
Citation: Zeigler, B.P. Discrete Event

Systems Theory for Fast Stochastic

Simulation via Tree Expansion.

Systems 2024, 12, 80. https://doi.org/

10.3390/systems12030080

Academic Editors: Gianfranco Minati,

Alessandro Giuliani and Andrea Roli

Received: 17 January 2024

Revised: 22 February 2024

Accepted: 27 February 2024

Published: 2 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Discrete Event Systems Theory for Fast Stochastic Simulation via
Tree Expansion
Bernard P. Zeigler 1,2

1 Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA;
zeigler@ece.arizona.edu

2 RTSync Corp., Chandler, AZ 85226, USA

Abstract: Paratemporal methods based on tree expansion have proven to be effective in efficiently
generating the trajectories of stochastic systems. However, combinatorial explosion of branching
arising from multiple choice points presents a major hurdle that must be overcome to implement such
techniques. In this paper, we tackle this scalability problem by developing a systems theory-based
framework covering both conventional and proposed tree expansion algorithms for speeding up
discrete event system stochastic simulations while preserving the desired accuracy. An example is
discussed to illustrate the tree expansion framework in which a discrete event system specification
(DEVS) Markov stochastic model takes the form of a tree isomorphic to a free monoid over the
branching alphabet. We derive the computation times for baseline, non-merging, and merging tree
expansion algorithms to compute the distribution of output values at any given depth. The results
show the remarkable reduction from exponential to polynomial dependence on depth effectuated
by node merging. We relate these results to the similarly reduced computation time of binomial
coefficients underlying Pascal’s triangle. Finally, we discuss the application of tree expansion to
estimating temporal distributions in stochastic simulations involving serial and parallel compositions
with potential real-world use cases.

Keywords: modeling and simulation; paratemporal methods; tree expansion; systems theory;
stochastic simulation; computation complexity; temporal distributions; serial and parallel
compositions; computation complexity; temporal distributions; serial and parallel compositions

1. Introduction

Stochastic simulations require large amounts of time to generate enough trajectories
to attain statistical significance and estimate desired performance indices with satisfactory
accuracy [1–3]. Complex problems such as climate change mitigation, network design,
and command and control decision support require search spaces with deep uncertainty
arising from inadequate or incomplete information about the system and the outcomes of
interest [4–10]. Furthermore, simulation models for system engineering analyses present
challenges to today’s computational technologies. First, questions addressed at the Systems
of Systems (SoS) level require large detailed models to provide sufficient representation
of relevant system-to-system interactions of stochastic nature. Second, they also require
multiple executions with multiple random seed state initiations to cover the wide range
of configurations necessary to obtain statistically significant measurement of performance
outcome distributions.

Surrogate models, i.e., simplified models which drastically reduce computation while
providing useful guidance, have successfully helped find global optima of computationally
expensive optimization problems for real-world applications [11–16]. The methods using
such models are often referred to as multifidelity/multilevel/variable-fidelity optimization.
We note that the term fidelity is often employed to refer to ambiguous combinations of
resolution and accuracy [17,18]. A generic framework was defined [19] in which models

Systems 2024, 12, 80. https://doi.org/10.3390/systems12030080 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems12030080
https://doi.org/10.3390/systems12030080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://doi.org/10.3390/systems12030080
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems12030080?type=check_update&version=2

Systems 2024, 12, 80 2 of 16

of different accuracy and computation costs are selected algorithmically to reduce the
overall computational cost while preserving the accuracy of the simulation analysis. While
such frameworks exist, they do not by themselves provide the surrogate models or more
generally methods for speeding up the simulation of stochastic systems to support more
timely systems analysis and optimization [20–25].

The parallel execution of simulations offers another avenue for the speedup of complex
simulations. Unfortunately, exploitation of the parallelization of simulation models for
generic system engineering analyses presents challenges to today’s computational tech-
nologies [26,27]. Although technological advances at the hardware level will enable more
and faster processors to handle such simulations, with cloud services adding access to
additional resources, such computational support is destined to reach its limit. Therefore,
the imperative remains to formulate parallelization in more model-centric ways. Paratem-
poral and cloning simulation techniques have been introduced that increase opportunities
for parallelism [28,29].They also exploit abstractions that recognize the effect of random
draws on system evolution as constituting choice points with opportunities for reuse [30].
However, scalability, the ability to overcome the combinatorial explosion of branching
arising from multiple choice points, presents a major hurdle that must be overcome to
implement such techniques.

Nutaro et al. [31] examined the use of tree expansion methods in lieu of the conven-
tional sampling of outcomes when working with the uncertainty inherent in stochastic
simulations. Conventional techniques simulate a large number of randomly sampled trajec-
tories from start to finish in one-at-a-time fashion. As illustrated on the left side of Figure 1,
such trajectories can be viewed as paths from an initial state of the stochastic system (the
root of the tree) to one of the terminal states, leaves of the tree, in a manner consistent
with random sampling. The advantage of tree construction is that states of the model that
have been reached at any point—nodes of the tree—can be cloned for reuse, thus avoiding
duplication. Branches in the tree from a state correspond to draws of the random variable
whose values determine the subsequent course of the model from that state.

Systems 2023, 11, x FOR PEER REVIEW 2 of 16

optimization. We note that the term fidelity is often employed to refer to ambiguous com-
binations of resolution and accuracy [17,18]. A generic framework was defined [19] in
which models of different accuracy and computation costs are selected algorithmically to
reduce the overall computational cost while preserving the accuracy of the simulation
analysis. While such frameworks exist, they do not by themselves provide the surrogate
models or more generally methods for speeding up the simulation of stochastic systems
to support more timely systems analysis and optimization [20–25].

The parallel execution of simulations offers another avenue for the speedup of com-
plex simulations. Unfortunately, exploitation of the parallelization of simulation models
for generic system engineering analyses presents challenges to today’s computational
technologies [26,27]. Although technological advances at the hardware level will enable
more and faster processors to handle such simulations, with cloud services adding access
to additional resources, such computational support is destined to reach its limit. There-
fore, the imperative remains to formulate parallelization in more model-centric ways. Par-
atemporal and cloning simulation techniques have been introduced that increase oppor-
tunities for parallelism [28,29].They also exploit abstractions that recognize the effect of
random draws on system evolution as constituting choice points with opportunities for
reuse [30]. However, scalability, the ability to overcome the combinatorial explosion of
branching arising from multiple choice points, presents a major hurdle that must be over-
come to implement such techniques.

Nutaro et al. [31] examined the use of tree expansion methods in lieu of the conven-
tional sampling of outcomes when working with the uncertainty inherent in stochastic
simulations. Conventional techniques simulate a large number of randomly sampled tra-
jectories from start to finish in one-at-a-time fashion. As illustrated on the left side of Fig-
ure 1, such trajectories can be viewed as paths from an initial state of the stochastic system
(the root of the tree) to one of the terminal states, leaves of the tree, in a manner consistent
with random sampling. The advantage of tree construction is that states of the model that
have been reached at any point—nodes of the tree—can be cloned for reuse, thus avoiding
duplication. Branches in the tree from a state correspond to draws of the random variable
whose values determine the subsequent course of the model from that state.

In particular, tree expansion with breadth-first traversal can significantly speed up
the computation required to generate the same sampling outcomes as the one-at-a-time
technique [31]. However, the speedup is limited by the exponential growth of the tree with
increasing depth. Zeigler et al. [32] introduced merging of states based on homomorphism
concepts to mitigate against such growth. As illustrated on the right-hand side of Figure
1, they showed that such merging can reduce tree growth from exponential to polynomial
in depth, thus significantly speeding up computation over that possible with cloning
alone.

Figure 1. Tree expansion generation of state trajectories (left) and the effect of node merging on tree
growth.

In particular, tree expansion with breadth-first traversal can significantly speed up
the computation required to generate the same sampling outcomes as the one-at-a-time
technique [31]. However, the speedup is limited by the exponential growth of the tree with
increasing depth. Zeigler et al. [32] introduced merging of states based on homomorphism
concepts to mitigate against such growth. As illustrated on the right-hand side of Figure 1,
they showed that such merging can reduce tree growth from exponential to polynomial in
depth, thus significantly speeding up computation over that possible with cloning alone.

Parallelizations of such simulations have been developed in which simulations are run
until a stochastic decision point is reached. At this point, the current simulation states and

Systems 2024, 12, 80 3 of 16

probabilities of branching are saved. Simulations are then spawned for possible branchings
until successive downstream branching points are reached, and the process is repeated
until a satisfactory level of confidence in outcome distribution has been attained. Besides
being efficient in exploration, this “paratemporal” approach is extremely parallelizable for
great efficiency in execution on multiple processors.

However, although paratemporal simulations with a small number of branchings
and state saves have been demonstrated to be effective, simple implementations of such
solutions do not scale as the number of branches increases rapidly for large SoS of cur-
rent interest.

