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Abstract: Multi-objective power scheduling (MOPS) aims to address the simultaneous minimiza-
tion of economic costs and different types of environmental emissions during electricity generation.
Recognizing it as an NP-hard problem, this article proposes a novel multi-agent deep reinforce-
ment learning (MADRL)-based optimization algorithm. Within a custom multi-agent simulation
environment, representing power-generating units as collaborative types of reinforcement learning
(RL) agents, the MOPS problem is decomposed into sequential Markov decision processes (MDPs).
The MDPs are then utilized for training an MADRL model, which subsequently offers the optimal
solution to the optimization problem. The practical viability of the proposed method is evaluated
across several experimental test systems consisting of up to 100 units featuring bi-objective and
tri-objective problems. The results demonstrate that the proposed MADRL algorithm has better
performance compared to established methods, such as teaching learning-based optimization (TLBO),
real coded grey wolf optimization (RCGWO), evolutionary algorithm based on decomposition (EAD),
non-dominated sorting algorithm II (NSGA-II), and non-dominated sorting algorithm III (NSGA-III).

Keywords: deep reinforcement learning; economic dispatch; environmental dispatch; multi-objective
optimization; unit commitment

1. Introduction

Due to the instantaneous nature of electrical power and its inability to be stored
in massive quantities, its demand exhibits temporal fluctuations. This dynamic nature
of electrical consumption prompts the need for reliable power scheduling [1]. Central
to power scheduling is the fundamental requirement that the power supply match the
demand at each period of a particular planning horizon. Power system operators utilize
a set of generating units to achieve this equilibrium, each with its own technological
and operational constraints. The cost of power generation also varies among generating
units, and it is not directly proportional to the power output [2]. Economic cost dispatch
(ECD) forms the foundational aspect of power scheduling, representing a single-objective
optimization problem. Subject to various unit-specific and system-level constraints, ECD
determines the optimal loads of generating units that minimize the operating costs. This
process requires a delicate balance among fluctuating demands, operational constraints,
and economic considerations. There are also growing concerns about the environmental
impact of power generation because approximately two-thirds of electric energy is currently
derived from fossil fuels [3]. Fossil fuels are the major contributors to greenhouse gases
(GHGs) and other pollutants such as carbon dioxide (CO2), nitrous oxide (NOx), and sulfur
dioxide (SO2). The power scheduling problem has, thus, expanded to a multi-objective
optimization problem, encompassing environmental emission dispatch (EED). As a result,
multi-objective power scheduling (MOPS) seeks to find an optimal dispatch schedule that
minimizes both economic costs and several types of environmental emissions.
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MOPS is an intricate optimization problem characterized by several complex factors.
First, it involves a combinatorial dimensionality explosion, which makes it extraordinarily
difficult as the number of generating units increases [4,5]. Each generating unit’s unique
characteristics and constraints add another layer of intricacy [6,7]. Ramp rate constraints ad-
ditionally complicate the decision-making process since they contribute to the non-smooth
and discontinuous nature of the input–output characteristics of generating units [8–10].
Valve point effects (VPEs) are other factors affecting the input–output characteristics of
thermal generating units. Incorporating VPEs into the scheduling problem thereby intensi-
fies the complexities of power scheduling. Furthermore, real-world power systems require
multi-period planning to adapt to changing demand patterns and resource availability.
Since multi-period planning duplicates the constraints for each period, it compounds the
exponential escalation of dimensionality [4,5,11]. Current global environmental policies,
such as the Sustainable Development Goals (SDGs), emphasize the reduction of greenhouse
gases (GHGs) through integrating renewable energy sources into power networks [12].
While renewables offer environmental benefits, their intermittent nature and weather
dependence may lead to significant power supply fluctuations [13]. Additionally, un-
certainties in real-world scenarios, including unit and transmission line outages, may
complicate power system management even more. Therefore, the MOPS problem poses
a multifaceted challenge due to its high dimensionality, multiple constraints spanning
multiple periods, non-smooth and non-convex characteristics, and inherent uncertainties.

The MOPS problem has drawn much attention to the development of various optimiza-
tion models. The methodologies can be grouped into mathematical models, meta-heuristic
approaches, and hybrid methods. Mathematical models include priority list (PL), dy-
namic programming (DP), Lagrangian relaxation (LR), mixed integer linear programming
(MILP) [14], and mixed integer quadratic programming (MIQP) [5]. Many of these models
are grounded in heuristic principles [4,5]. The ability of these models to guarantee optimal
solutions is limited [11], and they face computational inefficiencies, particularly when
tackling larger-scale power scheduling problems [15]. Specifically, the PL method is suscep-
tible to poor solution quality [16,17], while DP, MILP, and MIQP encounter dimensionality
problems [16,17]. Some specific models also exhibit shortcomings in handling specific con-
straints, potentially leading to system instability [18]. Moreover, these models are rooted
in heuristic principles [4,5], and their ability to guarantee optimal solutions is limited [11].
They also grapple with numerical convergence issues [19]. While effective for scheduling
problems with lower dimensions and fewer constraints [20], applying these model-based
methods to a more complex scenario raises concerns. Meta-heuristic techniques have been
introduced as a promising alternative to address the limitations of mathematical methods.
These approaches amalgamate fundamental heuristic principles to enhance the exploration
and exploitation of potentially feasible solutions. The most common metaheuristic methods
used for power scheduling are differential evolution (DE) [21], genetic algorithms (GA) [22],
teaching learning-based optimization (TLBO) [23,24], binary-real-coded genetic algorithm
(BRCGA) [25], binary alternative moth-flame optimization (BAMFO) [18], binary bat search
algorithm (BBSA) [26], new binary particle swarm optimization (NBPSO) [20], improved
dragonfly algorithm particle swarm optimization (iDA-PSO) [27], binary particle swarm
optimization (BPSO) [20], quantum-inspired evolutionary algorithm (QEA) [28], quan-
tum evolutionary programming (QEP) [16], quantum inspired binary grey wolf optimizer
(QI-BIGWO) [16], quasi-oppositional teaching learning-based algorithm (QOTLBO) [24],
binary grey wolf optimizer (BGWO) [29], binary learning particle swarm optimization
(BLPSO) [20], binary moth-flame optimization (BMFO) [18], binary coded modified moth
flame optimization algorithm (BMMFOA) [30], and teaching learning-based optimization
(TLBO) [24]. A comprehensive review of metaheuristic optimization algorithms is provided
by [31]. The third category is to use hybrid approaches that combine mathematical and
heuristic strategies. The whale optimization algorithm (WOA) [32], the particle swarm
optimization (PSO) [33], the grey wolf optimization (GWO) [28,34], the non-dominated
sorting genetic algorithm-II (NSGA-II) [35], the non-dominated sorting genetic algorithm-



Systems 2024, 12, 106 3 of 27

III (NSGA-III) [36], and the evolutionary algorithm based on decomposition (EAD) [37] are
some well-known examples applied for power scheduling. Even though these methods
integrate diverse strategies, they are still heuristic, and there is no guarantee that they can
find global optima [31].

Despite the availability of various optimization techniques, solving MOPS remains
an NP-hard (non-deterministic polynomial-time hard) problem [7]. In their attempts to
simplify the complexity, many existing studies have tended to overlook the holistic per-
spective of power scheduling [15]. For instance, several studies [34,38,39] have delved into
single-objective power scheduling (SOPS), primarily focusing on minimizing economic
costs. While power scheduling is multi-objective, the narrow focus on financial costs might
lead to higher emissions, pose health risks, and contribute to climate change and global
warming. Furthermore, the studies often involve a limited number of generating units and
constraints [40]. Most existing approaches have also focused on single-period problems,
simplifying multi-period constraints. Such simplification disregards the broader dynamics
and uncertainties that may influence power generation and consumption over a longer
planning horizon. Studies like [23,41] have investigated systems with up to 100 units. How-
ever, they have overlooked ramp rate constraints and thermal valve point effects (VPEs),
which are critical for accurate modeling [8,11]. This means the studies have failed to ac-
count for the non-smooth and non-convex nature of the cost and emission functions [8,9,34].
Moreover, effective operational schedules should grapple with power system uncertainties
that intermittent renewable energy sources, sudden demand fluctuations, unit outages,
and transmission losses may cause. However, many existing optimization models have
overlooked these critical aspects of power scheduling [1], potentially leading to subopti-
mal solutions. These oversights underscore the necessity for a more comprehensive and
nuanced approach to addressing the complexities of MOPS.

Due to recent advancements in artificial intelligence (AI), the landscape of decision-
making approaches has undergone a paradigm shift. Specifically, reinforcement learning
(RL) has emerged as a potent tool for making intelligent decisions in dynamically changing
environments [40]. RL, being model-free, is particularly suitable for simulating uncertain
real-world scenarios that lack accurate mathematical formulations [29,42]. Its trial-and-
error-based approach and inherent adaptability make it a powerful method for handling
stochasticity [43]. Despite this potential, RL-based methods are underutilized in power
scheduling [42], as shown in Table 1.

Two main RL-based approaches are utilized in the literature for power scheduling: tab-
ular Q-learning [43,44] and function approximation-based Q-learning [5,12,29,40,42,45,46].
The initial tabular Q-learning has been demonstrated in [43], where the pursuit exploration
method has been used to examine a four-unit power scheduling problem. Another study
utilized tabular Q-learning to solve a three-unit problem. It is reported that Q-learning
performed better than the conventional PL method [44]. On the other hand, the function
approximation-based Q-learning approach yielded improved solutions over simulated
annealing (SA) [47], despite their small-scale experiment involving only eight units. The
adoption of the MDP framework in an RL-based approach by [12] was also instrumental in
achieving superior outcomes. Furthermore, a centralized Q-learning-based optimization
algorithm was compared with a distributed counterpart [29]. Fuzzy Q-learning also out-
performed GWO in its application in handling a power system with 10 generators [45]. An
adaptive multi-step Q-learning algorithm was employed for a five-unit power system [5],
surpassing MIQP. It can be observed that Q-learning methods implemented thus far have
primarily been confined to small power systems consisting of 3 to 10 units. This limitation
arises from the challenges posed by extensive state and action spaces due to the inherently
combinatorial nature of the problem. The studies by [40,46] have addressed up to 30-unit
power systems and reported better performance than MILP. Though up to 100 units are
implemented by [42] and the solutions are better than GA, the study compromised ramp
rate constraints and VPEs.
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Table 1. Summary of RL-based power scheduling studies.

Reference Objective Units
Constraints

VPEs
Production Capacity Operating Duration Ramp Rates Reserve

[43] Single 4 Yes No No No No
[44] Single 3 Yes No No No No
[47] Single 8 Yes Yes No No No
[12] Single 10 Yes Yes No No No
[45] Single 10 Yes Yes Yes Yes No
[29] Single ≤10 Yes No No No Yes
[5] Single 5 Yes Yes Yes No No

[40] Single ≤30 Yes Yes No No No
[46] Single ≤30 Yes Yes No No No
[42] Single ≤100 Yes Yes No Yes No

Generally, the existing RL-based studies have demonstrated their superiority over
traditional methods such as PL, SA, LR, MILP, MIQP, GWO, and GA. However, most of
these achievements have been confined to smaller-scale problems. Additionally, most RL
models have neglected to ensure reserve capacity to handle unforeseen circumstances like
sudden spikes in demand, generating unit failures, or transmission line losses. Further, the
impact of ramp rate constraints and VPEs has frequently been omitted from consideration
in the models. It is also noted that the previous studies focused on the single-objective
problem of minimizing economic costs. Thus, the existing studies inadvertently neglected
the crucial aspect of the environmental impact of carbon emissions. More specifically, no
known RL-based method has been applied to MOPS problems. Solutions derived from
simplified power scheduling problems may not accurately capture the complexities of
real-world power systems [42].

These existing disparities underscore a significant research gap that emphasizes the
pressing need to develop a scalable RL algorithm that could potentially unlock innovative
solutions and pave the way for more effective and reliable power scheduling techniques
without compromising the characteristics of a realistic power system. This study introduces
an innovative MOPS optimization approach based on multi-agent reinforcement learning.
The proposed method utilizes a contextually adaptive multi-agent simulation environment
where power-generating units are represented as agents. The dynamics of MOPS are
simulated within this environment using Markov decision processes (MDPs), which are
then used to train a multi-agent deep RL (MADRL) model. The solution for the optimization
problem is derived from the trained MADRL model.

In summary, the contributions of this article are as follows:

1. The primary contribution is the introduction of a pioneering MADRL-based opti-
mization algorithm that can solve single- to tri-objective power scheduling problems.
The algorithm harnesses the power of MADRL to decisively confront the intricate
challenges of MOPS.

2. Unlike existing methods, the proposed algorithm does not confine itself to a limited
planning horizon and a fixed number of generating units. It also encompasses a
comprehensive set of unit-specific (including ramp rates and VPEs) and system-level
constraints such as reserve availability.

3. Another distinctive contribution to our approach is developing a contextually adap-
tive multi-agent simulation environment. The environment is used to decompose
the MOPS problem into sequential MDPs. It can contextually correct agents’ ille-
gal decisions and adjust excess and shortages of supply capacities. By accelerating
agents’ learning and reducing model training time, the simulation environment may
significantly enhance the efficiency of the entire optimization process.

4. The simulation environment is not specifically tailored to train a specific RL model
but is model agnostic. This adaptability allows researchers and practitioners to train
and explore diverse types of RL models for solving power scheduling.
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5. Unlike traditional models with exponential dimensionality (i.e., O(2n) for n gener-
ating units), the proposed algorithm has linear dimensionality (i.e., O(2n)). This
characteristic underscores its scalability and better performance to handle large-scale
problems compared to existing methods.

6. The algorithm’s programming code has been verified by Code Ocean for quality
and computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and
published as an open-source software package [48]. This initiative may facilitate
results replication and foster a spirit of experimentation and further extensions within
the research community.

The remainder of this article is organized as follows: Section 2 describes the description
and formulation of the MOPS objective problem. Section 3 briefly outlines the procedu-
ral framework of the proposed optimization methodology. Section 4 presents practical
applications and results, and Section 5 presents the concluding remarks.

