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Abstract: With the economic growth of the Brazilian agroindustry, it is necessary to evaluate the
efficiency of this activity in relation to environmental demands for the country’s economic, social,
and sustainable development. Within this perspective, the present research aims to examine the
eco-efficiency of agricultural production in Brazilian regions, covering 5563 municipalities in the
north, northeast, center-west, southeast, and south regions, using data from 2016–2017. In this sense,
this study uses the DEA methods (classical and stochastic) and the computational bootstrap method
to remove outliers and measure eco-efficiency. The findings lead to two fundamental conclusions:
first, by emulating the benchmarks, it is feasible to increase annual revenue and preserved areas to an
aggregated regional level by 20.84% while maintaining the same inputs. Given that no municipality
has reached an eco-efficiency value equal to 1, there is room for optimization and improvement of
production and greater sustainable development of the municipalities. Secondly, climatic factors
notably influence eco-efficiency scores, suggesting that increasing temperatures and decreasing
precipitation can positively impact eco-efficiency in the region. These conclusions, dependent on
regional characteristics, offer valuable information for policymakers to design strategies that balance
economic growth and environmental preservation. Furthermore, adaptive policies and measures can
be implemented to increase the resilience of local producers and reduce vulnerability to changing
climate conditions.

Keywords: Data Envelopment Analysis (DEA); bootstrap; agricultural industry; eco-efficiency

1. Introduction

According to the 2017 Agribusiness Census of the Brazilian Institute of Geography
and Statistics (IBGE), more than 15 million people work in agricultural activities, and ap-
proximately 5 million establishments are focused on agricultural activities. As a contributor
to the country’s financial multiplier effect, agriculture is responsible for a considerable
portion of the Brazilian GDP.

Since the sixteenth century, for example, the activity of producing sugar cane for
export and the production of cattle to subsidize the agricultural activity in the period shows
that, since the early days of colonization, agriculture and cattle ranching were present in
the Brazilian economic formation. It is not surprising that more than 638 million tons of
sugar cane were produced in 2017, followed by the production of more than 100 million
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tons of soybeans and 88 million tons of corn. Together, it totals approximately 351 million
hectares (3.5 million km2) dedicated to agriculture and cattle ranching, which represents
approximately 41% of the national territory [1].

However, the growth of Brazilian agribusiness has led the country to record high
levels of deforestation. Cattle ranching activities, for example, have led to this process
to generate pastures, which can often lead to land conflicts and forest fires, especially in
regions considered the most remote in the country, such as the Amazon [2]. Deforestation
causes biodiversity loss, ecosystem deterioration, and increased greenhouse gas emissions.
Therefore, if, on the one hand, the economic activity of farming boosts the national economy
and food security, and on the other hand, the environmental degradation caused by this
activity causes damage to the environment, it is necessary to look for ways to maximize
agricultural production and simultaneously minimize environmental degradation, that
is, optimize eco-efficiency. This was also a concern raised by [3] regarding sustainable
economic development, which has required companies in the agricultural sector to have a
competitive advantage in this dynamic environment. Thus, the guiding questions of this
work are as follows: (1) Is it possible in Brazil to increase production with fewer resources
and environmental impacts? (2) To what extent can agriculture be more eco-efficient?

The search for robust answers to these questions is justified for two reasons. First, the
results should provide new practical contributions to support the definition of strategies
and actions that harmonize economic growth and environmental preservation, supporting
the country’s sustainable agriculture and cattle ranching development. The present study
indicates improvements for more eco-efficient agriculture. Second, the literature review
shows that this work focuses on a theme that has been little explored in Brazil. Few
researchers and research groups deal with eco-efficiency in Brazilian agriculture and cattle
ranching, as reflected in the few studies published in relevant scientific journals. Thus, as
far as we know, the scientific merits of this research are in its originality.

This is important given the immensity of agricultural activities in the country; there
is a greater focus on large producers when referring to sustainable development or eco-
efficiency. However, understanding the reality of small producers is paramount because
it is not clear whether their activities are sustainable, given the large number of small
producers in a country that cause relevant impacts on the performance of the country [4].