In this paper, we tackle the scalability problem by first developing a formal framework
covering conventional and proposed tree expansion algorithms for speeding up stochastic
simulations while preserving the desired accuracy. Based on the theory of modeling and
simulation, we review the definition of a discrete event stochastic model as an instance of a
timed non-deterministic model. Then, we show how a reduced deterministic model with
random inputs can be derived from such a stochastic model that represents the results of
cloning state and transition information at branching points. The reduced model is shown
to be a homomorphic image of the original based on a correspondence restricted to non-
deterministic states and multi-step deterministic sequences mapped into corresponding
single-step sequences. An example is discussed to illustrate the tree expansion framework
in which the stochastic model takes the form of a binary tree isomorphic to the free monoid,
{0,1}*. At each node, branching occurs with equal probability to nodes at the next level. A
computation time of 1 unit is taken to transition from a node to its successor. The output
at a state is the number of 1′s in its label. We derive the computation times for baseline,
non-merging, and merging tree expansion algorithms to compute the distribution of output
values at any given depth. The results show the remarkable reduction from exponential
to polynomial dependence on depth effectuated by node merging. We relate these results
to the reduced computation of binomial coefficients underlying Pascal’s triangle and
discuss the application of tree expansion to estimating temporal distributions in stochastic
simulations involving serial and parallel compositions. Finally, we mention use cases
estimating times to completion for complex processes and potential real-world applications.

2. Formal Framework for Tree Expansion for Stochastic Simulation

We employ the theory of modeling and simulation [33], based on systems theory [34],
to develop a formal framework based on Discrete Event Systems Specification (DEVS) for
framing the representations needed for paratemporal simulations. As in Figure 2, to capture
the effect of cloning on the source stochastic simulation, we derive other representations
including concepts of non-deterministic models and semigroup monoid algebras.

2.1. Definitions

We review some definitions to proceed.

Definition 1. A timed non-deterministic model is defined by M = <S, δ, ta>, where δ ⊆ S × S
is the non-deterministic transition relation and ta: δ→R∞

0 is the time advance function.

We say that M is as follows:

• Not defined at a state, if there is no transition pair with the state as its left member;
• Non-deterministic at a state, if the state is a left member of two transition pairs;
• Deterministic at a state when there is exactly one outbound transition (a left member of

exactly one transition pair).

Remark: Formulating a transition system in relational form as in Definition 1 allows
us to include both stochastic and deterministic discrete event systems within a common
framework as follows:

Systems 2024, 12, 80 4 of 16

Systems 2023, 11, x FOR PEER REVIEW 4 of 16

Remark: Formulating a transition system in relational form as in Definition 1 allows
us to include both stochastic and deterministic discrete event systems within a common
framework as follows:

Figure 2. DEVS-based framework for framing the representations needed for paratemporal simula-
tions.

A stochastic model is a timed non-deterministic model defined in all of its states.
A deterministic model is a timed non-deterministic model (Figure 3) deterministic in

all its states.
Clearly, deterministic models are a subset of stochastic models.
In application to paratemporal simulation, a non-deterministic state is known as a

random draw state. We make this identification in a later section after introducing DEVS
Markov models.

Figure 3. Timed non-deterministic model.

Definition 2. A state trajectory connecting a pair of states, s and s’, is a sequence s1, s2,…, sn which
starts with s and ends with s’ and satisfies the transition relation, i.e., where s1 = s, sn = s’ and
δ(si,si+1) for i = 1,…,n−1.
Definition 3. A deterministic state trajectory is a state trajectory containing only deterministic
states. The time to traverse a deterministic state trajectory is the sum of the transition times asso-
ciated with the successive pairs of states in its sequence.

Figure 2. DEVS-based framework for framing the representations needed for paratemporal simula-
tions.

A stochastic model is a timed non-deterministic model defined in all of its states.
A deterministic model is a timed non-deterministic model (Figure 3) deterministic in

all its states.

Systems 2023, 11, x FOR PEER REVIEW 4 of 16

Remark: Formulating a transition system in relational form as in Definition 1 allows
us to include both stochastic and deterministic discrete event systems within a common
framework as follows:

Figure 2. DEVS-based framework for framing the representations needed for paratemporal simula-
tions.

A stochastic model is a timed non-deterministic model defined in all of its states.
A deterministic model is a timed non-deterministic model (Figure 3) deterministic in

all its states.
Clearly, deterministic models are a subset of stochastic models.
In application to paratemporal simulation, a non-deterministic state is known as a

random draw state. We make this identification in a later section after introducing DEVS
Markov models.

Figure 3. Timed non-deterministic model.

Definition 2. A state trajectory connecting a pair of states, s and s’, is a sequence s1, s2,…, sn which
starts with s and ends with s’ and satisfies the transition relation, i.e., where s1 = s, sn = s’ and
δ(si,si+1) for i = 1,…,n−1.
Definition 3. A deterministic state trajectory is a state trajectory containing only deterministic
states. The time to traverse a deterministic state trajectory is the sum of the transition times asso-
ciated with the successive pairs of states in its sequence.

Figure 3. Timed non-deterministic model.

Clearly, deterministic models are a subset of stochastic models.
In application to paratemporal simulation, a non-deterministic state is known as a

random draw state. We make this identification in a later section after introducing DEVS
Markov models.

Definition 2. A state trajectory connecting a pair of states, s and s’, is a sequence s1, s2,. . ., sn
which starts with s and ends with s’ and satisfies the transition relation, i.e., where s1 = s, sn = s’
and δ(si,si+1) for i = 1,. . .,n−1.

Definition 3. A deterministic state trajectory is a state trajectory containing only deterministic
states. The time to traverse a deterministic state trajectory is the sum of the transition times
associated with the successive pairs of states in its sequence.

We can remove deterministic states from a stochastic model and replace multi-step
deterministic trajectories with single-step trajectories to represent the effect of cloning
simulations. Given a stochastic model, M = <S, δ, ta>, we define a reduced version that
contracts deterministic sequences into single-step transitions:

Definition 4. The clone-reduced version of stochastic model M = <S, δ, ta> is

M’ = <S’, δ’, ta’>

Systems 2024, 12, 80 5 of 16

where

S’⊆ S is the subset of non-deterministic states of M
δ’⊆ S’ × S’ = {(s,s’)| if there is a deterministic state trajectory connecting s and s’}
and ta’: δ’→R0

∞

where

ta(s, s′)
= ta(s, s′) i f both s and s′ are non − deterministicstates
= the traversa l time o f the deterministic state trajectory connecting s and s′

We can prove the following.

2.2. Assertion 1

The reduced model is a homomorphic image of the original based on a correspondence
restricted to non-deterministic states and multi-step deterministic sequences mapped into
corresponding single-step sequences (Figure 4).

Systems 2023, 11, x FOR PEER REVIEW 5 of 16

We can remove deterministic states from a stochastic model and replace multi-step
deterministic trajectories with single-step trajectories to represent the effect of cloning sim-
ulations. Given a stochastic model, M = <S, δ, ta>, we define a reduced version that con-
tracts deterministic sequences into single-step transitions:
Definition 4. The clone-reduced version of stochastic model M = <S, δ, ta> is

M’ = <S’, δ’, ta’>

where
S’ ⊆ S is the subset of non-deterministic states of M
δ’ ⊆ S’ × S’ = {(s,s’)| if there is a deterministic state trajectory connecting s and s’}
and ta’: δ’→R0∞

where 𝑡𝑎(𝑠, 𝑠) 𝑡𝑎(𝑠, 𝑠) 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑠 𝑎𝑛𝑑 𝑠 𝑎𝑟𝑒 𝑛𝑜𝑛 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑠𝑡𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑠𝑡𝑎𝑡𝑒 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑠 𝑎𝑛𝑑 𝑠′
We can prove the following.

2.2. Assertion 1
The reduced model is a homomorphic image of the original based on a correspond-

ence restricted to non-deterministic states and multi-step deterministic sequences mapped
into corresponding single-step sequences (Figure 4).

We note that the transversal time from any non-deterministic state to any other is
preserved in the reduced version. However, the advantage of constructing this represen-
tation is that the computation (in simulation) of a multi-step sequence can be replaced by
a look up of a table (cloning) when the branching is encountered subsequently.

Figure 4. Mapping of timed non-deterministic model to reduced version.

Definition 5. A stochastic input-free DEVS has the following structure [33]:

MST = <Y,S, Gint, Pint, λ, ta>

where Y, S, λ, and ta have the usual definitions [35].
Here Gint: S→2S is a function that assigns a collection of sets Gint (s) ⊆ 2S to every state

s.
The probability that the internal transition carries a state s to a set G ∈ Gint (s) is given

by a function Pint (s,G).
For S finite, we let 𝑃 (𝑠, 𝐺) 𝑃𝑟(𝑠, 𝑠’) ∈

Figure 4. Mapping of timed non-deterministic model to reduced version.

We note that the transversal time from any non-deterministic state to any other is pre-
served in the reduced version. However, the advantage of constructing this representation
is that the computation (in simulation) of a multi-step sequence can be replaced by a look
up of a table (cloning) when the branching is encountered subsequently.