2. MOPS Problem Formulation

Consider a power scheduling problem consisting of n thermal generating units, all
subject to optimization, over a planning horizon with T periods. Given operating durations
(
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The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

Csd
ti ; ∀t, i. (1)

The production cost Con(pti) is typically represented by a quadratic function of the
power output pti. Unlike the usual model-based optimization methods, the proposed
MADRL approach does not necessitate approximating production costs with smooth
and convex functions that disregard VPEs. Consequently, the production cost function
incorporates a sinusoidal term to account for VPEs [50], which can be written as follows:

Con(pti) = αc
i p2

ti + βc
i pti + δc

i + |ρc
i sin[φc

i (pmin
i − pti)]|; ∀t, i. (2)

The objective of ECD is to minimize the total operating costs over the entire planning
horizon, defined as follows:

C =
T

∑
t=1
Ct =

T

∑
t=1

n

∑
i=1
Cti. (3)

2.2. Emission Objective Function

As mentioned earlier, electricity generation is the major contributor to GHGs and
environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels,
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects
on the quality of the air. Consequently, beyond the economic implications, addressing
environmental emissions becomes crucial to mitigating the impacts of global warming and
air pollution.

Similar to the costs associated with power generation, emissions are not directly tied
to power outputs and exhibit variations among different generating units. Mathematically,

https://doi.org/10.24433/CO.9235622.v1
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the operating emissions (lbs/hour) for each unit i during each period t are the sum of
startup E su

ti , shutdown E sd
ti , and production E on(pti) emissions.

Eti =
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
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As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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2.1. Cost Objective Function 
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Considering operating durations and transitions between online and offline statuses, its 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 
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The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
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not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
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components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
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comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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Like the production cost functions, non-smooth and non-convex functions are used
for the production emissions, which are expressed as follows:

E on(pti) = αe
i p2

ti + βe
i pti + δe

i + ρe
i exp(φe

i pti); ∀t, i. (5)

The total daily emissions over the entire planning horizon can then be consolidated
as follows:

E =
T

∑
t=1
Et =

T

∑
t=1

n

∑
i=1
Eti. (6)

The costs and emissions linked to generating units exhibit an inherent conflict [51].
Hence, operating at minimum cost alone (i.e., Equation (3)) or at absolute emission level
(i.e., Equation (6)) is no longer acceptable because minimizing one leads to an increase in
the other.

2.3. MOPS Objective Function

The objective function for MOPS is usually formulated by combining the separate
cost and emission functions in Equations (3) and (6), respectively, into one. Traditionally,
various methods have been widely employed, such as emission constraints, weighted-sum
approaches, and cost-penalty factors. However, these methods come with inherent limita-
tions. Emission constraints often fall short of adapting to real-time changes and tend to
prioritize compliance over effective emission reduction strategies [42]. The weighted-sum
approach faces challenges in striking the right trade-offs between costs and emissions [31].
The specific value of the weight might have an insignificant impact when costs and emis-
sions are quite different in size [52]. It also exhibits limited efficiency for non-convex
Pareto-optimal fronts [53] and applies only to convex cost and emission functions [54].
The cost-penalty method is used to convert emission curves into equivalent cost curves.
However, its application is limited to increasing cost and emission functions. Additionally,
its estimates are often unrealistically small or large. Consequently, this approach fails to
capture the intricate relationships among the components [29]. Merging conflicting objec-
tives may further obscure the trade-off relationship between cost and emissions, resulting
in suboptimal solutions that do not fully exploit the potential for minimizing costs and
emissions independently. This hindrance makes identifying Pareto-optimal solutions repre-
senting the best compromises between conflicting objectives challenging. In addressing
these challenges, this study proposes a new hybrid approach to formulating the objective
function. First, the production cost function in Equation (2) and the production emission
function in Equation (5) are unified using both weight hyperparameters and unit-specific
cost-to-emission conversion parameters, as follows:

Φon(pt1, pt2 . . . , ptn) = ω
n

∑
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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4. The simulation environment is not specifically tailored to train a specific RL model 
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and explore diverse types of RL models for solving power scheduling.  
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ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
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6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-
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dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
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2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
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The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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horizon, defined as follows: 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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where ω and ηi denote the weight hyperparameter (0 < ω < 1) and the cost-to-emission
conversion parameter (ηi > 0), respectively. Equation (7) represents a bi-objective power
scheduling problem, holding economic costs on one side and emissions on the other side.
Considering m types of environmental emissions, it can be extended to a general MOPS
problem, and written as follows:

Φon(pt1, pt2 . . . , ptn) =
n

∑
i=1
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
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power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
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The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-
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dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 
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Considering operating durations and transitions between online and offline statuses, its 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-
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dural framework of the proposed optimization methodology. Section 4 presents practical 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
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𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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where ωk represents the weight associated with objective k such that ωk ≥ 0 and ∑m
k=0 ωk = 1.

The parameter ηik is the cost-to-emission conversion factor for unit i corresponding to
emission type k. This formulation not only allows the representation of emissions as
continuous variables but also maintains their relative importance within the integrated
production function.

Second, the startup and shutdown costs and emissions are aggregated separately.
Consequently, the objective function of the MOPS consists of three separate components,
which can be expressed as follows:
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

Systems 2024, 12, 106 5 of 29 
 

 

learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
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power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)
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As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
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𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
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dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
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porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-
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dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
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porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 
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components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
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power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
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The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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In contrast to existing approaches, the objective function in Equation (9) is not intrinsi-
cally converted to a single-objective function. Rather, it consists of three components: the
transformed production value, the cost of startup and shutdown, and the emissions during
startup and shutdown. This innovative formulation is designed to tackle the limitations
of traditional methods, offering a more resilient and flexible solution to the simultaneous
optimization of cost and emissions. For the sake of simplicity, let us denote each objective
byOk(k = 0, 1, ..m). The operating cost function in Equation (1) and the operating emission
function in Equation (5) specific to each objective can be written as follows:
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 
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The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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where Oon
k (pti), Osu

tik, and Osd
tik are the production, startup, and shutdown values corre-

sponding to objective k, respectively.

2.3.1. Constraints

The MOPS objective function in Equation (9) is optimized subject to Equations (11)–(15).
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-
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dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

(
pt−1,i − pdown

i

)
≤ pti ≤

Systems 2024, 12, 106 5 of 29 
 

 

learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
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The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
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applications and results, and Section 5 presents the concluding remarks. 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
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The objective of ECD is to minimize the total operating costs over the entire planning 
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𝒞 = 𝒞 = 𝒞 . (3)
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
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pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

pti = dt; ∀t (14)
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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to climate change and/or global warming. The combustion of fuels containing sulfur com-
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MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
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𝛷 𝑝 , 𝑝 … , 𝑝 = ⟦𝓉 > 0⟧𝜔 𝒞 𝑝 + ⟦𝓉 > 0⟧𝜔 𝜂 ℰ 𝑝  (8)

where 𝜔   represents the weight associated with objective 𝑘  such that 𝜔 ≥ 0  and ∑ 𝜔 = 1. The parameter 𝜂  is the cost-to-emission conversion factor for unit 𝑖 corre-
sponding to emission type 𝑘. This formulation not only allows the representation of emis-
sions as continuous variables but also maintains their relative importance within the inte-
grated production function.  

Second, the startup and shutdown costs and emissions are aggregated separately. 
Consequently, the objective function of the MOPS consists of three separate components, 
which can be expressed as follows: 

𝛷 = 𝛷 𝑝 , 𝑝 … , 𝑝 , 𝒞 , , ℰ ,  (9)

where 𝒞 , = ∑ ⟦𝓉 > 0⟧ 1 − 𝓉𝑡−1,𝑖 < 0 𝒞 + 1 − ⟦𝓉 > 0⟧ 𝓉𝑡−1,𝑖 < 0 𝒞 ; ∀𝑡  and ℰ , = ∑ ⟦𝓉 > 0⟧ 1 − 𝓉𝑡−1,𝑖 < 0 ℰ + 1 − ⟦𝓉 > 0⟧ 𝓉𝑡−1,𝑖 < 0 ℰ ; ∀𝑡.  
In contrast to existing approaches, the objective function in Equation (9) is not intrin-

sically converted to a single-objective function. Rather, it consists of three components: the 
transformed production value, the cost of startup and shutdown, and the emissions dur-
ing startup and shutdown. This innovative formulation is designed to tackle the limita-
tions of traditional methods, offering a more resilient and flexible solution to the simulta-
neous optimization of cost and emissions. For the sake of simplicity, let us denote each 
objective by 𝒪  𝑘 = 0,1, . . 𝑚 . The operating cost function in Equation (1) and the operat-
ing emission function in Equation (5) specific to each objective can be written as follows:  𝒪 = ⟦𝓉 > 0⟧𝒪 𝑝 + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒪 + ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒪  (10)

where 𝒪 𝑝 , 𝒪 , and 𝒪  are the production, startup, and shutdown values corre-
sponding to objective 𝑘, respectively.  

2.3.1. Constraints 
The MOPS objective function in Equation (9) is optimized subject to Equations (11)–

(15).  

Power production capacities: ⟦𝓉 > 0⟧𝑝 ≤ 𝑝 ≤ ⟦𝓉 > 0⟧𝑝 ; ∀𝑡, 𝑖 (11)

Maximum ramp rates: 
𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , − 𝑝 ≤ 𝑝≤ 𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , + 𝑝 ; ∀𝑡, 𝑖 (12)

Minimum operating durations: 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 and 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 (13)

Supply and demand balance: ⟦𝓉 > 0⟧𝑝 = 𝑑 ; ∀𝑡 (14)

Minimum reserve constraint: ⟦𝓉 > 0⟧𝑝 ≥ 1 + 𝓇    𝑑 ; ∀𝑡 (15)

2.3.2. Cost-to-Emission Conversion Factors 
The MOPS objective function in Equation (9) requires estimating the cost-to-emission 

scale for each unit, 𝜂  ($/lbs). For this purpose, a custom function is introduced using fi-
nite difference gradients as follows: 

)dt; ∀t (15)

2.3.2. Cost-to-Emission Conversion Factors

The MOPS objective function in Equation (9) requires estimating the cost-to-emission
scale for each unit, ηi ($/lbs). For this purpose, a custom function is introduced using finite
difference gradients as follows:

ηik = exp
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𝜂 = 𝑒𝑥𝑝 𝛻 𝒞 𝑝 𝛻ℰ 𝑝⁄𝑚𝑎𝑥 𝛻𝒞 𝑝𝛻ℰ 𝑝 ; ∀𝑖 − 𝑚𝑖𝑛 𝛻𝒞 𝑝𝛻ℰ 𝑝 ; ∀𝑖  (16)

where ∇𝒞 𝑝 = 𝒞 𝑝 − 𝒞 𝑝  , and ∇ℰ 𝑝 = ℰ 𝑝 − ℰ 𝑝 ; ∀𝑖 , 
where 𝑘 = 1,2, . . 𝑚. Over- or underestimations are mitigated by standardized gradients, 
and the exponential function ensures that the estimates remain non-negative. 

2.3.3. Sensitivity Analyses for Weights 
Unlike single-objective optimization, there is no unique optimal solution to the 

MOPS problem. Instead, the results lead to identifying compromised or non-dominated 
(i.e., Pareto) optimal solutions [51]. To address this complexity, agents representing vari-
ous generating units can be assumed to have imprecise goals. Fuzzy logic theory can then 
be applied to discern the optimal trade-off. To do so, the Pareto-optimal solutions for dif-
ferent weight combinations should first be stored in a predefined repository. Next, a fuzzy 
membership value 𝜇 𝒪𝝎  is calculated for each objective function as follows: 

𝜇 𝒪𝝎 = ⎩⎪⎨
⎪⎧ 1, 𝒪𝝎 ≤ 𝒪𝒪 − 𝒪𝝎𝒪 − 𝒪 , 𝒪 < 𝒪𝝎 < 𝒪0, 𝒪𝝎 ≥ 𝒪 ; 𝝎 ∈ 𝕨; 𝑘 = 0,1, … , 𝑚 (17)

where 𝒪  is the single objective best value, 𝒪  is its corresponding worst value, 
and 𝕨  represents the set of all stored weight combinations, 𝕨 = 𝝎; 𝝎 ∈ 0,1   . 
The performance of each non-dominated solution can then be measured in terms of car-
dinal priority. Cardinal priority provides a normalized membership function across all 
objectives and non-dominated solutions. It can be determined as follows: 

𝜇 𝒪𝝎 = 𝜇 𝒪𝝎 𝜇 𝒪𝝎∀𝝎∈𝕨 . (18)

The weight combination that achieves the maximum cardinal priority 𝝎 ←𝑎𝑟𝑔𝑚𝑎𝑥 𝜇 𝒪𝝎 , ∀𝝎 ∈ 𝕨  can be selected as the optimal trade-off. 

3. Proposed Methodology 
This study’s methodology revolves around multi-agent reinforcement learning, an 

AI paradigm where multiple agents learn through trial and error within a dynamic envi-
ronment. Individual power-generating units are represented as agents within a custom 
multi-agent simulation environment. The agents can independently determine their com-
mitment statuses and load dispatches as long as the unit-specific constraints in Equations 
(11)–(13) are met. As a result, the designation of the multi-agent simulation environment 
aligns with the principles of agent-based simulation. Unlike traditional agent-based sim-
ulation, the agents are not entirely autonomous but guided by specific goals. The goals 
correspond to the system-level constraints specified in Equations (14) and (15), which sig-
nificantly shape the joint action of all agents. Specifically, the decisions of all agents must 
meet two crucial conditions. First, the total power supply from all ON agents must fulfill 
the demand, including reserve capacity, at each period of the planning horizon. Second, 
the agents collaboratively strive to minimize the value of the MOPS objective function 
across the entire planning horizon, which is specified in Equation (9). As a result, the in-
teractions among agents within the multi-agent simulation environment follow a cooper-
ative multi-agent reinforcement learning approach [55].  

