
	Simplicity of Implementation
	Hardware Resource Requirements
	Employee Technical Knowledge Requirements
	Source Code Complexity

	Cost Efficiency
	Our Insights

	Conclusions
	References