Definition 5. A stochastic input-free DEVS has the following structure [33]:

MST= <Y,S, Gint, Pint, λ, ta>

where Y, S, λ, and ta have the usual definitions [35].
Here Gint: S→2S is a function that assigns a collection of sets Gint (s) ⊆ 2S to every

state s.
The probability that the internal transition carries a state s to a set G ∈ Gint (s) is given

by a function Pint (s,G).
For S finite, we let

Pint(s, G) = ∑
s_∈G

Pr
(
s, s′

)
where Pr(s, s’) is the probability of transitioning from s to s’.

As defined in [33], the key to formalizing a semi-Markov model in DEVS is the
definition of two structures. One corresponds to the usual matrix of probabilities for state
transitions. The other assigns to each transition pair a probability density distribution over
time. The choice of the next phase in the DEVS is made first by sampling the first matrix.
Then, the transition from the current phase to the just-selected next phase is given a time of
transition by sampling the distribution associated with that transition. More formally, this
is formulated by the following:

Systems 2024, 12, 80 6 of 16

Definition 6. A pair of structures, probability transition structure, PTS = <S, Pr>, and
time transition structure, TTS = <S, τ>, gives rise to an input-free DEVS Markov model [33].
MDEVS = <Y,SDEVS, δint, λ, ta>, where SDEV S = S × [0, 1]S × [0, 1]S, with typical element (s,
γ1,γ2) with γi: S → [0, 1], i = 1, 2, where,

δint: SDEV S→SDEV S is given by
δint (s, γ1,γ2) = s’ = (SelectPhase Gint (s, γ1), γ1′, γ2′)
and ta: SDEV S→R+

0,∞ is given by
ta(s,γ1,γ2) = SelectSigma TT S (s, s’,γ2)
and γi’ = Γ(γi), i = 1, 2.

The input-free DEVS Markov model is introduced as a concrete implementation for
non-deterministic models. On the one hand, such models are constructible in computational
form in such environments as MS4 Me [36]. On the other hand, we can explicitly define
how such models give rise to non-deterministic models as in the following:

2.3. Assertion 2

An input-free DEVS Markov model MDEV S = <Y,SDEV S, δint, λ, ta> specifies a non-
deterministic model M = <S’, δ’, ta’>, where S’= SDEVS, δ’ ⊆ S’ × S’ is given by (s1,s2) is in
δ’ if, and only if, there exists γ1 in [0, 1],γ2 in [0, 1], such that, δint (s1, γ1,γ2) = s2, and ta’:
δ→R∞

0 is given by ta’(s1,γ1,γ2) for the same pair (γ1,γ2) that placed (s1,s2) in δ’.
Essentially, this assertion shows how a transition from state s1 to s2 is possible if there

is a random selection of s2 from the set of possible next states of s1 (as determined by the
seed γ1), and the time for such a transition is given by a sampling from the distribution for
traversal times determined by the seed γ2.

3. Illustrative Example

To create the models needed to illustrate the framework of Figure 1, consider a binary
tree of depth 3 with root labelled by the empty string and each node labelled by a string of
0’s and 1’s corresponding to the path to it from the root. At each node, a choice is made to
select the successor to which to transition with equal probability. A computation time of
1 unit is taken to transition from a node to its successor. The output at a state is the number
of 1’s in its label. We write the formal representation as a DEVS Markov model as follows:

MDEV S = <Y, SDEV S, δint, λ, ta>

Y = {0, 1, 2, 3}

S = {0, 1, 00, 01, 10, 11, 000, 001,. . .111} (nodes in a binary tree of depth 3 labelled by
strings corresponding to the path accessing them). SDEV S is the set of pairs of the form (s,
γ) where s is a member of S (a node) and γ is a state of an ideal random number generator,
such that Γ (γ) is the next state of the random generator (for simplicity, the time advance
will be constant so an additional random variable is not needed).

Gint (s) = {s0, s1}, the subset of nodes that are immediate successors of node s in the
binary tree and

s’ = δint (s, γ) = (SelectPhase Gint (s, γ), Γ(γ))

where SelectPhase Gint (s, γ) uses the random number state γ to select the successor node
from Gint (s) with equal probability.

ta(s,γ) = 1

And λ(s) is the number of 1’s in the label of s.
The desired outcome of the simulation is the average of the values of the nodes.

Systems 2024, 12, 80 7 of 16

To illustrate the applicability of homomorphism and the minimal realization concept,
we will show how it provides insight into the merging of states for tree expansion.

We will compare the following three algorithms:

1. The baseline algorithm generates all trajectories one at a time, accumulates the number
of 1’s for each, and averages the results.

2. The tree expansion algorithm generates all nodes in breadth-first traversal without
repetition, obtaining the same information and performing the same average.

3. The node merging algorithm based on the minimal realization modifies tree expansion
by maintaining only the representatives of equivalent classes as successive levels are
generated while maintaining the size of the classes as they are developed. The values
of the classes are summed weighted by the respective sizes to obtain the desired
average.

The node merging Algorithm 1 is sketched in the following:

Algorithm 1. Node merging tree expansion algorithm.

A node n contains data {s, num) where s is a string in {0,1}* and num is the number of nodes
equivalentTo n.
The root node = (λ,1) //λ is the empty string
is the empty string
Initiation: Current node = root node; newLeaves = {}, oldLeaves = {(λ,1)}
Termination: depth = D
Output: For each i = 1,2,. . .,D the number of strings having number of ones equal to i.
Depth = 0

Recursive step:
While (depth < D)
For each node, n = (s, num) in leaves{
For each branch, b in {0, 1}{
Create child, c = {sb, num) // extend parent’s string and inherit parent’s number of represented
equivalents
If c is Equivalent To some node, m = {t, num’) in newLeaves,
Then set m = {t, num’+num)
Else add c to newLeaves.
}
depth = depth+1
oldLeaves = newLeaves,
newLeaves = {}
}
n = (s, num) isEquivalentTo m = {t, num’) if, and only if, s and t have the same number of ones
//Note that only the leaves at each level (including at the final depth) are kept as the expansion
advances as required by the required output.

To analyze this example, we will start with the semigroup monoid system (as in the
Appendix A) unfolded to the depth = 4, as shown in Figure 5. The leaves of the tree are
labelled with the final states listed above, and traversing the tree from root to leaves reveals
16 branching routes. We will proceed to obtain various computation times generalized to
the case of a tree of arbitrary depth n, as presented in Table 1. The computation time for the
baseline algorithm is computed as the number of branching routes (2n) times the depth (n)
taking unit computation time per step. The smallest number of computations when reusing
earlier nodes is to expand the tree starting at the root and proceeding to expand new leaves
successively at each level in breadth-first traversal. This requires 2(2n−1) computations, as
shown in the table. Therefore, the reduction in computation time is n2n/2(2n−1) which is
of order O(n).

Systems 2024, 12, 80 8 of 16

Systems 2023, 11, x FOR PEER REVIEW 8 of 16

veals 16 branching routes. We will proceed to obtain various computation times general-
ized to the case of a tree of arbitrary depth n, as presented in Table 1. The computation
time for the baseline algorithm is computed as the number of branching routes (2n) times
the depth (n) taking unit computation time per step. The smallest number of computations
when reusing earlier nodes is to expand the tree starting at the root and proceeding to
expand new leaves successively at each level in breadth-first traversal. This requires
2(2n−1) computations, as shown in the table. Therefore, the reduction in computation time
is n2n/2(2n−1) which is of order O(n).

Figure 5. Semigroup monoid system of illustrative example.

The minimal realization of this model, shown in Figure 6 to depth = 3, recognizes that
all nodes labeled (x1,x2,x3) with the same sum (x1 + x2 + x3) can be grouped into the same
congruence class. The justification of congruence is easy to see in this case: the 0 input
keeps such an element in the same class, while the 1 input transitions it to the class having
a sum increased by 1. With the merging of nodes, the tree expands in a manner emulating
Pascal’s triangle for computing binomial coefficients [37]. At any depth n, there are a total
of 2n subsets of sizes ranging from 0 to n with cardinalities given by the binomial coeffi-
cients. For example, at depth 3, there are 1,3,3,1 subsets of sizes 0,1,2,3, respectively. With
the size of a subset representing the number of 1’s in the same equivalence class, we see
that the average number of 1’s will equal n/2, as expected. Importantly, the number of
nodes, and hence the computation time, grows only as the square of n rather than expo-
nentially, as shown in Table 1. The computation time is now O(n2) (square) in the depth
of the tree, and the reduction is of exponential order—which would be exceedingly impressive
to achieve in real-world application!

.

Figure 6. Minimal realization of example tree.

Table 1. Analysis of illustrative example.

Computation Time
for

General Case Illustrative Example
n = 4

Reduction Ratio

Baseline algorithm n2n 4×16 = 64

Figure 5. Semigroup monoid system of illustrative example.

Table 1. Analysis of illustrative example.