Considering an hourly divided day as a power scheduling horizon, each hour serves 
as a timestep 𝑡, and the entire planning horizon constitutes an episode. At each timestep 𝑡 of an episode, there are four fundamental components in the RL framework: state space 
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2.3.3. Sensitivity Analyses for Weights

Unlike single-objective optimization, there is no unique optimal solution to the
MOPS problem. Instead, the results lead to identifying compromised or non-dominated
(i.e., Pareto) optimal solutions [51]. To address this complexity, agents representing various
generating units can be assumed to have imprecise goals. Fuzzy logic theory can then
be applied to discern the optimal trade-off. To do so, the Pareto-optimal solutions for
different weight combinations should first be stored in a predefined repository. Next, a
fuzzy membership value µ

(
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k
)
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(11)–(13) are met. As a result, the designation of the multi-agent simulation environment 
aligns with the principles of agent-based simulation. Unlike traditional agent-based sim-
ulation, the agents are not entirely autonomous but guided by specific goals. The goals 
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across the entire planning horizon, which is specified in Equation (9). As a result, the in-
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3. Proposed Methodology

This study’s methodology revolves around multi-agent reinforcement learning, an AI
paradigm where multiple agents learn through trial and error within a dynamic environ-
ment. Individual power-generating units are represented as agents within a custom multi-
agent simulation environment. The agents can independently determine their commitment
statuses and load dispatches as long as the unit-specific constraints in Equations (11)–(13)
are met. As a result, the designation of the multi-agent simulation environment aligns with
the principles of agent-based simulation. Unlike traditional agent-based simulation, the
agents are not entirely autonomous but guided by specific goals. The goals correspond
to the system-level constraints specified in Equations (14) and (15), which significantly
shape the joint action of all agents. Specifically, the decisions of all agents must meet two
crucial conditions. First, the total power supply from all ON agents must fulfill the demand,
including reserve capacity, at each period of the planning horizon. Second, the agents
collaboratively strive to minimize the value of the MOPS objective function across the entire
planning horizon, which is specified in Equation (9). As a result, the interactions among
agents within the multi-agent simulation environment follow a cooperative multi-agent
reinforcement learning approach [55].

Considering an hourly divided day as a power scheduling horizon, each hour serves
as a timestep t, and the entire planning horizon constitutes an episode. At each timestep t
of an episode, there are four fundamental components in the RL framework: state space
S = {s}, action space A = {
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

}, transition (probability) function P , and a scalar rewardR.
The formalization of each element for the MOPS problem is as follows:

State Space (S): For each timestep t of an episode, the system will be in state
st−1 =

(
t, pmin

t−1, pmax
t−1 ,
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t−1 = [tt−1,1, tt−1,2, . . . , tt−1,n] is the operating durations, and dt is the de-
mand to be satisfied. If ramp rates are not considered, the state may be simplified to



Systems 2024, 12, 106 9 of 27

st−1 = (t,

Systems 2024, 12, 106 14 of 29 
 

 

The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔, 𝓪|𝒘 , 
where 𝒘 consists of the model’s weights. The model is designed to predict two values for 
each agent. In this setup, each pair of nodes corresponds to the two possible decisions (i.e., 
ON and OFF) for each of the 𝑛 agents. This approach is necessitated by the complexity of 
the action space 𝓐, which inherently poses a formidable challenge due to its exponential 
growth concerning the number of agents involved (resulting in 2  possible unit commit-
ments). To mitigate this complexity, the network is designed with 2𝑛 output nodes, in-
stead of parameterizing it into 2  output nodes. This streamlined network parametriza-
tion is a strategic solution to handle the computational constraints posed by the exponen-
tial growth in the action space. This simplified network setup is strategic for managing 
computational complexity while ensuring an efficient modeling process. Importantly, the 
network design is decentralized, where each agent has a dedicated pair of output nodes. 
As a result, the DQN is referred to as the MADQN. This approach results in the network 
output becoming a linear function of the number of agents, enabling a more manageable 
and practical implementation within the multi-agent system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 𝒔, 𝓪, 𝒓, 𝒔  to estimate the action values. This approach helps break the temporal correla-
tions among the MDPs [57]. By learning from random past experiences, the agents can 

t−1, dt) ∈ R1×(n+2). The state space for each timestep can be described as
S = {st−1}.

Action Space (A): Each of the n agents will have two decisions (OFF or ON) in each
state st−1. The action space A will consist of 2n unit commitments (i.e., A = {0, 1}2n×n)
for each timestep t. The decisions of all agents will then constitute an n-dimensional action
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1 = (
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1,1,
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1,2, . . . ,
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1,n) = {0, 1}n ∈ A.
Transition Function (P): After agents take decision
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1 ∈ A in state st−1 ∈ S , the
transition (or probability) function P(st|st−1,
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1) leads to the next state st. Adhering to
all the constraints in Equations (11)–(15), the transition depends solely on state st−1 and
action
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interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1. If any of the constraints is violated, it would not be legitimate to advance to
the succeeding state st.

Reward function (R): Reward is a reinforcement signal measuring the performance of
agents’ decisions in transitioning to the next state st ∈ S . It is a predefined function of the
action
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work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 
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in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
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modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
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In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
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affects the immediate reward and has repercussions on a sequence of future states. Such 
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ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
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t−1 ∈ A and state st−1 ∈ S , that is, rt = R(st−1,
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in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
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which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
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t−1, st).

3.1. Multi-Agent Simulation Environment

The key elements of MARL satisfy the properties of an MDP [55]. Consequently,
the MOPS dynamics can also be formulated as a 4-tuple (S ,A,P ,R) MDP that will be
simulated within the multi-agent simulation environment, as described below.

[Step 0] Inputs: The environment should be provided with parameters of power-
generating units, demand profile, weight hyperparameters, and other specifications (such
as the type of optimization: single, bi-objective, or tri-objective).

[Step 1] Initialization: The environment is initialized with state as s0 =
(
0, pmin

0 , pmax
0 ,
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stead of parameterizing it into 2  output nodes. This streamlined network parametriza-
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tial growth in the action space. This simplified network setup is strategic for managing 
computational complexity while ensuring an efficient modeling process. Importantly, the 
network design is decentralized, where each agent has a dedicated pair of output nodes. 
As a result, the DQN is referred to as the MADQN. This approach results in the network 
output becoming a linear function of the number of agents, enabling a more manageable 
and practical implementation within the multi-agent system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 𝒔, 𝓪, 𝒓, 𝒔  to estimate the action values. This approach helps break the temporal correla-
tions among the MDPs [57]. By learning from random past experiences, the agents can 

0, d1
)
.

[Step 2] Constraints: Units failing to meet their minimum down time (

Systems 2024, 12, 106 5 of 29 
 

 

learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

down
i ) are kept

OFF (u0
ti =1). Similarly, units not fulfilling their minimum up time (
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learning and reducing model training time, the simulation environment may signifi-
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4. The simulation environment is not specifically tailored to train a specific RL model 
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5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
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lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
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dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 
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but is model agnostic. This adaptability allows researchers and practitioners to train 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
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interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
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t−1 of all n agents as an input. The transition function plays a critical
role in ensuring that the MARL framework aligns with the constraints of the MOPS problem.
Accordingly, the legality of each agent’s decision is verified first based on the constraints
determined in Equation (19). The collective decisions are subsequently assessed to confirm
if the total supply capacity can meet the demand required, including reserve, for that
timestep. Details of these adjustments are explained below.

[Step 4.1] Legalize agents’ decisions: Upon receiving the action
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environment is not specifically designed for a particular RL model. It remains adaptable, 
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Equation (21) represents the appropriate adjustments to be made if there are ON units
that should have been OFF, or vice versa.
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[Step 4.2] Priority list: To facilitate capacity adjustments, priority list approaches [38–40]
are usually adopted. Existing priority list methods are limited to increasing cost and
emission functions. These methods additionally disregard startup and shutdown impacts.
To address these limitations, this study has made some adjustments. First, the minimum
marginal production values per MW of the individual objectives are modified as follows:

λmin
ik =

1
pmax

i
Oon

k (pi); ∀i, k where pi =

{
pmax

i , i f Oon
k
(

pmax
i
)
≥ Oon

k
(

pmin
i
)

pmin
i , i f Oon

k
(

pmax
i
)
< Oon

k
(

pmin
i
) ; ∀i, k. (22)

Equation (22) accounts for the trends of cost and emissions functions, but it does
not incorporate units’ startup and shutdown impacts. By incorporating startup and shut-
down impacts together with the minimum up- and down-time durations, Equation (23)
determines the minimum marginal operating values for each objective.

Λmin
ik = λmin

ik +
1

pmax
i

[
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
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not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
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The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 
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comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
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The priority list corresponding to the MOPS objective function can be obtained by
averaging the priority values of the individual objectives, defined as follows:

Λmin
i =

1
m + 1

m

∑
k=0

Λmin
ik ; ∀i. (24)

[Step 4.3] Capacity adjustments: Based on the order of values in Equation (24),
the simulation environment orchestrates capacity adjustments to ensure a reliable power
supply that satisfies current and future demands. First, there may be cases where future
demands dt* ;

(
t < t* < 24

)
cannot be met during the downtime of some units. Those units

must remain online, even if they have fulfilled their minimum uptime durations. Second,
the simulation environment will be able to manage both excess and shortage of power
supply capacities as follows:

• If there is a shortage of capacity (i.e., ∑n
i=1
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1,i pmax
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𝛷 𝑝 , 𝑝 … , 𝑝 = ⟦𝓉 > 0⟧𝜔 𝒞 𝑝 + ⟦𝓉 > 0⟧𝜔 𝜂 ℰ 𝑝  (8)

where 𝜔   represents the weight associated with objective 𝑘  such that 𝜔 ≥ 0  and ∑ 𝜔 = 1. The parameter 𝜂  is the cost-to-emission conversion factor for unit 𝑖 corre-
sponding to emission type 𝑘. This formulation not only allows the representation of emis-
sions as continuous variables but also maintains their relative importance within the inte-
grated production function.  

Second, the startup and shutdown costs and emissions are aggregated separately. 
Consequently, the objective function of the MOPS consists of three separate components, 
which can be expressed as follows: 

𝛷 = 𝛷 𝑝 , 𝑝 … , 𝑝 , 𝒞 , , ℰ ,  (9)

where 𝒞 , = ∑ ⟦𝓉 > 0⟧ 1 − 𝓉𝑡−1,𝑖 < 0 𝒞 + 1 − ⟦𝓉 > 0⟧ 𝓉𝑡−1,𝑖 < 0 𝒞 ; ∀𝑡  and ℰ , = ∑ ⟦𝓉 > 0⟧ 1 − 𝓉𝑡−1,𝑖 < 0 ℰ + 1 − ⟦𝓉 > 0⟧ 𝓉𝑡−1,𝑖 < 0 ℰ ; ∀𝑡.  
In contrast to existing approaches, the objective function in Equation (9) is not intrin-

sically converted to a single-objective function. Rather, it consists of three components: the 
transformed production value, the cost of startup and shutdown, and the emissions dur-
ing startup and shutdown. This innovative formulation is designed to tackle the limita-
tions of traditional methods, offering a more resilient and flexible solution to the simulta-
neous optimization of cost and emissions. For the sake of simplicity, let us denote each 
objective by 𝒪  𝑘 = 0,1, . . 𝑚 . The operating cost function in Equation (1) and the operat-
ing emission function in Equation (5) specific to each objective can be written as follows:  𝒪 = ⟦𝓉 > 0⟧𝒪 𝑝 + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒪 + ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒪  (10)

where 𝒪 𝑝 , 𝒪 , and 𝒪  are the production, startup, and shutdown values corre-
sponding to objective 𝑘, respectively.  

2.3.1. Constraints 
The MOPS objective function in Equation (9) is optimized subject to Equations (11)–

(15).  

Power production capacities: ⟦𝓉 > 0⟧𝑝 ≤ 𝑝 ≤ ⟦𝓉 > 0⟧𝑝 ; ∀𝑡, 𝑖 (11)

Maximum ramp rates: 
𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , − 𝑝 ≤ 𝑝≤ 𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , + 𝑝 ; ∀𝑡, 𝑖 (12)

Minimum operating durations: 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 and 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 (13)

Supply and demand balance: ⟦𝓉 > 0⟧𝑝 = 𝑑 ; ∀𝑡 (14)

Minimum reserve constraint: ⟦𝓉 > 0⟧𝑝 ≥ 1 + 𝓇    𝑑 ; ∀𝑡 (15)

2.3.2. Cost-to-Emission Conversion Factors 
The MOPS objective function in Equation (9) requires estimating the cost-to-emission 

scale for each unit, 𝜂  ($/lbs). For this purpose, a custom function is introduced using fi-
nite difference gradients as follows: 

]dt), unconstrained OFF
units are turned ON (
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1,i pmax
t−1,i ≥ [1 +

Systems 2024, 12, 106 7 of 29 
 

 

𝛷 𝑝 , 𝑝 … , 𝑝 = ⟦𝓉 > 0⟧𝜔 𝒞 𝑝 + ⟦𝓉 > 0⟧𝜔 𝜂 ℰ 𝑝  (8)

where 𝜔   represents the weight associated with objective 𝑘  such that 𝜔 ≥ 0  and ∑ 𝜔 = 1. The parameter 𝜂  is the cost-to-emission conversion factor for unit 𝑖 corre-
sponding to emission type 𝑘. This formulation not only allows the representation of emis-
sions as continuous variables but also maintains their relative importance within the inte-
grated production function.  

Second, the startup and shutdown costs and emissions are aggregated separately. 
Consequently, the objective function of the MOPS consists of three separate components, 
which can be expressed as follows: 

𝛷 = 𝛷 𝑝 , 𝑝 … , 𝑝 , 𝒞 , , ℰ ,  (9)

where 𝒞 , = ∑ ⟦𝓉 > 0⟧ 1 − 𝓉𝑡−1,𝑖 < 0 𝒞 + 1 − ⟦𝓉 > 0⟧ 𝓉𝑡−1,𝑖 < 0 𝒞 ; ∀𝑡  and ℰ , = ∑ ⟦𝓉 > 0⟧ 1 − 𝓉𝑡−1,𝑖 < 0 ℰ + 1 − ⟦𝓉 > 0⟧ 𝓉𝑡−1,𝑖 < 0 ℰ ; ∀𝑡.  
In contrast to existing approaches, the objective function in Equation (9) is not intrin-

sically converted to a single-objective function. Rather, it consists of three components: the 
transformed production value, the cost of startup and shutdown, and the emissions dur-
ing startup and shutdown. This innovative formulation is designed to tackle the limita-
tions of traditional methods, offering a more resilient and flexible solution to the simulta-
neous optimization of cost and emissions. For the sake of simplicity, let us denote each 
objective by 𝒪  𝑘 = 0,1, . . 𝑚 . The operating cost function in Equation (1) and the operat-
ing emission function in Equation (5) specific to each objective can be written as follows:  𝒪 = ⟦𝓉 > 0⟧𝒪 𝑝 + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒪 + ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒪  (10)

where 𝒪 𝑝 , 𝒪 , and 𝒪  are the production, startup, and shutdown values corre-
sponding to objective 𝑘, respectively.  

2.3.1. Constraints 
The MOPS objective function in Equation (9) is optimized subject to Equations (11)–

(15).  

Power production capacities: ⟦𝓉 > 0⟧𝑝 ≤ 𝑝 ≤ ⟦𝓉 > 0⟧𝑝 ; ∀𝑡, 𝑖 (11)

Maximum ramp rates: 
𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , − 𝑝 ≤ 𝑝≤ 𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , + 𝑝 ; ∀𝑡, 𝑖 (12)

Minimum operating durations: 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 and 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 (13)

Supply and demand balance: ⟦𝓉 > 0⟧𝑝 = 𝑑 ; ∀𝑡 (14)

Minimum reserve constraint: ⟦𝓉 > 0⟧𝑝 ≥ 1 + 𝓇    𝑑 ; ∀𝑡 (15)

2.3.2. Cost-to-Emission Conversion Factors 
The MOPS objective function in Equation (9) requires estimating the cost-to-emission 

scale for each unit, 𝜂  ($/lbs). For this purpose, a custom function is introduced using fi-
nite difference gradients as follows: 

]dt) or no unconstrained
OFF unit remains.

• If there is excess capacity (i.e., ∑n
i=1
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the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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sponding to emission type 𝑘. This formulation not only allows the representation of emis-
sions as continuous variables but also maintains their relative importance within the inte-
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Second, the startup and shutdown costs and emissions are aggregated separately. 
Consequently, the objective function of the MOPS consists of three separate components, 
which can be expressed as follows: 
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In contrast to existing approaches, the objective function in Equation (9) is not intrin-

sically converted to a single-objective function. Rather, it consists of three components: the 
transformed production value, the cost of startup and shutdown, and the emissions dur-
ing startup and shutdown. This innovative formulation is designed to tackle the limita-
tions of traditional methods, offering a more resilient and flexible solution to the simulta-
neous optimization of cost and emissions. For the sake of simplicity, let us denote each 
objective by 𝒪  𝑘 = 0,1, . . 𝑚 . The operating cost function in Equation (1) and the operat-
ing emission function in Equation (5) specific to each objective can be written as follows:  𝒪 = ⟦𝓉 > 0⟧𝒪 𝑝 + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒪 + ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒪  (10)

where 𝒪 𝑝 , 𝒪 , and 𝒪  are the production, startup, and shutdown values corre-
sponding to objective 𝑘, respectively.  

2.3.1. Constraints 
The MOPS objective function in Equation (9) is optimized subject to Equations (11)–

(15).  

Power production capacities: ⟦𝓉 > 0⟧𝑝 ≤ 𝑝 ≤ ⟦𝓉 > 0⟧𝑝 ; ∀𝑡, 𝑖 (11)

Maximum ramp rates: 
𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , − 𝑝 ≤ 𝑝≤ 𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , + 𝑝 ; ∀𝑡, 𝑖 (12)

Minimum operating durations: 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 and 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 (13)

Supply and demand balance: ⟦𝓉 > 0⟧𝑝 = 𝑑 ; ∀𝑡 (14)

Minimum reserve constraint: ⟦𝓉 > 0⟧𝑝 ≥ 1 + 𝓇    𝑑 ; ∀𝑡 (15)

2.3.2. Cost-to-Emission Conversion Factors 
The MOPS objective function in Equation (9) requires estimating the cost-to-emission 

scale for each unit, 𝜂  ($/lbs). For this purpose, a custom function is introduced using fi-
nite difference gradients as follows: 
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1,i = 0|u0
t−1,i = 1) in the decreasing order of Λmin

i until supply
matches demand, including reserve (i.e., ∑n
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 
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ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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where 𝜔   represents the weight associated with objective 𝑘  such that 𝜔 ≥ 0  and ∑ 𝜔 = 1. The parameter 𝜂  is the cost-to-emission conversion factor for unit 𝑖 corre-
sponding to emission type 𝑘. This formulation not only allows the representation of emis-
sions as continuous variables but also maintains their relative importance within the inte-
grated production function.  

Second, the startup and shutdown costs and emissions are aggregated separately. 
Consequently, the objective function of the MOPS consists of three separate components, 
which can be expressed as follows: 
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In contrast to existing approaches, the objective function in Equation (9) is not intrin-

sically converted to a single-objective function. Rather, it consists of three components: the 
transformed production value, the cost of startup and shutdown, and the emissions dur-
ing startup and shutdown. This innovative formulation is designed to tackle the limita-
tions of traditional methods, offering a more resilient and flexible solution to the simulta-
neous optimization of cost and emissions. For the sake of simplicity, let us denote each 
objective by 𝒪  𝑘 = 0,1, . . 𝑚 . The operating cost function in Equation (1) and the operat-
ing emission function in Equation (5) specific to each objective can be written as follows:  𝒪 = ⟦𝓉 > 0⟧𝒪 𝑝 + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒪 + ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒪  (10)

where 𝒪 𝑝 , 𝒪 , and 𝒪  are the production, startup, and shutdown values corre-
sponding to objective 𝑘, respectively.  

2.3.1. Constraints 
The MOPS objective function in Equation (9) is optimized subject to Equations (11)–

(15).  

Power production capacities: ⟦𝓉 > 0⟧𝑝 ≤ 𝑝 ≤ ⟦𝓉 > 0⟧𝑝 ; ∀𝑡, 𝑖 (11)

Maximum ramp rates: 
𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , − 𝑝 ≤ 𝑝≤ 𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , + 𝑝 ; ∀𝑡, 𝑖 (12)

Minimum operating durations: 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 and 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 (13)

Supply and demand balance: ⟦𝓉 > 0⟧𝑝 = 𝑑 ; ∀𝑡 (14)

Minimum reserve constraint: ⟦𝓉 > 0⟧𝑝 ≥ 1 + 𝓇    𝑑 ; ∀𝑡 (15)

2.3.2. Cost-to-Emission Conversion Factors 
The MOPS objective function in Equation (9) requires estimating the cost-to-emission 

scale for each unit, 𝜂  ($/lbs). For this purpose, a custom function is introduced using fi-
nite difference gradients as follows: 

]dt) or no uncon-
strained ON units are left.

[Step 4.4] Optimal loads of MOPS production function: The optimal loads in the
unified production function Φon(pti) defined in Equation (7) can be determined using
sequential least squares programming (SLSP) [56]. These loads pti, ∀i can be determined
as follows:

pt = argmin
pt1,pt2,...,ptn

Φon(pt1, pt2 . . . , ptn). (25)

[Step 4.5] Incomplete episode and terminal state: Complete episodes share the same
terminal state

(
s+23
)
, possibly with different state values. However, determining unit

commitments and load dispatches for all timesteps is not always feasible. Despite the
contextual correction capabilities of the simulation environment, certain scenarios may
pose challenges. There might not be enough unconstrained ON units to switch OFF to
adjust excess capacity. Conversely, there might not be enough unconstrained OFF units
to switch ON during a supply shortage. In such situations, transitioning from the current
state st−1 to the next succeeding state st is not possible, and this state st−1 is also designated
as a terminal state (i.e., s+t−1). This renders the corresponding episode incomplete. In other
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

s+t−1
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

= 1 whenever t < 24. It should be noted that the
terminal state varies from episode to episode, resulting in the number of timesteps across
episodes being a random variable [55].

[Step 4.6] Total operating values of individual objective functions: The total operat-
ing valueOtk of objective k is calculated by summing its startup, shutdown, and production
values, which can be written as follows:

Otk =
n

∑
i=1

[
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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where the production value Oon
k (pti) is evaluated at the optimal loads determined in

Equation (25). In episodic decision-making scenarios, it is usually needed to prevent in-
complete episodes. To ensure this, large penalties are often recommended [5]. In this
study, the penalty imposed ensures that episodes with fewer timesteps incur higher operat-
ing values, underscoring the significance of complete episodes for effective learning and
decision-making. This penalty can be defined as follows:
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represents the maximum capacity production value and Oon,max
k denotes

the maximum possible production value, which is computed as Oon,max
k = ∑n

i=1 λmax
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i .
Here, λmax

ik is given as follows:
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i
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Equation (28) is like Equation (22), but represents the maximum marginal production
value per MW, considering the trends of the cost and emission functions. It is crucial to
note that the actual operating cost in Equation (26) is utilized whenever
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

= 0, while
the penalty in Equation (27) is applied when the episode becomes incomplete (i.e., when
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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terminal state (i.e., 𝒔  ). This renders the corresponding episode incomplete. In other 
words, an episode is incomplete if ⟦𝒔 ⟧ = 1 whenever 𝑡 < 24. It should be noted that 
the terminal state varies from episode to episode, resulting in the number of timesteps 
across episodes being a random variable [55]. 

[Step 4.6] Total operating values of individual objective functions: The total oper-
ating value 𝒪  of objective 𝑘 is calculated by summing its startup, shutdown, and pro-
duction values, which can be written as follows: 

𝒪 = 𝒶 ,  𝒪 𝑝 + 𝒶 , 𝓉 , < 0 𝒪 + 𝒶 , ⟦𝓉 > 0⟧𝒪 , ∀𝑘 (26)

where the production value 𝒪 𝑝   is evaluated at the optimal loads determined in 
Equation (25). In episodic decision-making scenarios, it is usually needed to prevent in-
complete episodes. To ensure this, large penalties are often recommended [5]. In this 
study, the penalty imposed ensures that episodes with fewer timesteps incur higher op-
erating values, underscoring the significance of complete episodes for effective learning 
and decision-making. This penalty can be defined as follows:  

𝒪 = 𝒪 𝑝 + 𝑡 − 123 𝒪 , − 𝒪 𝑝 ; ∀𝑘 (27)

where 𝒪 𝑝  represents the maximum capacity production value and 𝒪 ,  de-
notes the maximum possible production value, which is computed as 𝒪 , =∑ 𝜆 𝑝 . Here, 𝜆  is given as follows: 

𝜆 = 𝒪 𝑝  where 𝑝 = 𝑝 , 𝑖𝑓 𝑝 ≥  −− ,   𝑖𝑓 𝑝 <  − ; ∀𝑖. (28)

Equation (28) is like Equation (22), but represents the maximum marginal production 
value per MW, considering the trends of the cost and emission functions. It is crucial to 
note that the actual operating cost in Equation (26) is utilized whenever ⟦𝒔 ⟧ = 0, while 
the penalty in Equation (27) is applied when the episode becomes incomplete (i.e., when ⟦        𝓼      ⟧ = 1 for 𝑡 < 24).  

[Step 4.7] Determine the next state: Depending on the contextually corrected action 𝓪  in state 𝒔 , the simulation environment is initialized, or the subsequent state 𝒔  is 
obtained through updating 𝒔 . Details of these scenarios are described in [42]. 

[Step 4.8] Reward function: The reward function 𝑟 = ℛ 𝒔 , 𝓪 , 𝒔  is defined as 
the inversed average of the normalized values of all individual objectives. It can be repre-
sented as follows: 

𝑟 = 1𝑚 + 1 𝒪 − 𝒪𝒪 − 𝒪  (29)

where 𝒪   represents the minimum possible production value, which is defined as 𝒪 = 𝑚𝑖𝑛 𝜆 𝑝 ; ∀𝑖 ∈ 𝔗 .  
[Step 5] Return: Executing action 𝓪  in state 𝒔  in the transition function will 

mainly return a three-tuple (𝒔  ,𝑟 , ⟦𝒔 ⟧ ), where 𝒔   represents the next state, 𝑟   repre-
sents the reward defined in Equation (29), and ⟦𝒔 ⟧ is an indicator whether the current 
state is terminal. Additionally, the output includes unit commitments, optimal loads, and 
other related information. 

[Step 6] Proceed to the next timestep or reset the environment: If ⟦𝒔 ⟧=0, the sim-
ulation continues to the next timestep of the episode, executing another action of agents 
in Step 4. However, if ⟦𝒔 ⟧=1, the simulation environment will be reset to its initial sta-
tus (proceeding to Step 1) to start the next new episode. This ensures a clear distinction in 
the simulation process based on the completeness of the episodes. 

+
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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[Step 4.7] Determine the next state: Depending on the contextually corrected action
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1 in state st−1, the simulation environment is initialized, or the subsequent state st is
obtained through updating st−1. Details of these scenarios are described in [42].

[Step 4.8] Reward function: The reward function rt = R(st−1,
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1, st) is defined
as the inversed average of the normalized values of all individual objectives. It can be
represented as follows:
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
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6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
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Considering operating durations and transitions between online and offline statuses, its 
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The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
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is an indicator whether the current state is
terminal. Additionally, the output includes unit commitments, optimal loads, and other
related information.

[Step 6] Proceed to the next timestep or reset the environment: If
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 
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2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

= 0, the
simulation continues to the next timestep of the episode, executing another action of agents
in Step 4. However, if
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 
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power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

= 1, the simulation environment will be reset to its initial
status (proceeding to Step 1) to start the next new episode. This ensures a clear distinction
in the simulation process based on the completeness of the episodes.
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Figure 1 summarizes the process of simulating the power scheduling dynamics in the
form of MDPs, and the pseudocode is presented in Algorithm 1.
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Algorithm 1. Pseudocode for simulating power scheduling as MDPs
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Figure 1 summarizes the process of simulating the power scheduling dynamics in the 
form of MDPs, and the pseudocode is presented in Algorithm 1. 