Computation Time for General Case Illustrative Example
n = 4 Reduction Ratio

Baseline algorithm n2n 4×16 = 64

Reuse earlier nodes 2(2n − 1) 2× (24 − 1) = 30 O(n)

Minimal realization n(n + 3)/2 2 + 3 + 4 = 9 O(2n/n2)

The minimal realization of this model, shown in Figure 6 to depth = 3, recognizes that
all nodes labeled (x1,x2,x3) with the same sum (x1 + x2 + x3) can be grouped into the same
congruence class. The justification of congruence is easy to see in this case: the 0 input
keeps such an element in the same class, while the 1 input transitions it to the class having
a sum increased by 1. With the merging of nodes, the tree expands in a manner emulating
Pascal’s triangle for computing binomial coefficients [37]. At any depth n, there are a total of
2n subsets of sizes ranging from 0 to n with cardinalities given by the binomial coefficients.
For example, at depth 3, there are 1,3,3,1 subsets of sizes 0,1,2,3, respectively. With the size
of a subset representing the number of 1’s in the same equivalence class, we see that the
average number of 1’s will equal n/2, as expected. Importantly, the number of nodes, and
hence the computation time, grows only as the square of n rather than exponentially, as
shown in Table 1. The computation time is now O(n2) (square) in the depth of the tree,
and the reduction is of exponential order—which would be exceedingly impressive to achieve in
real-world application!

Systems 2023, 11, x FOR PEER REVIEW 8 of 16

veals 16 branching routes. We will proceed to obtain various computation times general-
ized to the case of a tree of arbitrary depth n, as presented in Table 1. The computation
time for the baseline algorithm is computed as the number of branching routes (2n) times
the depth (n) taking unit computation time per step. The smallest number of computations
when reusing earlier nodes is to expand the tree starting at the root and proceeding to
expand new leaves successively at each level in breadth-first traversal. This requires
2(2n−1) computations, as shown in the table. Therefore, the reduction in computation time
is n2n/2(2n−1) which is of order O(n).

Figure 5. Semigroup monoid system of illustrative example.

The minimal realization of this model, shown in Figure 6 to depth = 3, recognizes that
all nodes labeled (x1,x2,x3) with the same sum (x1 + x2 + x3) can be grouped into the same
congruence class. The justification of congruence is easy to see in this case: the 0 input
keeps such an element in the same class, while the 1 input transitions it to the class having
a sum increased by 1. With the merging of nodes, the tree expands in a manner emulating
Pascal’s triangle for computing binomial coefficients [37]. At any depth n, there are a total
of 2n subsets of sizes ranging from 0 to n with cardinalities given by the binomial coeffi-
cients. For example, at depth 3, there are 1,3,3,1 subsets of sizes 0,1,2,3, respectively. With
the size of a subset representing the number of 1’s in the same equivalence class, we see
that the average number of 1’s will equal n/2, as expected. Importantly, the number of
nodes, and hence the computation time, grows only as the square of n rather than expo-
nentially, as shown in Table 1. The computation time is now O(n2) (square) in the depth
of the tree, and the reduction is of exponential order—which would be exceedingly impressive
to achieve in real-world application!

.

Figure 6. Minimal realization of example tree.

Table 1. Analysis of illustrative example.

Computation Time
for

General Case Illustrative Example
n = 4

Reduction Ratio

Baseline algorithm n2n 4×16 = 64

Figure 6. Minimal realization of example tree.

4. Empirical Confirmation of Theory Predictions

To test the theory and its implementation, the illustrative example was implemented
in Java and executed to compare computation times with those predicted from Table 1.
Figure 7 shows that the relative computation times of the merged, unmerged, and baseline
algorithms fall in the order of that predicted in Table 1. However, Figure 8 shows that the

Systems 2024, 12, 80 9 of 16

actual speedup realized by merging relative to the baseline is approximately 50 times less
than predicted. Nevertheless, the speedup achieved at depth 22 of approximately 7000 is
still highly significant. Note: the baseline algorithm exceeds the memory available at depth
23 due to the exponential node growth. Trees up to depth 1000 with 10 replications for each
were tested to obtain the timing results, and all yielded the correct outcome distribution.

Systems 2023, 11, x FOR PEER REVIEW 9 of 16

Reuse earlier nodes 2(2n − 1) 2× (24 − 1) = 30 O(n)
Minimal realization n(n + 3)/2 2 + 3 + 4 = 9 O(2n/n2)

4. Empirical Confirmation of Theory Predictions
To test the theory and its implementation, the illustrative example was implemented

in Java and executed to compare computation times with those predicted from Table 1.
Figure 7 shows that the relative computation times of the merged, unmerged, and baseline
algorithms fall in the order of that predicted in Table 1. However, Figure 8 shows that the
actual speedup realized by merging relative to the baseline is approximately 50 times less
than predicted. Nevertheless, the speedup achieved at depth 22 of approximately 7000 is
still highly significant. Note: the baseline algorithm exceeds the memory available at
depth 23 due to the exponential node growth. Trees up to depth 1000 with 10 replications
for each were tested to obtain the timing results, and all yielded the correct outcome dis-
tribution.

Figure 7. Charts of measured and predicted computation time resp. (in seconds).

Figure 8. Measured speedup of baseline relative to merged tree expansion vs scaled predicted
speedup.

5. Tree Expansion with Merging Applied to Serial and Parallel Compositions
Serial and Parallel compositions of simple DEVS Markov models illustrate how

merging in tree expansion can work in a large class of stochastic systems to greatly control
node generation and computation time. To succeed, a serial composition entails the suc-
cess of each of its components; likewise, it fails if any one of its components fails [38]. In
contrast, the success of a parallel composition requires that only one of its components
succeeds, while its failure entails the failure of all the components.

The component models in the compositions are of the form of a DEVS Markov model
(not including input and output), as shown in Figures 9 and 10.

The transition structure of the model is specified by two parameters, PSucceed, the prob-
ability of success, and 𝜏succeed, the probability distribution for the time required to achieve

Figure 7. Charts of measured and predicted computation time resp. (in seconds).

Systems 2023, 11, x FOR PEER REVIEW 9 of 16

Reuse earlier nodes 2(2n − 1) 2× (24 − 1) = 30 O(n)
Minimal realization n(n + 3)/2 2 + 3 + 4 = 9 O(2n/n2)

4. Empirical Confirmation of Theory Predictions
To test the theory and its implementation, the illustrative example was implemented

in Java and executed to compare computation times with those predicted from Table 1.
Figure 7 shows that the relative computation times of the merged, unmerged, and baseline
algorithms fall in the order of that predicted in Table 1. However, Figure 8 shows that the
actual speedup realized by merging relative to the baseline is approximately 50 times less
than predicted. Nevertheless, the speedup achieved at depth 22 of approximately 7000 is
still highly significant. Note: the baseline algorithm exceeds the memory available at
depth 23 due to the exponential node growth. Trees up to depth 1000 with 10 replications
for each were tested to obtain the timing results, and all yielded the correct outcome dis-
tribution.

Figure 7. Charts of measured and predicted computation time resp. (in seconds).

Figure 8. Measured speedup of baseline relative to merged tree expansion vs scaled predicted
speedup.

5. Tree Expansion with Merging Applied to Serial and Parallel Compositions
Serial and Parallel compositions of simple DEVS Markov models illustrate how

merging in tree expansion can work in a large class of stochastic systems to greatly control
node generation and computation time. To succeed, a serial composition entails the suc-
cess of each of its components; likewise, it fails if any one of its components fails [38]. In
contrast, the success of a parallel composition requires that only one of its components
succeeds, while its failure entails the failure of all the components.

The component models in the compositions are of the form of a DEVS Markov model
(not including input and output), as shown in Figures 9 and 10.

The transition structure of the model is specified by two parameters, PSucceed, the prob-
ability of success, and 𝜏succeed, the probability distribution for the time required to achieve

Figure 8. Measured speedup of baseline relative to merged tree expansion vs scaled predicted
speedup.

5. Tree Expansion with Merging Applied to Serial and Parallel Compositions

Serial and Parallel compositions of simple DEVS Markov models illustrate how merg-
ing in tree expansion can work in a large class of stochastic systems to greatly control node
generation and computation time. To succeed, a serial composition entails the success of
each of its components; likewise, it fails if any one of its components fails [38]. In contrast,
the success of a parallel composition requires that only one of its components succeeds,
while its failure entails the failure of all the components.

The component models in the compositions are of the form of a DEVS Markov model
(not including input and output), as shown in Figures 9 and 10.

The transition structure of the model is specified by two parameters, PSucceed, the
probability of success, and τsucceed, the probability distribution for the time required to
achieve success. These populate the values of the probability and the time transition
structures needed for the definition of the model, which is given as follows:

MDEV S = < Y, SDEV S, δint, λ, ta >
Y = {Succeed, Fail}
S = {Start, Succeed, Fail}

SDEV S is the set of triples of the form (s, γ, µ) where s is a member of S (a node) and
γ, µ are states of ideal random number generators for selecting between the transitions
from Start to Succeed or Fail and for selecting the time distribution for the transition to
Succeed, if selected. The time for the transition to Fail is not of interest here so no random
seed is associated with it.

Systems 2024, 12, 80 10 of 16

Gint (Start) = {Succeed,Fail} the subset of nodes that are immediate successors of node
Start, and s’= δint (Start, γ, µ) = (SelectPhase Gint (Start, γ), Γ (γ), µ), where the latter uses the
random number seed γ to select Succeed with probability PSucceed, and Fail with probability
1 − PSucceed. ta(Succeed, γ, µ) = (SelectSigma Gint (Start, γ, Γ(µ)) which selects the time
required to succeed from the given distribution, τsucceed, and λ is the time selected for the
time advance.