Algorithm 1. Pseudocode for simulating power scheduling as MDPs 
0:   Input parameters of supply and demand profiles. 
1:   Set the environment timestep to 1: 𝑡 = 1. 
2:   Initialize the state as 𝒔 = (1, 𝒑 , 𝒑 , 𝓽 , 𝑑 ). 
3:   For 𝑡 in 1 to T: 
4:   Receive action: 𝓪 = 𝒶 , , 𝒶 , , … , 𝒶 , . 
5:   Get the current state: 𝒔 = (𝑡, 𝓽 , 𝒑 , 𝒑 , 𝑑 ). 
6:   Identify the must-ON and must-OFF unis in Eq. (19). 
7:   Get the marginal operating values of units in Eq. (24). 
8:   Adjust supply capacities as described in [Step 4.3]. 
9:   If ∑ 𝒶 , 𝑝 , ≤ (1 + 𝓇)𝑑 ≤ ∑ 𝒶 , 𝑝 , : 
10:   If 𝑡 = 𝑇: label state 𝒔  as a terminal state (𝒔 ). 
11:   Calculate startup and shutdown values in [Step 3]. 
12:   Solve the optimal production loads in Eq. (25). 
13:   Compute production costs using Eq. (2) and emissions using Eq. (5). 
14:   Get the operating values for each of the separate objectives (i.e., Eq. (26)). 
15:   Set the action as current commitments: 𝑧 ⟵ 𝒶 , , ∀𝑖. 
16:  

 Update operating durations:  
 If 𝑧 = 1|𝓉 , > 0: 𝓉 = 𝓉 , + 1;  
 Else if 𝑧 = 0|𝓉 , > 0: 𝓉 = −1;  
 Else if 𝑧 = 1|𝓉 , < 0: 𝓉 = 1;  
 Else if 𝑧 = 1|𝓉 , < 0: 𝓉 = 𝓉 , − 1. 

17:   Determine minimum and maximum production capacities using Eq. (12). 
18:   Roll forward the environment timestep by one: 𝑡 ← 𝑡 + 1.  
19:   Assign the updated state to the next state: 𝒔 ⟵ 𝑡 + 1, 𝒑 , 𝒑 , 𝓽 , 𝑑 . 
20:   Else if ∑ 𝒶 , 𝑝 , < (1 + 𝓇)𝑑  or ∑ 𝒶 , 𝑝 , > (1 + 𝓇)𝑑 : 
21:   Label the state 𝒔  as a terminal state (𝒔 ). 
22:   Get the penalty operating value for each objective (𝒪 , ∀𝑘) using Eq. (27). 
23:   Reset the environment timestep: 𝑡 ← 1. 
24:   Assign the initial state to the next state: 𝒔 ⟵ 1, 𝒑 , 𝒑 , 𝓽 , 𝑑 . 
25:   Evaluate the reward as defined in Equation (29). 
26:   If an episode becomes incomplete:  set done = TRUE else done = FALSE. 
27:   Return next state (𝒔 ), reward (𝑟 ), and if simulation is done (done). 
28:   If done = TRUE: go to line 1, else go to line 3. 

3.2. Multi-Agent Deep Q-Network (MADQN)

In the framework of RL, the transition function P(st, rt|st−1,
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The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1) defines the proba-
bility distribution of the next state st with reward rt for taking an action
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does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 
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with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
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modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
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t−1 ∈ A(st−1)
in state st−1 ∈ S . This mapping is called a policy π(
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 
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tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 
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In the context of power scheduling problems, an action taken in a particular state 
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buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1|st−1) [55], which is a guide that
helps the agents choose action

Systems 2024, 12, 106 14 of 30 
 

 

The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 
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ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 
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t−1 given the state st−1 at each timestep t of an episode.
The goal of the different cooperative agents is to learn a policy π(
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modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
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In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 
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affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1|st−1) that maximizes
their long-run cumulative return (sum of rewards), determined as Gt = ∑T

t=1 γ t−1rt, where
γ is a discount rate (0 ≤ γ ≤ 1). The expected return of the state Vπ(s) following a policy
π is defined as Vπ(s) = Eπ(Gt|st−1 = s). Similarly, the action-value function Qπ(s,
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does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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does not require a precise mathematical definition of a loss function and can identify op-
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a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
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work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 
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in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
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In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 
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mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 
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in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 
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allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

). (30)

The optimal policy is now denoted as π(s|

Systems 2024, 12, 106 14 of 30 
 

 

The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
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which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

) and is defined as π(s|

Systems 2024, 12, 106 14 of 30 
 

 

The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
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mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
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possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
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lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
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randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

) ∈ S ×A (31)



Systems 2024, 12, 106 14 of 27

where Qπ(s,

Systems 2024, 12, 106 14 of 30 
 

 

The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
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work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 
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with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
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setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
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allowing for the training of various RL models based on user preferences. 
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) is infeasible due to the
exponential growth of the state-action pairs. Instead, these values can be estimated through
function approximation methods [29]. This study employs a deep Q-network (DQN) to
approximate the action value function. DQN is a robust technique as it does not require a
precise mathematical definition of a loss function and can identify optimal solutions, even
for nonconvex loss functions [29]. The specifics of the DQN model, including its network
architecture, exploration strategy, loss function, and unique features, are detailed in [48].

3.2.1. Model Architecture

The DQN model employed in this study utilizes a single-hidden-layer feedforward
neural network model with ReLU activation functions in both the hidden and output layers.
The input of the network comprises the MDP dynamics represented by
st−1 =

(
t, pmin

t−1, pmax
t−1 ,
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔, 𝓪|𝒘 , 
where 𝒘 consists of the model’s weights. The model is designed to predict two values for 
each agent. In this setup, each pair of nodes corresponds to the two possible decisions (i.e., 
ON and OFF) for each of the 𝑛 agents. This approach is necessitated by the complexity of 
the action space 𝓐, which inherently poses a formidable challenge due to its exponential 
growth concerning the number of agents involved (resulting in 2  possible unit commit-
ments). To mitigate this complexity, the network is designed with 2𝑛 output nodes, in-
stead of parameterizing it into 2  output nodes. This streamlined network parametriza-
tion is a strategic solution to handle the computational constraints posed by the exponen-
tial growth in the action space. This simplified network setup is strategic for managing 
computational complexity while ensuring an efficient modeling process. Importantly, the 
network design is decentralized, where each agent has a dedicated pair of output nodes. 
As a result, the DQN is referred to as the MADQN. This approach results in the network 
output becoming a linear function of the number of agents, enabling a more manageable 
and practical implementation within the multi-agent system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 𝒔, 𝓪, 𝒓, 𝒔  to estimate the action values. This approach helps break the temporal correla-
tions among the MDPs [57]. By learning from random past experiences, the agents can 

t−1, dt
)
, which are simulated within the multi-agent simulation
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 
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ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
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ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

|w), where
w consists of the model’s weights. The model is designed to predict two values for each
agent. In this setup, each pair of nodes corresponds to the two possible decisions (i.e., ON
and OFF) for each of the n agents. This approach is necessitated by the complexity of
the action space A, which inherently poses a formidable challenge due to its exponential
growth concerning the number of agents involved (resulting in 2n possible unit commit-
ments). To mitigate this complexity, the network is designed with 2n output nodes, instead
of parameterizing it into 2n output nodes. This streamlined network parametrization is a
strategic solution to handle the computational constraints posed by the exponential growth
in the action space. This simplified network setup is strategic for managing computational
complexity while ensuring an efficient modeling process. Importantly, the network design
is decentralized, where each agent has a dedicated pair of output nodes. As a result, the
DQN is referred to as the MADQN. This approach results in the network output becom-
ing a linear function of the number of agents, enabling a more manageable and practical
implementation within the multi-agent system.

In this framework, an ϵ-greedy exploration approach is used. Accordingly, agents
autonomously make their optimal decision
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision                     𝒶         , ; ∀𝑡  within state 𝒔  
with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environ-
ment by deciding randomly. In both conditions, once the action 𝓪   of all agents is 
formed, it serves as an input to the transition function in the simulation environment, 
initiating the next state 𝒔 , which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

t−1,i; ∀t within state st−1 with probability 1− ϵ.
Conversely, with probability ϵ, each agent explores the environment by deciding randomly.
In both conditions, once the action

Systems 2024, 12, 106 14 of 30 
 

 

The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
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work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 
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ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
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, r, s′) to estimate the action values. This approach helps break the temporal correlations
among the MDPs [57]. By learning from random past experiences, the agents can more
effectively explore the state-action space in diverse situations. This approach enhances the
learning process by mitigating the challenges of autocorrelated sequential MDPs.

3.2.3. Loss Function and Parameter Updates

The choice of an appropriate loss function is crucial in RL to ensure stable and effective
training of the model. To calculate the loss, MADQN incorporates target and main net-
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works [45]. The target network generates target action values and is updated periodically
from the primary network Q(s,
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autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

|w). Its values are computed as r + γ max

Systems 2024, 12, 106 14 of 30 
 

 

The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

′Qπ(s′,

Systems 2024, 12, 106 14 of 30 
 

 

The optimal policy is now denoted as 𝜋 𝒔|𝓪   and is defined as 𝜋 𝒔|𝓪 =𝑎𝑟𝑔𝑚𝑎𝑥  𝑉 𝒔  for all 𝒔 ∈ 𝓢 or 𝜋 𝒔|𝓪 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑄 𝒔, 𝓪  for all 𝓪 ∈ 𝓐 𝒔 . As a result, 
the action value corresponding to the optimal policy is as follows: 𝑄∗ 𝒔, 𝓪 = 𝑚𝑎𝑥 𝑄 𝒔, 𝓪 ; ∀ 𝒔, 𝓪 ∈ 𝓢 × 𝓐 (31)

where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 

′|w′),
where w′ is the weight of the target network. Due to the diverse variables present in the
state input for the MADQN model, large errors in action-value estimates can occur, which
may potentially lead to unstable training. In such situations, the Huber loss function proves
to be more appropriate [55], which is expressed as:

J(w) = E

 0.5[r + γ max
a′

Q(s′,
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The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 
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possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
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input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 
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environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 
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ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 
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predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 

neural network model with ReLU activation functions in both the hidden and output lay-
ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
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ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
straints posed by the exponential growth in the action space. This simplified network 
setup is strategic for managing computational complexity while ensuring an efficient 
modeling process. Importantly, the network design is decentralized, where each agent has 
a dedicated pair of output nodes. As a result, the DQN is referred to as the MADQN. This 
approach results in the network output becoming a linear function of the number of 
agents, enabling a more manageable and practical implementation within the multi-agent 
system. 

In this framework, an 𝜖-greedy exploration approach is used. Accordingly, agents 
autonomously make their optimal decision 𝒶 , ; ∀𝑡 within state 𝒔  with probability 1 − 𝜖. Conversely, with probability 𝜖, each agent explores the environment by deciding 
randomly. In both conditions, once the action 𝓪  of all agents is formed, it serves as an 
input to the transition function in the simulation environment, initiating the next state 𝒔 , 
which will be the input for the MADQN model. 

It is noteworthy that while MADQN is used in this study, the multi-agent simulation 
environment is not specifically designed for a particular RL model. It remains adaptable, 
allowing for the training of various RL models based on user preferences. 

3.2.2. Experience Relay 
In the context of power scheduling problems, an action taken in a particular state 

affects the immediate reward and has repercussions on a sequence of future states. Such 
interdependence among the successive MDPs poses a challenge when applying the stand-
ard MADQN [5]. The MADQN can be enhanced by incorporating an experience replay to 
address this issue. Experience replay involves storing the transition tuples in a replay 
buffer, denoted as 𝔹 = 𝒔 , 𝓪 , 𝑟 , 𝒔 , and then using a random batch of experiences 
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where 𝑄 𝒔, 𝓪  represents the action value defined in Equation (30). However, calculat-
ing exact values as defined in Equation (31) for all state-action pairs 𝒔, 𝓪  is infeasible 
due to the exponential growth of the state-action pairs. Instead, these values can be esti-
mated through function approximation methods [29]. This study employs a deep Q-net-
work (DQN) to approximate the action value function. DQN is a robust technique as it 
does not require a precise mathematical definition of a loss function and can identify op-
timal solutions, even for nonconvex loss functions [29]. The specifics of the DQN model, 
including its network architecture, exploration strategy, loss function, and unique fea-
tures, are detailed in [48]. 

3.2.1. Model Architecture 
The DQN model employed in this study utilizes a single-hidden-layer feedforward 
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ers. The input of the network comprises the MDP dynamics represented by 𝒔 =𝑡, 𝒑 , 𝒑 ,               𝓽          , 𝑑 , which are simulated within the multi-agent simula-
tion environment. The network output represents the action value function 𝑄 𝒔,          𝓪            |𝒘 , where 𝒘 consists of the model’s weights. The model is designed to 
predict two values for each agent. In this setup, each pair of nodes corresponds to the two 
possible decisions (i.e., ON and OFF) for each of the 𝑛 agents. This approach is necessi-
tated by the complexity of the action space 𝓐, which inherently poses a formidable chal-
lenge due to its exponential growth concerning the number of agents involved (resulting 
in 2  possible unit commitments). To mitigate this complexity, the network is designed 
with 2𝑛 output nodes, instead of parameterizing it into 2  output nodes. This stream-
lined network parametrization is a strategic solution to handle the computational con-
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where ξ is a learning rate. Huber loss can effectively handle different error values, ensuring
stable learning [55]. It becomes an absolute error (i.e., L1 loss) for larger errors and resembles
a mean-squared error (i.e., L2 loss) for small errors. This property of Huber loss enhances
the model’s resilience to noisy data and outliers, leading to more reliable and stable training
outcomes in the MADQN framework.

Figure 2 demonstrates how the multi-agent simulation environment and MADQN
interact, combining the replay memory and loss function.
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4. Practical Applications

The proposed MARL optimization algorithm addresses the MOPS problem with
varying units and constraints. The implementation leverages the PyTorch deep learning
framework, utilizing Python 3.10. It was executed on a desktop computer with an 11th
Gen Intel (R) Core (TM) i7-11700 processor operating at 2.50 GHz, 16 GB of RAM, and
eight parallel workers. In the write-up of the manuscript, while QuillBot has been used
for language-related aspects, the substantive content and findings resulted from human
intellectual effort.