Serial and parallel compositions in Figures 9 and 10 are defined using the standard
DEVS coupled model specifications [33]. As illustrated in Figure 11, the temporal behaviors
of the compositions are directly derived from those of the components and the coupling
specified by the respective composition.

Systems 2023, 11, x FOR PEER REVIEW 10 of 16

success. These populate the values of the probability and the time transition structures
needed for the definition of the model, which is given as follows:

MDEV S = <Y, SDEV S, δint, λ, ta>
Y = {Succeed,Fail}
S = {Start, Succeed, Fail}

SDEV S is the set of triples of the form (s, γ,𝜇) where s is a member of S (a node) and γ, 𝜇 are states of ideal random number generators for selecting between the transitions from
Start to Succeed or Fail and for selecting the time distribution for the transition to Succeed,
if selected. The time for the transition to Fail is not of interest here so no random seed is
associated with it.

Gint (Start) = {Succeed,Fail} the subset of nodes that are immediate successors of node
Start
and s’= δint (Start, γ,𝜇) = (SelectPhase Gint (Start, γ), Γ (γ),𝜇)
where the latter uses the random number seed γ to select Succeed with probability PSucceed

and Fail with probability 1 − PSucceed.
ta(Succeed, γ,𝜇) = (SelectSigma Gint (Start, γ, Γ(𝜇)) which selects the time required to succeed
from the given distribution, 𝜏succeed,
and λ is the time selected for the time advance.

Serial and parallel compositions in Figures 9 and 10 are defined using the standard
DEVS coupled model specifications [33]. As illustrated in Figure 11, the temporal behav-
iors of the compositions are directly derived from those of the components and the cou-
pling specified by the respective composition.

Figure 9. Serial and parallel compositions of Markov DEVS Success/Fail models.

Figure 10. Probability and time transition structure of the DEVS Markov model.

Figure 9. Serial and parallel compositions of Markov DEVS Success/Fail models.

Systems 2023, 11, x FOR PEER REVIEW 10 of 16

success. These populate the values of the probability and the time transition structures
needed for the definition of the model, which is given as follows:

MDEV S = <Y, SDEV S, δint, λ, ta>
Y = {Succeed,Fail}
S = {Start, Succeed, Fail}

SDEV S is the set of triples of the form (s, γ,𝜇) where s is a member of S (a node) and γ, 𝜇 are states of ideal random number generators for selecting between the transitions from
Start to Succeed or Fail and for selecting the time distribution for the transition to Succeed,
if selected. The time for the transition to Fail is not of interest here so no random seed is
associated with it.

Gint (Start) = {Succeed,Fail} the subset of nodes that are immediate successors of node
Start
and s’= δint (Start, γ,𝜇) = (SelectPhase Gint (Start, γ), Γ (γ),𝜇)
where the latter uses the random number seed γ to select Succeed with probability PSucceed

and Fail with probability 1 − PSucceed.
ta(Succeed, γ,𝜇) = (SelectSigma Gint (Start, γ, Γ(𝜇)) which selects the time required to succeed
from the given distribution, 𝜏succeed,
and λ is the time selected for the time advance.

Serial and parallel compositions in Figures 9 and 10 are defined using the standard
DEVS coupled model specifications [33]. As illustrated in Figure 11, the temporal behav-
iors of the compositions are directly derived from those of the components and the cou-
pling specified by the respective composition.

Figure 9. Serial and parallel compositions of Markov DEVS Success/Fail models.

Figure 10. Probability and time transition structure of the DEVS Markov model. Figure 10. Probability and time transition structure of the DEVS Markov model.

In the serial composition, the Activate input is shown setting the first (top) model, M
into state Succeed with an output after time ta. The latter is determined by the random
sampling process just described and shown as a threshold value for the elapsed time, e to
achieve. This output, Y is coupled to the input of the second component (bottom) model,
M’ and causes it to output a final Success after ta’ for a total response time of ta + ta’.

In the case of the parallel composition, the Activate input starts both models simulta-
neously and results in a Success output from the quickest model at time min{ta,ta’}.

These paired configurations are easily generalized to finite numbers of components
where, for the serial composition, components are placed in a sequence with the Success
output port of one connected to the Activate input port of the next, and for the parallel
composition, all components receive activation simultaneously with all output Success
ports coupled to the overall output Success port. The desired outcome of the simulations of
the compositions is the probability distribution of time needed for success. In the serial case,
a sampled value of this outcome is the sum of the time samples from each component since
all have to succeed for the whole to succeed. In the parallel case, a sampled outcome is the
minimum of the sampled durations of the components since overall success is achieved by

Systems 2024, 12, 80 11 of 16

the first to succeed. Analytic solutions such as those by Rice [38] are possible given analytic
input distributions, but stochastic simulation is needed otherwise.

Systems 2023, 11, x FOR PEER REVIEW 11 of 16

Figure 11. Temporal behaviors of serial and parallel compositions.

In the serial composition, the Activate input is shown setting the first (top) model, M
into state Succeed with an output after time ta. The latter is determined by the random
sampling process just described and shown as a threshold value for the elapsed time, e to
achieve. This output, Y is coupled to the input of the second component (bottom) model,
M’ and causes it to output a final Success after ta’ for a total response time of ta + ta’.

In the case of the parallel composition, the Activate input starts both models simulta-
neously and results in a Success output from the quickest model at time min{ta,ta’}.

These paired configurations are easily generalized to finite numbers of components
where, for the serial composition, components are placed in a sequence with the Success
output port of one connected to the Activate input port of the next, and for the parallel
composition, all components receive activation simultaneously with all output Success
ports coupled to the overall output Success port. The desired outcome of the simulations
of the compositions is the probability distribution of time needed for success. In the serial
case, a sampled value of this outcome is the sum of the time samples from each component
since all have to succeed for the whole to succeed. In the parallel case, a sampled outcome
is the minimum of the sampled durations of the components since overall success is
achieved by the first to succeed. Analytic solutions such as those by Rice [38] are possible
given analytic input distributions, but stochastic simulation is needed otherwise.

Computation Time Required for Serial and Parallel Compositions
In application to serial and parallel compositions, the number of components deter-

mines the depth of the tree, n. The temporal distribution of each component is assumed
to be known and represented by a discrete probability density over an interval divided
into G segments, where G is called the number of granules and determines the accuracy
of the computed outcome. In the following, we simplify the discussion by considering
only the case where the probability of failure is zero.

Tree expansions for the series and parallel compositions in Figure 12 evolve with G
branches stemming from each node. For the serial compositions, with the first model at
level 1, each of the G branches from the root is labelled by the time advance corresponding
to the granule represented by that branch. For each of the nodes generated by such branch-
ing, the second model’s response is represented by the branching of G nodes at level 2
labelled by the time advances corresponding to each. Response times, t = ta + ta’, for the
composition are accumulated in the nodes terminating the paths labelled by the pairs of

Figure 11. Temporal behaviors of serial and parallel compositions.

Computation Time Required for Serial and Parallel Compositions

In application to serial and parallel compositions, the number of components deter-
mines the depth of the tree, n. The temporal distribution of each component is assumed to
be known and represented by a discrete probability density over an interval divided into G
segments, where G is called the number of granules and determines the accuracy of the
computed outcome. In the following, we simplify the discussion by considering only the
case where the probability of failure is zero.

Tree expansions for the series and parallel compositions in Figure 12 evolve with G
branches stemming from each node. For the serial compositions, with the first model at level
1, each of the G branches from the root is labelled by the time advance corresponding to the
granule represented by that branch. For each of the nodes generated by such branching, the
second model’s response is represented by the branching of G nodes at level 2 labelled by
the time advances corresponding to each. Response times, t = ta + ta’, for the composition
are accumulated in the nodes terminating the paths labelled by the pairs of branches. In the
case of parallel composition, the only difference is that the minimum operation is applied
to the pair of time advances to be stored in the node terminating the corresponding path.

Systems 2023, 11, x FOR PEER REVIEW 12 of 16

branches. In the case of parallel composition, the only difference is that the minimum op-
eration is applied to the pair of time advances to be stored in the node terminating the
corresponding path.

Figure 12. Illustrating tree expansions for series and parallel compositions.

Therefore, we see that in both serial and parallel compositions, the unmerged tree
expands with Gn nodes at depth n. However, as the tree front expands, applying the merg-
ing process to nodes at the same level greatly reduces the number of nodes that must be
considered as the depth increases. Merging in the case of serial composition only adds G
nodes at each level, thus reducing the growth in nodes to nG. This is so since at each suc-
cessive level the range of sum ta + ta’ is bounded above by max{ta} + max{ta’}. Thus, after
merging, only G new nodes are added to that level. Moreover, at each level, the number
of operations is at most nG2 since the nG nodes are combined with the G granules to create
the next level. Thus, the incremental computation time is nG2, and the computation time
required should grow as O((nG)2), i.e., as the square of depth and number of granules.

Merging in the case of parallel composition does not suffer any tree expansion since
the combined range of a minimization is the original range, i.e., range of min{ta,ta’} is
bounded above by min{max{ta},max{ta’}}. Thus, by the reasoning above, the number of
nodes grows as n*G and the operations grow as nG2. So, the computation time required
for depth n should grow as O(nG2), i.e., linearly with the depth and square of granules.

6. Related Work
DEVS has served as a basis for the formalization [38,39] and study of multiresolution

constructions underlying multifidelity simulations [40–45]. Also, DEVS has been em-
ployed as a basis for the simulation of Markov Decision Process (MDP) models employing
its modular and hierarchical aspects to improve the explainability of the models with ap-
plication to optimization processes such as financial, industrial, etc. [46–52]. Capocchi,
Santucci, and Zeigler [53] introduced a DEVS-based framework to construct and aggre-
gate Markov chains using a relaxed form of lumpability to enhance the understanding of
complex Markov search spaces. However, the methodology is limited to selecting optimal
partitions according to a metric that compares Markov chains based on their respective
steady states. The practical application is limited since these are not generally available in
problem specification. In contrast, paratemporal and cloning simulation techniques are
intended for application to stochastic simulation in general and offer opportunities for
parallelism and cloning of state information. However, they have not demonstrated the
ability to overcome the combinatorial explosion of branching arising from multiple choice
points. The absence of such scalability presents a major hurdle that must be overcome to
implement such techniques. Nutaro et al. [31] showed that the speedup of tree expansion
methods is limited by the exponential growth of the tree with increasing depth. Zeigler et
al. [54] introduced the merging of states based on homomorphism concepts to mitigate
against such growth. Here, we demonstrated that homomorphic merging of states can be

Figure 12. Illustrating tree expansions for series and parallel compositions.

Therefore, we see that in both serial and parallel compositions, the unmerged tree
expands with Gn nodes at depth n. However, as the tree front expands, applying the
merging process to nodes at the same level greatly reduces the number of nodes that must
be considered as the depth increases. Merging in the case of serial composition only adds

Systems 2024, 12, 80 12 of 16

G nodes at each level, thus reducing the growth in nodes to nG. This is so since at each
successive level the range of sum ta + ta’ is bounded above by max{ta} + max{ta’}. Thus, after
merging, only G new nodes are added to that level. Moreover, at each level, the number of
operations is at most nG2 since the nG nodes are combined with the G granules to create
the next level. Thus, the incremental computation time is nG2, and the computation time
required should grow as O((nG)2), i.e., as the square of depth and number of granules.

Merging in the case of parallel composition does not suffer any tree expansion since
the combined range of a minimization is the original range, i.e., range of min{ta,ta’} is
bounded above by min{max{ta},max{ta’}}. Thus, by the reasoning above, the number of
nodes grows as n*G and the operations grow as nG2. So, the computation time required for
depth n should grow as O(nG2), i.e., linearly with the depth and square of granules.

6. Related Work

DEVS has served as a basis for the formalization [38,39] and study of multiresolution
constructions underlying multifidelity simulations [40–45]. Also, DEVS has been employed
as a basis for the simulation of Markov Decision Process (MDP) models employing its
modular and hierarchical aspects to improve the explainability of the models with ap-
plication to optimization processes such as financial, industrial, etc. [46–52]. Capocchi,
Santucci, and Zeigler [53] introduced a DEVS-based framework to construct and aggre-
gate Markov chains using a relaxed form of lumpability to enhance the understanding of
complex Markov search spaces. However, the methodology is limited to selecting optimal
partitions according to a metric that compares Markov chains based on their respective
steady states. The practical application is limited since these are not generally available
in problem specification. In contrast, paratemporal and cloning simulation techniques are
intended for application to stochastic simulation in general and offer opportunities for
parallelism and cloning of state information. However, they have not demonstrated the
ability to overcome the combinatorial explosion of branching arising from multiple choice
points. The absence of such scalability presents a major hurdle that must be overcome to
implement such techniques. Nutaro et al. [31] showed that the speedup of tree expansion
methods is limited by the exponential growth of the tree with increasing depth. Zeigler
et al. [54] introduced the merging of states based on homomorphism concepts to mitigate
against such growth. Here, we demonstrated that homomorphic merging of states can
be formally characterized using DEVS Markov modeling and simulation theory to show
examples where such merging can achieve a reduction from exponential to polynomial
computational effort.

7. Conclusions and Further Work

We have developed a formal framework covering conventional and proposed tree
expansion algorithms for speeding up stochastic simulations while preserving the desired
accuracy. Based on the theory of modeling and simulation, we showed how a reduced
deterministic model with random inputs can be derived from such a stochastic model.
This reduced model represents the results of cloning state and transition information at
branching points. The reduced model was shown to be a homomorphic image of the
original based on a correspondence restricted to non-deterministic states and multi-step
deterministic sequences mapped into corresponding single-step sequences. An example
was discussed to illustrate the tree expansion framework in which the stochastic model
takes the form of a binary tree, allowing us to derive the computation times for baseline,
non-merging, and merging tree expansion algorithms to compute the distribution of output
values at any given depth. The results show the remarkable reduction from exponential to
polynomial dependence on depth effectuated by node merging. We related these results to
the reduced computation of binomial coefficients underlying Pascal’s triangle.

Applications of node merging tree expansion algorithms are currently being studied
in simulations of space-based threat responses to estimate the probability of successfully
identifying, tracking, and targeting hypersonic missiles within tight deadlines [38], as well

Systems 2024, 12, 80 13 of 16

as to attrition modeling employing stochastic interactions between opposing forces [55–60].
In such models, temporal duration outcomes in the form of probabilistic temporal distri-
butions play a major role, and homomorphic merged tree expansion enables much faster
computation of outcome distributions when analytic solutions are lacking.

Funding: This research was partially supported by RTSync internal funding and received no ex-ternal
funding.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: I would like to thank Sang Won Yoon, and Cole Zanni, Graduate Research
Associate at the Watson Institute for Systems Excellence at The State University of New York at
Binghamton, NY, and Christian Koertje, Research Assistant at University of Massachusetts, Amherst,
MA, for their help in working on the algorithm implementations.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

Please refer to [61,62] for a detailed exposition.
We define the behavior of a system formally as a function mapping input segments

to output segments (Figure 6). We seek a DEVS model at the state description level that
generates the defined behavior and then try to show it is a minimal realization or attempt
to reduce it to one that is minimal.

We briefly review the approach to deriving a minimal realization from an input time
function description. Figure A1a shows the behavior of a modulo 2 adder, and the minimal
realization is in Figure A1b. The latter has two states corresponding to the two distinct
nodes with transitions reflecting and alternating pattern exhibited by the derivatives of the
behavior β in the tree. The alternating pattern is manifested by noticing that β0(ω) = β(0ω)
and β1(ω) = β(1ω) so that the state “0” transitions to itself under input 0 and transitions to
the state “1” under input 1.

Systems 2023, 11, x FOR PEER REVIEW 14 of 16

Figure A1. (a) Mapping input segments to output segments, (b) states reduction and minimal real-
ization. Note: {0.1}* denotes the set of all finite strings over {0,1}.

References
1. Müller, J.; Shoemaker, C.A.; Piché, R. SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-

integer black-box global optimization problems. Comput. Oper. Res. 2013, 40, 1383–1400. https://doi.org/10.1016/j.cor.2012.08.022.
2. Zabinsiky, Z.B. Stochastic Adaptive Search Methods: Theory and Implementation. In Handbook of Simulation Optimization;

Springer: New York, NY, USA, 2015; pp. 293–318.
3. Hong, J.H.; Seo, K.-M.; Kim, T.G. Simulation-based optimization for design parameter exploration in hybrid system: A defense

system example. SIMULATION 2013, 89, 362–380. https://doi.org/10.1177/0037549712466707.
4. Tolk, A. Simulation-Based Optimization: Implications of Complex Adaptive Systems and Deep Uncertainty. Information 2022,

13, 469. https://doi.org/10.3390/info13100469.
5. Davis, P.K. Broad and Selectively Deep: An MRMPM Paradigm for Supporting Analysis. Information 2023, 14, 134.

https://doi.org/10.3390/info14020134.
6. Davis, P.K.; Popper, S.W. Confronting Model Uncertainty in Policy Analysis for Complex Systems: What Policymakers Should

Demand. J. Policy Complex Syst. 2019, 5, 181–201. https://doi.org/10.18278/jpcs.5.2.11.
7. Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and

methods. Mach. Learn. 2021, 110, 457–506. https://doi.org/10.1007/s10994-021-05946-3.
8. Kruse, R.; Schwecke, E.; Heinsohn, J. Uncertainty and Vagueness in Knowledge Based Systems: Numerical Methods; Springer: Ber-

lin/Heidelberg, Germany, 1991.
9. Kwakkel, J.H.; Haasnoot, M. Supporting DMDU: A Taxonomy of Approaches and Tools. In Decision Making under Deep Uncer-

tainty: Rom Theory to Practice; Marchau, V.A., Warren, E.W., Bloemen, P.J., Popper, S.W., Eds.; Springer: Berlin/Heidelberg, Ger-
many, 2019; pp. 355–374.