4.1. Experimental Settings
4.1.1. Specifications of Generating Units

Profiles of the generating units, including the cost, emission, and ramp rate parameters,
are taken from [54]. The VPE parameters of the cost functions are obtained from [58], and
those of the emission functions are accessed from [21]. Moreover, the parameters specific to
CO2 and SO2 for the tri-objective problems are drawn from [36]. Operational constraints,
including generation capacity, minimum operating time durations, and a 10% reserve,
remain the same across all test systems. Notably, shutdown costs and startup emissions are
typically assumed to be negligible compared with other expenses [59], and their specific
values are absent in the existing literature. Consequently, these parameters are uniformly
set to zero in all the experimental analyses, although their integration into the algorithm’s
framework has been duly considered. The proposed algorithm is not necessarily confined
to a fixed timeframe. Despite this, all the experimental analyses are conducted over a 24 h
planning horizon, with demand data from [54].

4.1.2. Parameters and Hyperparameters

The cost-to-emission conversion parameters significantly impact the optimization
trade-offs between cost and emission objectives. Estimates of these parameters are pre-
sented in Table 2, which are calculated using Equation (16). The other crucial factors
affecting MOPS optimization are the weight hyperparameters assigned to the different ob-
jectives. These weights are determined before fine-tuning the hyperparameters of the neural
network model. As previously noted, the MADQN model utilized a single-hidden-layer
neural network incorporating ReLU activation functions in both the hidden and output
layers. With a preliminary configuration of the model, a thorough sensitivity analysis is
conducted using fuzzy set theory. First, each objective function is individually optimized.
Next, a set of 100 evenly distributed weights, ranging from 0 to 1, is considered for the
bi-objective problems. Then, a membership function is created for each objective function
using Equation (17), and the cardinality values are determined using Equation (18). The
results of the top 10 weights with the largest cardinality values for the first 4 test systems are
presented in Table 3. In the context of tri-objective scheduling problems, a set of 200 random
combinations of weights is sampled from the Dirichlet probability distribution. Table 4
provides the top 10 weight combinations, each possessing the highest cardinality values.

Table 2. Estimates of cost-to-emission conversion parameters of generating units.

η U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Without VPEs
C−to− E 1.12 1.12 1.18 1.72 1.32 1.60 1.42 0.63 0.64 0.63
C−to− ECO2 1.26 1.31 1.97 1.47 1.36 1.80 2.00 2.58 2.35 3.42
C−to− ESO2 4.64 4.98 4.00 3.74 5.23 3.51 7.16 2.64 2.63 2.67

With VPEs C−to− E 1.09 1.11 1.15 1.64 1.29 1.53 1.42 0.63 0.62 0.60
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Table 3. Top ten weights with the largest cardinality values for the bi-objective problems.

Test
System 1 2 3 4 5 6 7 8 9 10

I

ω 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44
µ(C) 0.878007 0.890443 0.901638 0.912586 0.921031 0.928662 0.935648 0.942570 0.949212 0.955643
µ(E) 0.207331 0.273058 0.252767 0.232082 0.215422 0.199729 0.184779 0.169305 0.153849 0.138279

µ(C, E) 0.009882 0.010593 0.010510 0.010422 0.010347 0.010274 0.010201 0.010123 0.010043 0.009960

II

ω 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46
µ(C) 0.898268 0.909701 0.917872 0.925332 0.932428 0.939034 0.945612 0.951902 0.957516 0.953013
µ(E) 0.161389 0.236437 0.220693 0.205621 0.190679 0.176148 0.161154 0.146186 0.132335 0.135774

µ(C, E) 0.009876 0.010682 0.010611 0.01054 0.010467 0.010393 0.010315 0.010234 0.010157 0.010147

III

ω 0.30 0.36 0.37 0.40 0.45 0.48 0.62 0.91 0.92 0.95
µ(C) 0.000001 0.000001 0.040960 0.075624 0.083236 0.098914 0.252296 0.207296 0.306373 0.260789
µ(E) 0.311485 0.301039 0.273215 0.237354 0.220239 0.218529 0.058457 0.109696 0.011730 0.043777

µ(C, E) 0.009821 0.009492 0.009906 0.009868 0.009569 0.010009 0.009798 0.009995 0.010030 0.009603

IV

ω 0.42 0.54 0.68 0.69 0.70 0.73 0.87 0.96 0.97 0.98
µ(C) 0.144462 0.110142 0.213309 0.216820 0.186339 0.208077 0.196714 0.222655 0.225096 0.164261
µ(E) 0.087651 0.115980 0.013510 0.015474 0.000001 0.000001 0.000001 0.006746 0.000001 0.000001

µ(C, E) 0.006831 0.006655 0.006676 0.006837 0.005484 0.006124 0.005790 0.006752 0.006625 0.004834

Table 4. Top ten weights with the largest cardinality values for the tri-objective problems.

Test
System 1 2 3 4 5 6 7 8 9 10

V

ωcost 0.07 0.13 0.15 0.17 0.31 0.43 0.46 0.47 0.56 0.61
ωCO2 0.67 0.60 0.57 0.52 0.38 0.21 0.22 0.17 0.06 0.06
ωSO2 0.26 0.27 0.28 0.31 0.31 0.36 0.32 0.36 0.38 0.33
µ(C) 0.877544 0.874737 0.876852 0.867023 0.876270 0.866799 0.882510 0.869905 0.863371 0.884918

µ
(
ECO2

)
0.515861 0.518307 0.525821 0.513806 0.549959 0.560309 0.583100 0.572289 0.579697 0.612661

µ
(
ESO2

)
0.617123 0.625220 0.620835 0.643178 0.624359 0.644600 0.610428 0.637967 0.650002 0.603679

µ(C, E) 0.005176 0.005175 0.005211 0.005130 0.005298 0.005302 0.005445 0.005358 0.005361 0.005563

VI

ωcost 0.03 0.21 0.24 0.41 0.43 0.44 0.45 0.49 0.52 0.52
ωCO2 0.76 0.52 0.47 0.28 0.21 0.23 0.19 0.15 0.12 0.12
ωSO2 0.21 0.26 0.29 0.31 0.36 0.33 0.35 0.36 0.36 0.36
µ(C) 0.890529 0.885126 0.878897 0.882360 0.866862 0.878171 0.871210 0.870520 0.872000 0.871944

µ
(
ECO2

)
0.530925 0.548683 0.542729 0.575160 0.561762 0.573672 0.569808 0.576117 0.582108 0.583029

µ
(
ESO2

)
0.580650 0.601661 0.617481 0.610705 0.644421 0.620414 0.635385 0.636538 0.633200 0.633290

µ(C, E) 0.005296 0.005342 0.005297 0.005431 0.005323 0.005410 0.005369 0.005390 0.005418 0.005421

4.1.3. MADQN Model Configurations

Following the selection of promising weights for the different objectives, the hyperpa-
rameters of the MADQN are tuned. In the network configuration, generation capacities
were initially assumed to be included as part of the model’s input when ramp rate con-
straints were considered. However, integrating these generation capacities into state input
destabilizes training stability. Consequently, the input layer in all the test system mod-
els consists of (n + 2) nodes, encompassing three elements: the timestep of the planning
horizon, the operating time durations, and the demand requirement to be satisfied. All
the test systems employed a uniform learning rate of 0.01 and a consistent discount factor
of 0.99. The optimization has been performed with the Adam optimizer and the Huber
loss function. Furthermore, the exploration–exploitation strategy involves a maximum
exploration rate set at 1 and a minimum rate of 0. An exponential decay rate associated
with the number of training episodes determines the gradual reduction in exploration as
the model’s training progresses. As the model employs experience replay, the batch size
is consistently set to match the size of replay memory. The uniformity ensures a consis-
tent approach to learning and updating the model parameters across different scenarios.
Table 5 shows the parameters and optimal hyperparameters of the MADQN models for
the different test systems.
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Table 5. Parameters and optimal hyperparameters of the MADQN models.

Test
System Objectives Units

Nodes ∈-Decay
Rate

Replay
Memory

Training
EpisodesInput Hidden Output

I Bi-objective 10 12 64 20 0.999 64 8000
II Bi-objective 10 12 64 20 0.999 64 8000
III Bi-objective 10 12 64 20 0.999 64 8000
IV Bi-objective 10 12 64 20 0.999 64 8000
V Tri-objective 10 12 64 20 0.9991 64 10,000
VI Tri-objective 10 12 64 20 0.9991 64 10,000

VII–X Bi-objective 20 22 64 40 0.999 64 8000
XI–XIV Bi-objective 40 42 128 80 0.9993 128 12,000

XV–XVIII Bi-objective 60 62 128 120 0.9993 128 12,000
XIX–XXII Bi-objective 80 82 256 160 0.9994 256 15,000

XXIII–XXVI Bi-objective 100 102 256 200 0.9994 256 15,000

4.2. Comparative Results
4.2.1. Test System I: Bi-Objective Problem without Ramp Rate Constraints and No VPEs

Test system I comprises 10 generating units, each with smooth and convex cost and
emission functions. The unit commitments, loads, and actual reserve percentages result-
ing from the proposed MADRL algorithm are presented in Table 6. The results of the
proposed MADRL approach are compared with those of [23,34]. The former employed
TLBO and achieved a daily operating cost of $578,445.5 with an emission of 37,302.9 lbs,
while the proposed MADRL results in an operating cost of $563,990.6 and an emission
level of 41,310.4 lbs. If economic considerations, which are critical in various industrial and
business applications, are paramount, MADRL may be preferred. On the other hand, if
environmental concerns take precedence, TLBO might be considered. As a multi-objective
optimization problem, MADRL strikes a reasonable balance between operating costs and
environmental emissions. Hence, the higher daily operating cost for a slightly lower
emission introduced by TLBO makes its solutions less viable from an economic standpoint.

Table 6. Optimal commitments, loads, and reserve percentages using MADRL for test system I.

t
(Hour) Commitments

Optimal Loads (MW)
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Conversely, RCGWO was adopted in [34], which reported a daily operating cost of
$568,655.3 and an emission of 43,759.7 lbs. Table 7 presents a detailed comparative analysis
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of outcomes obtained by the proposed MADRL methodology and the RCGWO [34] method.
The hourly costs and emissions of both methods are also visualized in Figure 3. The slightly
higher startup cost with the MADRL algorithm indicates an increase in the number of
committed units. However, the efficiency of MADRL is demonstrated with a lower daily
production cost of $563,990.6 compared with the cost of $565,115.3 using RCGWO. This
economic efficiency positions MADRL as a promising solution. Furthermore, MADRL
established a new environmental benchmark, emitting only 41,310.4 lbs of pollutants
compared with RCGWO’s 43,759.7 lbs. Particularly noteworthy is the substantial reduc-
tion in hourly emissions, emphasizing the environmental conscientiousness of MADRL
alongside its economic prowess. Excelling in both economic viability and environmental
responsibility, the results underscore the holistic efficiency of MADRL.

Table 7. Comparison of costs and emissions between RCGWO and MADRL for test system I.

t
(Hour)

RCGWO [34] MADRL

Csu
t ($) Con

t ($) Ct ($) E t (lbs) Csu
t ($) Con

t ($) Ct ($) E t (lbs)

1 0 13,683.1 13,683.1 956.4 0 13,750.3 13,750.3 861.1
2 0 14,554.5 14,554.5 1055.0 0 14,601.2 14,601.2 1002.2
3 560 16,892.1 17,452.1 1077.4 900 17,027.5 17,927.5 1108.7
4 550 19,261.5 19,811.5 1249.8 0 18,821.2 18,821.2 1373.8
5 0 20,132.5 20,132.5 1343.8 560 20,246.3 20,806.3 1243.5
6 900 22,387.1 23,287.1 15,52.7 1100 22,601.0 23,701.0 1394.3
7 0 23,262.0 23,262.0 1704.2 0 23,496.6 23,496.6 1521.4
8 0 24,150.3 24,150.3 1863.1 0 24,394.0 24,394.0 1656.3
9 860 27,251.1 28,111.1 2191.3 860 27,399.1 28,259.1 2085.1

10 60 30,057.6 30,117.6 2599.2 60 30,226.2 30,286.2 2490.5
11 60 31,916.1 31,976.1 2945.2 60 32,045.6 32,105.6 2843.0
12 60 33,890.2 33,950.2 3229.4 60 33,995.6 34,055.6 3146.4
13 0 30,057.6 30,057.6 2599.2 0 30,226.2 30,226.2 2490.5
14 0 27,251.1 27,251.1 2191.3 0 27,399.1 27,399.1 2085.1
15 0 24,150.3 24,150.3 1863.1 0 24,394.0 24,394.0 1656.3
16 0 21,513.7 21,513.7 1424.2 0 21,707.3 21,707.3 1274.9
17 0 20,641.8 20,641.8 1318.6 0 20,815.4 20,815.4 1163.3
18 0 22,387.1 22,387.1 1552.7 0 22,601.0 22,601.0 1394.3
19 0 24,150.3 24,150.3 1863.1 0 24,394.0 24,394.0 1656.3
20 490 30,057.6 30,547.6 2599.2 490 30,226.2 30,716.2 2490.5
21 0 27,251.1 27,251.1 2191.3 0 27,399.1 27,399.1 2085.1
22 0 23,593.0 23,593.0 1719.6 0 22,847.1 22,847.1 1895.6
23 0 19,480.8 19,480.8 1348.9 0 17,923.5 17,923.5 1237.4
24 0 17,142.8 17,142.8 1321.1 0 15,453.1 15,453.1 1154.8

Total 3540 565,115.3 568,655.3 43,759.7 4090.0 563,990.6 568,080.6 41,310.4
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4.2.2. Test System II: Ramp Rates Constrained Bi-Objective Problem without VPEs

Test system II is like test system I, except it is ramp rate constrained. No additional
units are committed compared to the optimal schedule without ramp rate constraints.
However, the dispatches of online generating units are strategically altered due to the
inclusion of ramp rate constraints, which leads to changes in both operating costs and
emissions. The results of the proposed MADRL and RCGWO [34] are shown in Table 8 and
visually presented in Figure 4. With respect to startup costs, RCGWO [34] has a marginal
advantage, requiring only $3540.0 compared with the slightly higher investment of $4090.0
of MADRL. However, the real distinction lies in production costs, where MADRL excels at
a daily expenditure of $563,106.8 compared with $565,183.9 from RCGWO. Considering
both the startup and production costs, MADRL demonstrates its economic efficiency, with
a total daily cost of $567,196.8 compared with the total cost of $568,723.9 using RCGWO.
Moreover, the proposed MADRL stands out as an environmentally conscious method,
emitting only 41,810.8 lbs of pollutants per day, notably lower than the 43,733.6 lbs of
RCGWO. These comparative results reveal the superior economic and environmental
performance of the MADRL method over the RCGWO approach. A substantial decrease
in production expenditure without compromising ecological standards underscores the
efficiency and viability of the proposed MADRL approach. The balanced approach, evident
in lowered emissions and reduced costs, indicates the potential contribution of MADRL to
a greener, sustainable energy future. Moreover, Figure 4 shows significant hourly emission
reductions similar to the hourly emissions for the test system without ramp rates. This
consistent performance of MADRL across the entire planning horizon underscores its
robustness and reliability.