10. Marchau, V.A.W.J.; Walker, W.E.; Bloemen, P.J.T.M.; Popper, S.W. Decision Making under Deep Uncertainty: From Theory to Prac-
tice; Springer Nature: Cham, Switzerland, 2019.

11. Amaran, S.; Sahinidis, N.V.; Sharda, B.; Bury, S.J. Simulation optimization: A review of algorithms and applications. Ann. Oper.
Res. 2016, 240, 351–380. https://doi.org/10.1007/s10479-015-2019-x.

12. Tsattalios, S.; Tsoukalas, I.; Dimas, P.; Kossieris, P.; Efstratiadis, A.; Makropoulos, C. Advancing surrogate-based optimization
of time-expensive environmental problems through adaptive multi-model search. Environ. Model. Softw. 2023, 162, 105639.
https://doi.org/10.1016/j.envsoft.2023.105639.

13. Xu, J.; Huang, E.; Chen, C.-H.; Lee, L.H. Simulation Optimization: A Review and Exploration in the New Era of Cloud Compu-
ting and Big Data. Asia-Pac. J. Oper. Res. 2015, 32, 1550019. https://doi.org/10.1142/s0217595915500190.

14. Suman, B.; Kumar, P. A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc.
2006, 57, 1143–1160. https://doi.org/10.1057/palgrave.jors.2602068.

15. Zhou, Z.; Ong, Y.S.; Nair, P.B.; Keane, A.J.; Lum, K.Y. Combining Global and Local Surrogate Models to Accelerate Evolutionary
Optimization. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 66–76. https://doi.org/10.1109/tsmcc.2005.855506.

16. Liu, B.; Koziel, S.; Zhang, Q. A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive
optimization problems. J. Comput. Sci. 2016, 12, 28–37. https://doi.org/10.1016/j.jocs.2015.11.004.

17. Gallagher, M.A.; Hackman, D.V.; Lad, A.A. Better analysis using the models and simulations hierarchy. J. Def. Model. Simul.
2018, 15, 279–288. https://doi.org/10.1177/1548512917752086.

Figure A1. (a) Mapping input segments to output segments, (b) states reduction and minimal
realization. Note: {0.1}* denotes the set of all finite strings over {0,1}.

References
1. Müller, J.; Shoemaker, C.A.; Piché, R. SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer

black-box global optimization problems. Comput. Oper. Res. 2013, 40, 1383–1400. [CrossRef]
2. Zabinsiky, Z.B. Stochastic Adaptive Search Methods: Theory and Implementation. In Handbook of Simulation Optimization;

Springer: New York, NY, USA, 2015; pp. 293–318.

https://doi.org/10.1016/j.cor.2012.08.022

Systems 2024, 12, 80 14 of 16

3. Hong, J.H.; Seo, K.-M.; Kim, T.G. Simulation-based optimization for design parameter exploration in hybrid system: A defense
system example. SIMULATION 2013, 89, 362–380. [CrossRef]

4. Tolk, A. Simulation-Based Optimization: Implications of Complex Adaptive Systems and Deep Uncertainty. Information 2022, 13,
469. [CrossRef]

5. Davis, P.K. Broad and Selectively Deep: An MRMPM Paradigm for Supporting Analysis. Information 2023, 14, 134. [CrossRef]
6. Davis, P.K.; Popper, S.W. Confronting Model Uncertainty in Policy Analysis for Complex Systems: What Policymakers Should

Demand. J. Policy Complex Syst. 2019, 5, 181–201. [CrossRef]
7. Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and

methods. Mach. Learn. 2021, 110, 457–506. [CrossRef]
8. Kruse, R.; Schwecke, E.; Heinsohn, J. Uncertainty and Vagueness in Knowledge Based Systems: Numerical Methods; Springer:

Berlin/Heidelberg, Germany, 1991.
9. Kwakkel, J.H.; Haasnoot, M. Supporting DMDU: A Taxonomy of Approaches and Tools. In Decision Making under Deep Uncertainty:

Rom Theory to Practice; Marchau, V.A., Warren, E.W., Bloemen, P.J., Popper, S.W., Eds.; Springer: Berlin/Heidelberg, Germany,
2019; pp. 355–374.

10. Marchau, V.A.W.J.; Walker, W.E.; Bloemen, P.J.T.M.; Popper, S.W. Decision Making under Deep Uncertainty: From Theory to Practice;
Springer Nature: Cham, Switzerland, 2019.

11. Amaran, S.; Sahinidis, N.V.; Sharda, B.; Bury, S.J. Simulation optimization: A review of algorithms and applications. Ann. Oper.
Res. 2016, 240, 351–380. [CrossRef]

12. Tsattalios, S.; Tsoukalas, I.; Dimas, P.; Kossieris, P.; Efstratiadis, A.; Makropoulos, C. Advancing surrogate-based optimization
of time-expensive environmental problems through adaptive multi-model search. Environ. Model. Softw. 2023, 162, 105639.
[CrossRef]

13. Xu, J.; Huang, E.; Chen, C.-H.; Lee, L.H. Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing
and Big Data. Asia-Pac. J. Oper. Res. 2015, 32, 1550019. [CrossRef]

14. Suman, B.; Kumar, P. A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 2006,
57, 1143–1160. [CrossRef]

15. Zhou, Z.; Ong, Y.S.; Nair, P.B.; Keane, A.J.; Lum, K.Y. Combining Global and Local Surrogate Models to Accelerate Evolutionary
Optimization. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 66–76. [CrossRef]

16. Liu, B.; Koziel, S.; Zhang, Q. A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive
optimization problems. J. Comput. Sci. 2016, 12, 28–37. [CrossRef]

17. Gallagher, M.A.; Hackman, D.V.; Lad, A.A. Better analysis using the models and simulations hierarchy. J. Def. Model. Simul. 2018,
15, 279–288. [CrossRef]

18. Moon, I.C.; Hong, J.H. Theoretic interplay between abstraction, resolution, and fidelity in model information. In Proceedings of
the 2013 Winter Simulation Conference, Washington, DC, USA, 8–11 December 2013.

19. Choi, S.H.; Seo, K.-M.; Kim, T.G. Accelerated Simulation of Discrete Event Dynamic Systems via a Multi-Fidelity Modeling
Framework. Appl. Sci. 2017, 7, 1056. [CrossRef]

20. Celik, N.; Lee, S.; Vasudevan, K.; Son, Y.-J. DDDAS-based multi-fidelity simulation framework for supply chain systems. IIE
Trans. 2010, 42, 325–341. [CrossRef]

21. Choi, C.; Seo, K.-M.; Kim, T.G. DEXSim: An experimental environment for distributed execution of replicated simulators using a
concept of single simulation multiple scenarios. SIMULATION 2014, 90, 355–376. [CrossRef]

22. Choi, S.H.; Lee, S.J.; Kim, T.G. Multi-fidelity modeling & simulation methodology for simulation speed up. In Proceedings of the
2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Denver, CO, USA, 18–21 May 2014.

23. Keeney, R.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs; Cambridge University Press: Cambridge,
UK; New York, NY, USA, 1993.

24. Kim, H.; McGinnis, L.F.; Zhou, C. On fidelity and model selection for discrete event simulation. SIMULATION 2012, 88, 97–109.
[CrossRef]

25. Molina-Cristobal, A.; Palmer, P.R.; Parks, G.T. Multi-fidelity Simulation modeling in optimization of a hybrid submarine
propulsion system. In Proceedings of the European Conference on Power Electronics and Applications, Birmingham, UK, 30
August–1 September 2011.

26. Ören, T.; Zeigler, B.P.; Tolk, A. Body of Knowledge for Modeling and Simulation: A Handbook by the Society for Modeling and Simulation
International; Springer: Berlin/Heidelberg, Germany, 2023.

27. Park, H.; Fishwick, P.A. A GPU-Based Application Framework Supporting Fast Discrete-Event Simulation. SIMULATION 2010,
86, 613–628. [CrossRef]

28. Lammers, C.; Steinman, J.; Valinski, M.; Roth, K. Five-dimensional simulation for advanced decision making. In Proceedings of
the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 13–17 April 2009; p. 73480H.

29. Li, X.; Cai, W.; Turner, S.J. Cloning Agent-Based Simulation. ACM Trans. Model. Comput. Simul. 2017, 27, 15. [CrossRef]
30. Yoginath, S.B.; Alam, M.; Perumalla, K.S. Energy Conservation Through Cloned Execution of Simulations. In Proceedings of the

2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019; pp. 2572–2582.
31. Nutaro, J.; Zeigler, B.P.; Yoginath, S.; Zanni, C.; Seal, S.; Shukla, P.; Koertje, C. Using Simulation Cloning to Sample without Duplication;

Working Paper; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2024.

https://doi.org/10.1177/0037549712466707
https://doi.org/10.3390/info13100469
https://doi.org/10.3390/info14020134
https://doi.org/10.18278/jpcs.5.2.11
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10479-015-2019-x
https://doi.org/10.1016/j.envsoft.2023.105639
https://doi.org/10.1142/S0217595915500190
https://doi.org/10.1057/palgrave.jors.2602068
https://doi.org/10.1109/TSMCC.2005.855506
https://doi.org/10.1016/j.jocs.2015.11.004
https://doi.org/10.1177/1548512917752086
https://doi.org/10.3390/app7101056
https://doi.org/10.1080/07408170903394306
https://doi.org/10.1177/0037549713520251
https://doi.org/10.1177/0037549710371217
https://doi.org/10.1177/0037549709340781
https://doi.org/10.1145/3013529

Systems 2024, 12, 80 15 of 16

32. Zeigler, B.P.; Muzy, A.; Kofman, E. Theory of Modeling and Simulation: Discrete Event Iterative System Computational Foundations;
Academic Press: New York, NY, USA, 2018.

33. Wymore, W.A. A Mathematical Theory of Systems Engineering—The Elements; Wiley: Hoboken, NJ, USA, 1967.
34. Alshareef, A.; Seo, C.; Kim, A.; Zeigler, B.P. DEVS Markov Modeling and Simulation of Activity-Based Models for MBSE

Application. In Proceedings of the 2021 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 12–15 December 2021; pp. 1–12.
35. Zeigler, B.P.; Seo, C.; Kim, D. DEVS Modeling and Simulation Methodology with MS4 Me Software. In Proceedings of the DEVS

13: Proceedings of the Symposium on Theory of Modeling & Simulation—DEVS Integrative M&S Symposium, San Diego, CA,
USA, 7–10 April 2013.

36. Wikipedia. 2023. Available online: https://en.wikipedia.org/wiki/Pascal’s_triangle (accessed on 15 June 2023).
37. Rice, R.E. Calculating the Probability of Successfully Executing the Kill Chain to Analyze Hypersonics. Phalanx 2022, 55, 22–27.
38. Baohong, L. A Formal Description Specification for Multi-resolution Modeling (MRM) Based on DEVS Formalism and Its

Applications. J. Def. Model. Simul. Appl. Methodol. Technol. 2004, 4, 229–251.
39. Yilmaz, L.; Lim, A.; Bowen, S.; Ören, T. Requirements and Design Principles for Multisimulation itwh Multiresolution Multistage

Models. In Proceedings of the 2007 Winter Simulation Conference, Washington, DC, USA, 9–12 December 2007.
40. Davis, P.K.; Bigelow, J.H. Experiments in Multiresolution Modeling (MRM); RAND Corporation: Santa Monica, CA, USA, 1998;

Available online: https://www.rand.org/pubs/monograph_reports/MR1004.html (accessed on 15 February 2023).
41. Davis, P.; Hillestad, R. Families of Models that Cross Levels of Resolution: Issues for Design, Calibration and Management. In

Proceedings of the 1993 Winter Simulation Conference—(WSC ’93), Los Angeles, CA, USA, 12–15 December 1993; pp. 1003–1012.
42. Davis, P.K.; Hillestad, R. Proceedings of Conference on Variable Resolution Modeling, Washington, DC, 5–6 May 1992; RAND Corp.:

Santa Monica, CA, USA, 1992.
43. Davis, P.K.; Reiner, H. Variable Resolution Modeling: Issues, Principles and Challenges; N-3400; RAND Corporation: Santa Monica,

CA, USA, 1992.
44. Hadi, M.; Zhou, X.; Hale, D. Multiresolution Modeling for Traffic Analysis: Case Studies Report; U.S. Federal Highway Administration:

Washington, DC, USA, 2022.
45. Rabelo, L.; Park, T.W.; Kim, K.; Pastrana, J.; Marin, M.; Lee, G.; Nagadi, K.; Ibrahim, B.; Gutierrez, E. Multi Resolution Modeling.

In Proceedings of the 2015 Winter Simulation Conference, Huntington Beach, CA, USA, 6–9 December 2015; Yilmaz, L., Chan, V.,
Mood, I., Roemer, T., Macal, C., Rossetti, M., Eds.; IEEE: Piscataway, NJ, USA, 2015; pp. 2523–2534.

46. Emanuele, B. Discrete Event Modeling and Simulation of Large Markov Decision Process, Application to the Leverage Effects in
Financial Asset Optimization Processes. Ph.D. Thesis, Université Pascal Paoli, Corte, France, 2023.

47. Folkerts, H.; Pawletta, T.; Deatcu, C.; Santucci, J.; Capocchi, L. An Integrated Modeling, Simulation and Experimentation
Environment in Python Based on SES/MB and DEVS. In Proceedings of the SummerSim-SCSC, Berlin, Germany, 22–24 July 2019.

48. Wilsdorf, P.; Heller, J.; Budde, K.; Zimmermann, J.; Warnke, T.; Haubelt, C.; Timmermann, D.; van Rienen, U.; Uhrmacher, A.M. A
Model-Driven Approach for Conducting Simulation Experiments. Appl. Sci. 2022, 12, 7977. [CrossRef]

49. Bordón-Ruiz, J.; Besada-Portas, E.; López-Orozco, J.A. Cloud DEVS-based computation of UAVs trajectories for search and rescue
missions. J. Simul. 2022, 16, 572–588. [CrossRef]

50. Neto, V.V.G.; Kassab, M. Modeling and Simulation for Smart City Development. In What Every Engineer Should Know about Smart
Cities; CRC Press: Boca Raton, FL, USA, 2023.

51. Gourlis, G.; Kovacic, I. Energy efficient operation of industrial facilities: The role of the building in simulation-based optimization.
IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012019. [CrossRef]

52. Xie, K.; Li, X.; Zhang, L.; Gu, P.; Chen, Z. SES-X: A MBSE methodology based on SES/MB and X Language. Inf. J. 2023, 14, 23.
[CrossRef]

53. Laurent, C.; Santucci, J.-F.; Zeigler, B.P. Markov chains aggregation using discrete event optimization via simulation. In
Proceedings of the SummerSim ’19: Proceedings of the 2019 Summer Simulation Conference, Article No. 7. Berlin, Germany,
22–24 July 2019; pp. 1–12.

54. Zeigler, B.P.; Woon, S.W.; Koertje, C.; Zanni, C. The Utility of Homomorphism Concepts in Simulation: Building Families of
Models from Base-Lumped Model Pairs. Simulation J. 2024. in process.

55. Zeigler, B.P. Constructing and evaluating multi-resolution model pairs: An attrition modeling example. J. Def. Model. Simul. Appl.
Methodol. Technol. 2017, 14, 427–437. [CrossRef]

56. Kim, T.G.; Sung, C.H.; Hong, S.-Y.; Hong, J.H.; Choi, C.B.; Kim, J.H.; Seo, K.M.; Bae, J.W. DEVSim++ Toolset for Defense Modeling
and Simulation and Interoperation. J. Def. Model. Simul. Appl. Methodol. Technol. 2011, 8, 129–142. [CrossRef]

57. Davis, P.K. Exploratory Analysis and Implications for Modeling. In New Challenges, New Tools for Defense Decisionmaking; Johnson,
S., Libicki, M., Treverton, G., Eds.; RAND Corporation: Santa Monica, CA, USA, 2003; pp. 255–283.

58. Seo, K.-M.; Choi, C.; Kim, T.G.; Kim, J.H. DEVS-based combat modeling for engagement-level simulation. SIMULATION 2014, 90,
759–781. [CrossRef]

59. Seo, K.-M.; Hong, W.; Kim, T.G. Enhancing model composability and reusability for entity-level combat simulation: A conceptual
modeling approach. SIMULATION 2017, 93, 825–840. [CrossRef]

60. Tolk, A. Engineering Principles of Combat Modeling and Distributed Simulation; John Wiley & Sons: Hoboken, NJ, USA, 2012;
pp. 79–95, ISBN 978-0-470-87429-5.

https://en.wikipedia.org/wiki/Pascal's_triangle
https://www.rand.org/pubs/monograph_reports/MR1004.html
https://doi.org/10.3390/app12167977
https://doi.org/10.1080/17477778.2022.2053311
https://doi.org/10.1088/1755-1315/410/1/012019
https://doi.org/10.3390/info14010023
https://doi.org/10.1177/1548512917717085
https://doi.org/10.1177/1548512910389203
https://doi.org/10.1177/0037549714532960
https://doi.org/10.1177/0037549717699872

Systems 2024, 12, 80 16 of 16

61. McNaughton, R.; Yamada, H. Regular Expressions and State Graphs for Automata. IRE Trans. Electron. Comput. 1960, EC-9, 39–47.
[CrossRef]

62. Zeigler, B. DEVS-Based Building Blocks and Architectural Patterns for Intelligent Hybrid Cyberphysical System Design. Informa-
tion 2021, 12, 531. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.3390/info12120531

	Introduction
	Formal Framework for Tree Expansion for Stochastic Simulation
	Definitions
	Assertion 1
	Assertion 2

	Illustrative Example
	Empirical Confirmation of Theory Predictions
	Tree Expansion with Merging Applied to Serial and Parallel Compositions
	Related Work
	Conclusions and Further Work
	Appendix A
	References