Table 8. Comparison of costs and emissions between RCGWO and MADRL for test system II.

t
(Hour)

RCGWO [34] MADRL

Csu
t ($) Con

t ($) Ct ($) E t (lbs) Csu
t ($) Con

t ($) Ct ($) E t (lbs)

1 0 13,683.0 13,683.0 956.4 0 13,748.3 13,748.3 862.1
2 0 14,554.4 14,554.4 1055.0 0 14,599.3 14,599.3 1003.2
3 560 16,892.0 17,452.0 1077.3 900 16,998.9 17,898.9 1125.3
4 550 19,261.4 19,811.4 1249.8 0 18,789.8 18,789.8 1392.3
5 0 20,132.4 20,132.4 1343.8 560 20,217.1 20,777.1 1260.5
6 900 22,387.2 23,287.2 1552.7 1100 22,572.7 23,672.7 1410.7
7 0 23,262.1 23,262.1 1704.3 0 23,466.8 23,466.8 1538.7
8 0 24,150.1 24,150.1 1863.1 0 24,362.9 24,362.9 1674.5
9 860 27,251.3 28,111.3 2191.3 860 27,365.0 28,225.0 2103.9

10 60 30,057.8 30,117.8 2599.2 60 30,128.4 30,188.4 2545.2
11 60 31,916.3 31,976.3 2945.2 60 32,008.3 32,068.3 2864.0
12 60 33,890.4 33,950.4 3229.4 60 33,972.9 34,032.9 3159.7
13 0 30,057.8 30,057.8 2599.2 0 30,128.5 30,128.5 2545.2
14 0 27,251.3 27,251.3 2191.3 0 27,365.0 27,365.0 2103.9
15 0 24,150.1 24,150.1 1863.1 0 24,362.9 24,362.9 1674.5
16 0 21,513.8 21,513.8 1424.2 0 21,680.3 21,680.3 1290.4
17 0 20,642.0 20,642.0 1318.6 0 20,789.7 20,789.7 1177.9
18 0 22,387.2 22,387.2 1552.7 0 22,572.7 22,572.7 1410.7
19 0 24,150.1 24,150.1 1863.1 0 24,362.9 24,362.9 1674.5
20 490 30,124.9 30,614.9 2573.1 490 30,128.5 30,618.5 2545.2
21 0 27,251.3 27,251.3 2191.3 0 27,365.0 27,365.0 2103.9
22 0 23,593.1 23,593.1 1719.6 0 22,776.2 22,776.2 1933.8
23 0 19,481.0 19,481.0 1349.0 0 17,893.5 17,893.5 1254.9
24 0 17,142.9 17,142.9 1321.1 0 15,451.2 15,451.2 1155.8

Total 3540 565,183.9 568,723.9 43,733.6 4090 563,106.8 567,196.8 41,810.8
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The scenario associated with VPEs is found in test system III (results are not pre-

sented). Even though there is no direct comparison with existing literature incorporating 
VPEs, the potential of MADRL can be appreciated through the numerical results. The total 
daily cost with VPEs rises to $591,918.6 compared with $568,080.6 without VPEs. Simi-
larly, the total daily emissions increased to 43,796.1 lbs with VPEs compared to 41,310.4 
lbs without VPEs. Incorporating VPEs into the system led to a marginal increase in both 
the total operating cost and emissions. 

4.2.4. Test System IV: Bi-Objective Problem with VPEs and Ramp Rate Constraints 
It is already seen that the incorporation of VPEs increases both costs and emissions, 

whereas the ramp rate constraints lead to an increase in emissions and a slight reduction 
in costs. Intuitively, incorporating both ramp rate constraints and VPEs will significantly 
complicate the optimization landscape. Test system IV renders this assumption, and the 
results are visualized in Figure 5 compared to test system I (without ramp rates and no 
VPEs). It is demonstrated that the introduction of ramp rates and the integration of VPEs 
elevate most of the hourly operating costs and emissions. 
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4.2.3. Test System III: Bi-Objective Problem with VPEs and No Ramp Rates

The scenario associated with VPEs is found in test system III (results are not presented). Even
though there is no direct comparison with existing literature incorporating VPEs, the potential
of MADRL can be appreciated through the numerical results. The total daily cost with VPEs
rises to $591,918.6 compared with $568,080.6 without VPEs. Similarly, the total daily emissions
increased to 43,796.1 lbs with VPEs compared to 41,310.4 lbs without VPEs. Incorporating VPEs
into the system led to a marginal increase in both the total operating cost and emissions.

4.2.4. Test System IV: Bi-Objective Problem with VPEs and Ramp Rate Constraints

It is already seen that the incorporation of VPEs increases both costs and emissions,
whereas the ramp rate constraints lead to an increase in emissions and a slight reduction
in costs. Intuitively, incorporating both ramp rate constraints and VPEs will significantly
complicate the optimization landscape. Test system IV renders this assumption, and the
results are visualized in Figure 5 compared to test system I (without ramp rates and no
VPEs). It is demonstrated that the introduction of ramp rates and the integration of VPEs
elevate most of the hourly operating costs and emissions.

Systems 2024, 12, 106 23 of 29 
 

 

 
Figure 5. Plot of hourly costs and emissions between test systems I and IV. 

4.2.5. Test System V: Tri-Objective Problem without VPEs and No Ramp Rates 
Practical applications of the MADRL algorithm on test systems I through IV are all 

used to solve bi-objective problems. The proposed methodology has also been applied to 
the tri-objective problem of test system V and yielded insightful results presented in Table 
9. Test system V deals with the complex interplay of operating costs, CO2, and SO2 emis-
sions, which is ramp rate constrained. The proposed algorithm has achieved a total oper-
ating cost of $568,091.2 (a startup cost of $4100.0 and a production cost of $563,991.2). It 
has also resulted in CO2 and SO2 emissions of 82,261.0 lbs and 161,403.6 lbs, respectively. 
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4.2.5. Test System V: Tri-Objective Problem without VPEs and No Ramp Rates

Practical applications of the MADRL algorithm on test systems I through IV are all
used to solve bi-objective problems. The proposed methodology has also been applied
to the tri-objective problem of test system V and yielded insightful results presented in
Table 9. Test system V deals with the complex interplay of operating costs, CO2, and SO2
emissions, which is ramp rate constrained. The proposed algorithm has achieved a total
operating cost of $568,091.2 (a startup cost of $4100.0 and a production cost of $563,991.2).
It has also resulted in CO2 and SO2 emissions of 82,261.0 lbs and 161,403.6 lbs, respectively.
Compared with existing methods such as [36], the proposed method has demonstrated
notable advantages across the three objectives. MADRL has achieved remarkable efficiency
for the cost criterion, with a daily cost of $568,091.2. EAD, NSGA-II, and NSGA-III resulted
in higher costs of $573,537.7, $572,768.1, and $568,827.9, respectively. For CO2 emissions, the
proposed method has also turned out to be competitive with emissions of 82,261.0 lbs, while
the emissions from the EAD, NSGA-II, and NSGA-III methods are 83,039.0 lbs, 82,250.1 lbs,
and 81,805.6 lbs, respectively. Furthermore, for SO2 emissions, MADRL has outperformed
with emissions of 161,403.6 lbs, while the EAD, NSGA-II, and NSGA-III methods render
159,106.7, 157,393.1, and 167,085.4 lbs of emissions, respectively. The results indicate the
competitive edge of MADRL over existing methods [36] like EAD, NSGA-II, and NSGA-III
in minimizing both environmental emissions and operating costs simultaneously. Its ability
to handle varying constraints and optimize multiple objectives positions it as a highly
efficient and promising methodology for addressing complex challenges in real-world
power systems. The findings demonstrate the robustness and adaptability of the MADRL
approach under various complexities.

Table 9. Optimal loads, reserve percentages, costs, and CO2 and SO2 emissions for test system V.

t
(Hour)

Optimal Loads (MW)
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Table 6. Optimal commitments, loads, and reserve percentages using MADRL for test system I. 𝒕 
(Hour) Commitments 

Optimal Loads (MW)  𝓻    %  𝒑𝒕𝟏 𝒑𝒕𝟐 𝒑𝒕𝟑 𝒑𝒕𝟒 𝒑𝒕𝟓 𝒑𝒕𝟔 𝒑𝒕𝟕 𝒑𝒕𝟖 𝒑𝒕𝟗 𝒑𝒕,𝟏𝟎 
1 1100000000 375.8 324.2 0 0 0 0 0 0 0 0 30.0 
2 1100000000 400.6 349.4 0 0 0 0 0 0 0 0 21.3 
3 1100100000 405.5 354.3 0 0 90.2 0 0 0 0 0 26.1 
4 1100100000 442.5 391.7 0 0 115.9 0 0 0 0 0 12.8 
5 1101100000 412.9 361.8 0 130.0 95.4 0 0 0 0 0 20.2 
6 1111100000 401.8 350.5 130.0 130.0 87.7 0 0 0 0 0 21.1 
7 1111100000 420.3 369.2 130.0 130.0 100.5 0 0 0 0 0 15.8 
8 1111100000 438.8 387.9 130.0 130.0 113.3 0 0 0 0 0 11.0 
9 1111111000 455.0 409.4 130.0 130.0 128.0 21.7 25.9 0 0 0 15.2 

10 1111111100 455.0 441.4 130.0 130.0 149.9 37.7 28.5 27.5 0 0 10.9 
11 1111111110 455.0 454.1 130.0 130.0 158.7 44.1 29.5 29.6 18.9 0 10.8 
12 1111111111 455.0 455.0 130.0 130.0 162.0 58.4 31.8 34.5 23.9 19.3 10.8 
13 1111111100 455.0 441.4 130.0 130.0 149.9 37.7 28.5 27.5 0 0 10.9 
14 1111111000 455.0 409.4 130.0 130.0 128.0 21.7 25.9 0 0 0 15.2 
15 1111100000 438.8 387.9 130.0 130.0 113.3 0 0 0 0 0 11.0 
16 1111100000 383.3 331.8 130.0 130.0 74.8 0 0 0 0 0 26.9 
17 1111100000 364.8 313.1 130.0 130.0 62.0 0 0 0 0 0 33.2 
18 1111100000 401.8 350.5 130.0 130.0 87.7 0 0 0 0 0 21.1 
19 1111100000 438.8 387.9 130.0 130.0 113.3 0 0 0 0 0 11.0 
20 1111111100 455.0 441.4 130.0 130.0 149.9 37.7 28.5 27.5 0 0 10.9 
21 1111111000 455.0 409.3 130.0 130.0 128.0 21.7 25.9 0 0 0 15.2 
22 1100111000 455.0 435.8 0 0 146.1 35.0 28.1 0 0 0 12.5 
23 1100100000 424.0 373.0 0 0 103.1 0 0 0 0 0 19.1 
24 1100000000 425.5 374.5 0 0 0 0 0 0 0 0 13.7 

Conversely, RCGWO was adopted in [34], which reported a daily operating cost of 
$568,655.3 and an emission of 43,759.7 lbs. Table 7 presents a detailed comparative analysis 
of outcomes obtained by the proposed MADRL methodology and the RCGWO [34] 
method. The hourly costs and emissions of both methods are also visualized in Figure 3. 
The slightly higher startup cost with the MADRL algorithm indicates an increase in the 
number of committed units. However, the efficiency of MADRL is demonstrated with a 
lower daily production cost of $563,990.6 compared with the cost of $565,115.3 using 
RCGWO. This economic efficiency positions MADRL as a promising solution. Further-
more, MADRL established a new environmental benchmark, emitting only 41,310.4 lbs of 
pollutants compared with RCGWO’s 43,759.7 lbs. Particularly noteworthy is the substan-
tial reduction in hourly emissions, emphasizing the environmental conscientiousness of 
MADRL alongside its economic prowess. Excelling in both economic viability and envi-
ronmental responsibility, the results underscore the holistic efficiency of MADRL. 

  

(%) Ct ($) ECO2
t (lbs) ESO2

t (lbs)
pt1 pt2 pt3 pt4 pt5 pt6 pt7 pt8 pt9 pt,10

1 357.9 342.1 0 0 0 0 0 0 0 0 30.0 13,766.8 1891.3 3466.5
2 382.1 367.9 0 0 0 0 0 0 0 0 21.3 14,618.2 2001.8 4087.5
3 391.8 378.3 0 0 79.9 0 0 0 0 0 26.1 17,910.0 2380.6 4703.5
4 434.2 423.4 0 0 92.4 0 0 0 0 0 12.8 18,757.8 2606.3 6063.5
5 400.3 387.3 130.0 0 82.4 0 0 0 0 0 20.2 20,801.1 2896.1 5460.1
6 391.3 377.8 130.0 121.2 79.7 0 0 0 0 0 21.1 23,711.7 3305.7 5884.6
7 410.0 397.7 130.0 127.1 85.2 0 0 0 0 0 15.8 23,462.3 3421.5 6532.2
8 430.0 418.9 130.0 130.0 91.1 0 0 0 0 0 11.0 24,335.3 3536.1 7223.2
9 442.3 432.1 130.0 130.0 94.8 45.9 25.0 0 0 0 15.2 28,285.2 4045.8 7944.8
10 455.0 455.0 130.0 130.0 117.2 59.7 27.7 25.4 0 0 10.9 30,273.5 4502.8 9026.7
11 455.0 455.0 130.0 130.0 127.3 65.8 34.0 29.9 23.1 0 10.8 32,210.0 4854.7 9420.4
12 455.0 455.0 130.0 130.0 134.9 70.5 38.9 33.2 26.5 25.9 10.8 34,188.2 5230.3 9752.3
13 455.0 455.0 130.0 130.0 117.2 59.7 27.7 25.4 0 0 10.9 30,213.5 4502.8 9026.7
14 442.3 432.1 130.0 130.0 94.8 45.9 25.0 0 0 0 15.2 27,425.2 4045.8 7944.8
15 430.0 418.9 130.0 130.0 91.1 0 0 0 0 0 11.0 24,335.3 3536.1 7223.2
16 374.1 359.4 126.1 115.7 74.6 0 0 0 0 0 26.9 21,723.1 3188.9 5289.7
17 357.4 341.6 120.9 110.4 69.7 0 0 0 0 0 33.2 20,855.7 3072.2 4734.0
18 391.3 377.8 130.0 121.2 79.7 0 0 0 0 0 21.1 22,591.7 3305.7 5884.6
19 430.0 418.9 130.0 130.0 91.1 0 0 0 0 0 11.0 24,335.3 3536.1 7223.2
20 455.0 455.0 130.0 130.0 117.2 59.7 27.7 25.4 0 0 10.9 30,703.5 4502.8 9026.7
21 442.3 432.1 130.0 130.0 94.8 45.9 25.0 0 0 0 15.2 27,425.2 4045.8 7944.8
22 455.0 455.0 0 0 109.9 55.1 25.0 0 0 0 12.5 22,808.6 3245.9 7418.8
23 413.0 400.9 0 0 86.1 0 0 0 0 0 19.1 17,883.4 2493.2 5360.9
24 406.3 393.7 0 0 0 0 0 0 0 0 13.7 15,470.6 2112.7 4760.9

Total 568,091.2 82,261.0 161,403.6

4.2.6. Test System VI: Ramp Rates Constrained Tri-Objective Problem

Test system VI is a tri-objective problem like test system V, except it incorporates ramp
rate constraints. The proposed algorithm renders a total operating cost of $568,186.3, CO2
emissions of 82,373.9 lbs, and SO2 emissions of 161,196.4 lbs. A direct comparative analysis
is impossible without existing literature on this specific configuration. However, the results
offer valuable insights compared to the tri-objective problem without ramp rate constraints.
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4.2.7. Large Scale Test Systems: Test Systems VII–XXVI

Leveraging the insights acquired from the 10-unit test systems I-VI, the scalability of
the proposed algorithm has been further explored in larger-scale problems consisting of
20, 40, 60, 80, and 100 units. The larger test systems are magnified versions of the initial
four test systems. To ensure consistency, the load demands are adjusted proportionally to
accommodate the increased system size. Thus, each larger test system has four distinct
configurations, corresponding to test systems I-IV. Table 10 summarizes the total daily
operating costs and emissions of all the bi-objective problems. A noticeable rise in cost
and emissions can be observed when both ramp rates and VPEs are introduced in each
larger-scale test system.

Table 10. Results of bi-objective problems with varying cost and emissions functions using MADRL.

Test
Systems Units Objective

Total Cost and Emissions

No Ramp
Rates, No VPEs

Ramp Rates,
No VPEs

No Ramp
Rates, VPEs

Ramp Rates,
VPEs

VII–X 20
Cost ($) 1,136,746.4 1,135,081.0 1,179,295.2 1,184,760.6

Emission (lbs) 84,786.0 85,731.0 93,047.3 89,305.9

XI–XIV 40
Cost ($) 2,283,893.8 2,280,510.1 2,371,344.6 2,372,688.8

Emission (lbs) 173,154.7 175,069.2 189,596.4 182,460.3

XV–XVIII 60
Cost ($) 3,411,158.6 3,406,502.8 3,527,471.5 3,554,833.5

Emission (lbs) 257,715.8 260,352.8 288,407.1 276,125.6

XIX–XXII 80
Cost ($) 4,558,451.2 4,551,960.6 4,710,657.6 4,734,809.3

Emission (lbs) 346,550.7 350,220.1 385,657.1 366,742.4

XXIII–XXVI 100
Cost ($) 5,704,920.7 5,696,950.6 5,901,065.7 5,901,065.7

Emission (lbs) 434,073.9 438,576.0 481,106.2 481,106.2

4.3. Training Convergence

A learning curve is a graphical representation that illustrates the performance of
an agent(s) over the training episodes. The training converges when the learning curve
stabilizes or forms a plateau. Each of the trained models has been examined for conver-
gence. For instance, Figure 6 illustrates the evolution of the normalized values for the
tri-objective problem corresponding to test system V. The plot clearly shows that the value
of the tri-objective function stabilizes for episodes over 800. It further reveals that the
algorithm consistently achieves the minimum tri-objective value for episodes over 900,
indicating training convergence. Moreover, the figure depicts correlations among the sepa-
rate objectives (cost, CO2, and SO2). A clear positive correlation between CO2 emissions
and economic costs across the training episodes is visible. Conversely, SO2 emissions are
inversely related to costs and CO2 emissions. This underscores the intricate trade-offs
between the two types of emissions, where minimizing one type of emission increases
the other.
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5. Concluding Remarks

This article introduces a novel MADRL algorithm designed for solving the MOPS
problems, which integrates economic costs and several types of environmental emissions.
The formulation includes bi-objective scenarios as well as tri-objective problems involving
cost, CO2, and SO2 emissions. The effectiveness of the algorithm is empirically demon-
strated across varying scales and characteristics of power systems. The results revealed that
MADRL performs better than established methods such as TLBO, RCGWO, EAD, NSGA-II,
and NSGA-III. The algorithm’s successful implementation in 20- to 100-unit systems with
varying complexities highlights its scalability in handling more extensive power system
scheduling challenges while ensuring efficient and eco-friendly solutions. The proposed
algorithm offers flexibility as it is not necessarily restricted to a limited planning horizon
and a fixed number of generating units. The simulation environment is also designed to
be model agnostic rather than tailored to a specific RL model. This adaptability allows
researchers and practitioners to train and explore diverse types of MADRL models for
solving power scheduling. Our proposed algorithm’s current focus on thermal generating
units marks the initial step toward a more sustainable energy future. The algorithm’s
potential to integrate renewable energy sources such as solar, wind, and hydropower opens
the door to eco-conscious energy management. Additionally, while the proposed algorithm
adeptly handles bi- and tri-objective power scheduling problems, the complexity of modern
power systems often presents multifaceted objectives. Therefore, the logical progression
for this research lies in further development to accommodate more than three objectives.
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Nomenclature
Indices
T: Number of periods in a scheduling horizon.
n: Number of power-generating units.
m: Number of types of emissions
T = {1, 2, . . . , T}: Indices of all periods, t ∈ T .
T = {1, 2, . . . , n}: Indices of all units, i ∈ T.
K = {0, 1, . . . , m}: Indices of all objectives, k ∈ K
Supply and Demand Profiles
pmax

i , pmin
i : Maximum, minimum capacity of unit i (MW).

pup
i , pdown

i : Maximum ramp up, ramp down unit i (MW).
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

up
i ,

Systems 2024, 12, 106 5 of 29 
 

 

learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 = ⟦           𝓉        > 0⟧𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 

ti: Operating (online/offline) duration of unit i at period t (hour).
dt: Demand at period t (MW).

Systems 2024, 12, 106 7 of 29 
 

 

𝛷 𝑝 , 𝑝 … , 𝑝 = ⟦𝓉 > 0⟧𝜔 𝒞 𝑝 + ⟦𝓉 > 0⟧𝜔 𝜂 ℰ 𝑝  (8)

where 𝜔   represents the weight associated with objective 𝑘  such that 𝜔 ≥ 0  and ∑ 𝜔 = 1. The parameter 𝜂  is the cost-to-emission conversion factor for unit 𝑖 corre-
sponding to emission type 𝑘. This formulation not only allows the representation of emis-
sions as continuous variables but also maintains their relative importance within the inte-
grated production function.  

Second, the startup and shutdown costs and emissions are aggregated separately. 
Consequently, the objective function of the MOPS consists of three separate components, 
which can be expressed as follows: 

𝛷 = 𝛷 𝑝 , 𝑝 … , 𝑝 , 𝒞 , , ℰ ,  (9)

where 𝒞 , = ∑ ⟦𝓉 > 0⟧ 1 − 𝓉𝑡−1,𝑖 < 0 𝒞 + 1 − ⟦𝓉 > 0⟧ 𝓉𝑡−1,𝑖 < 0 𝒞 ; ∀𝑡  and ℰ , = ∑ ⟦𝓉 > 0⟧ 1 − 𝓉𝑡−1,𝑖 < 0 ℰ + 1 − ⟦𝓉 > 0⟧ 𝓉𝑡−1,𝑖 < 0 ℰ ; ∀𝑡.  
In contrast to existing approaches, the objective function in Equation (9) is not intrin-

sically converted to a single-objective function. Rather, it consists of three components: the 
transformed production value, the cost of startup and shutdown, and the emissions dur-
ing startup and shutdown. This innovative formulation is designed to tackle the limita-
tions of traditional methods, offering a more resilient and flexible solution to the simulta-
neous optimization of cost and emissions. For the sake of simplicity, let us denote each 
objective by 𝒪  𝑘 = 0,1, . . 𝑚 . The operating cost function in Equation (1) and the operat-
ing emission function in Equation (5) specific to each objective can be written as follows:  𝒪 = ⟦𝓉 > 0⟧𝒪 𝑝 + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒪 + ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒪  (10)

where 𝒪 𝑝 , 𝒪 , and 𝒪  are the production, startup, and shutdown values corre-
sponding to objective 𝑘, respectively.  

2.3.1. Constraints 
The MOPS objective function in Equation (9) is optimized subject to Equations (11)–

(15).  

Power production capacities: ⟦𝓉 > 0⟧𝑝 ≤ 𝑝 ≤ ⟦𝓉 > 0⟧𝑝 ; ∀𝑡, 𝑖 (11)

Maximum ramp rates: 
𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , − 𝑝 ≤ 𝑝≤ 𝓉 , > 0 ⟦𝓉 > 0⟧ 𝑝 , + 𝑝 ; ∀𝑡, 𝑖 (12)

Minimum operating durations: 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 and 𝓉 ≥ 𝓉 ; ∀𝑡, 𝑖 (13)

Supply and demand balance: ⟦𝓉 > 0⟧𝑝 = 𝑑 ; ∀𝑡 (14)

Minimum reserve constraint: ⟦𝓉 > 0⟧𝑝 ≥ 1 + 𝓇    𝑑 ; ∀𝑡 (15)

2.3.2. Cost-to-Emission Conversion Factors 
The MOPS objective function in Equation (9) requires estimating the cost-to-emission 

scale for each unit, 𝜂  ($/lbs). For this purpose, a custom function is introduced using fi-
nite difference gradients as follows: 
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learning and reducing model training time, the simulation environment may signifi-
cantly enhance the efficiency of the entire optimization process. 

4. The simulation environment is not specifically tailored to train a specific RL model 
but is model agnostic. This adaptability allows researchers and practitioners to train 
and explore diverse types of RL models for solving power scheduling.  

5. Unlike traditional models with exponential dimensionality (i.e., 𝒪(2 ) for 𝑛 gener-
ating units), the proposed algorithm has linear dimensionality (i.e., 𝒪(2𝑛) ). This 
characteristic underscores its scalability and better performance to handle large-scale 
problems compared to existing methods. 

6. The algorithm’s programming code has been verified by Code Ocean for quality and 
computational reproducibility (https://doi.org/10.24433/CO.9235622.v1) and pub-
lished as an open-source software package [48]. This initiative may facilitate results 
replication and foster a spirit of experimentation and further extensions within the 
research community. 
The remainder of this article is organized as follows: Section 2 describes the descrip-

tion and formulation of the MOPS objective problem. Section 3 briefly outlines the proce-
dural framework of the proposed optimization methodology. Section 4 presents practical 
applications and results, and Section 5 presents the concluding remarks. 

2. MOPS Problem Formulation 
Consider a power scheduling problem consisting of 𝑛 thermal generating units, all 

subject to optimization, over a planning horizon with 𝑇 periods. Given operating dura-
tions (𝓉 ∈ ℝ; ∀𝑖) at each period 𝑡, two decision variables are associated with each unit. 
The first is a unit commitment (UC), indicating whether a unit is committed (𝓉 > 0) or 
not (𝓉 < 0), and the second is the power output (𝑝 , ∀𝑡, 𝑖). 

2.1. Cost Objective Function 
The operating cost ($/period) of each unit 𝑖 during each period 𝑡 encompasses three 

components: production cost 𝒞 (𝑝 ) , startup cost 𝒞  , and shutdown cost 𝑐   [49]. 
Considering operating durations and transitions between online and offline statuses, its 
comprehensive computation is specified as follows:  𝒞 =          ⟦            𝓉 > 0              ⟧                          𝒞 (𝑝 ) + ⟦𝓉 > 0⟧ 𝓉 , < 0 𝒞+ ⟦𝓉 < 0⟧ 𝓉 , > 0 𝒞 ; ∀𝑡, 𝑖. (1)

The production cost 𝒞 (𝑝 ) is typically represented by a quadratic function of the 
power output 𝑝  . Unlike the usual model-based optimization methods, the proposed 
MADRL approach does not necessitate approximating production costs with smooth and 
convex functions that disregard VPEs. Consequently, the production cost function incor-
porates a sinusoidal term to account for VPEs [50], which can be written as follows:  𝒞 (𝑝 ) = 𝛼 𝑝 + 𝛽 𝑝 + 𝛿 + |𝜌 sin [𝜑 (𝑝 − 𝑝  )] |; ∀𝑡, 𝑖. (2)

The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 

𝒞 = 𝒞 = 𝒞 . (3)

2.2. Emission Objective Function 
As mentioned earlier, electricity generation is the major contributor to GHGs and 

environmental pollutants. Specifically, the combustion of carbon-containing fossil fuels, 
such as coal, oil, or natural gas, results in the production of CO2. CO2 is a major contributor 
to climate change and/or global warming. The combustion of fuels containing sulfur com-
pounds also releases SO2. SO2 is a precursor to acid rain and can have detrimental effects 
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The objective of ECD is to minimize the total operating costs over the entire planning 
horizon, defined as follows: 
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As mentioned earlier, electricity generation is the major contributor to GHGs and 
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