The impacts that this economic activity has caused in the country are understood, both
positively (financial, job generation, and trade balance) and negatively (land exploitation,
deforestation, and waste production). Finding a balance between economic development
and environmental preservation is one of the prerogatives of eco-efficiency. It seeks to pro-
vide a product to meet human needs, considering the reduction of environmental impacts
and optimization to minimize resources to produce more products so that eco-efficiency
can be regarded as a practical tool of great importance for the sustainable development of
the country [5].

Therefore, this research aims to answer all these questions, including identifying which
municipalities and regions are considered eco-efficient and highlighting them as a bench-
mark for optimizing other municipalities and increasing the country’s eco-efficiency. This
will allow a balance between increasing productivity without harming the environment, as
well as highlighting which cities and regions need to improve their scores and analyzing
whether small producer municipalities can be as eco-efficient as large producers to show
that the country, by promoting political and incentive changes, can be as productive and
preserve nature in its entirety.

2. Theoretical Methodological Framework
2.1. Literature Review

Making Data Envelopment Analysis (DEA) is a useful tool for this type of analysis.
There are two classical models, the CRS model proposed by [6] and the VRS model proposed
by [7], based on constant and variable returns to scale, respectively. The CRS and VRS
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models have advantages and disadvantages; however, several variations have emerged in
recent years with increasingly accurate results, thus improving DEA [8].

The literature has various applications of the DEA model in eco-efficiency analysis.
Some studies use more straightforward approaches with the application of classic DEA
models, such as the measurement of the eco-efficiency of farms in Poland evaluated with
a VRS [4] approach and the evaluation of industrial eco-efficiency in urban metropolis
areas in Korea, 2000–2015, by the classic CRS and VRS [9] models. Other studies use an
individual approach with super-efficiency, as in the case of the analysis of the eco-efficiency
of China’s mining system [8] and a gap approach to the super-efficiency model to calculate
the eco-efficiency of China’s provinces considering time series with economic, energy, and
environmental variables [10–12]. We also found another application of a time series to
evaluate the evolution of the eco-efficiency of 40 industrial parks using the Malmquist
model [13] and a two-stage DEA approach with a random variable Tobit regression analysis
to determine industrial eco-efficiency indicators for 30 Chinese provinces from 2005 to
2015 [5]. Other DEA models, which are not commonly applied but which were also used
to measure eco-efficiency, were an enhanced DEA model called network DEA (NDEA)
to evaluate the eco-efficiency of 30 provinces in China during the period 2003–2016 [14]
and the meta frontier framework model, a model that allows maximizing outputs and
minimizing inputs at the same time to evaluate the eco-efficiency of 282 European regions
from 2006 to 2014 [15].

Bootstrap computational models with DEA are used to evaluate eco-efficiency, and
most studies have been conducted in China. The studies include the following: The
evaluation of China’s industrial eco-efficiency of 112 resource-based cities from 2003 to
2016 [16], the eco-efficiency of China’s hospitality sector of 31 provinces in the period
2016–2019 [17], analysis of the impact of the Pollution Information Transparency Index
(PITI) on the eco-efficiency of 109 cities with environmental protection [18], a study to
evaluate the eco-efficiency of the Hungarian agricultural sector [19], the eco-efficiency of
298 Municipal Solid Waste Service Providers (MSWSPs) in Chile [20], an evaluation of the
eco-efficiency of 32 municipalities located in Tropical Montane Cloud Forests (TMCF) in
Mexico [21,22], the eco-efficiency of municipalities in the Amazon [23], and the regional
eco-efficiency in China during 2008–2017 [24]. Thus, several studies focus on evaluating eco-
efficiency, but few use bootstrap computational techniques with DEA to remove outliers
and calculate eco-efficiency. However, no relevant research looks at agriculture in all
Brazilian municipalities, the country’s strongest sector and one of the world’s leading
exporters of these products.

2.2. Productivity and Efficiency Models

Based on the studies of [25] on the Measurement of Production Efficiency and [26] on
the Economic Theory of Production, the concept of the Production Possibility Set (CPP)
is formed given a set of Technologies (T). In this way, considering eco-efficiency, a set of
resources will be represented by a vector (x), given by the area used, the environmental
inputs of animals, and plant origin and labor, giving rise to a set of products represented
by a vector (y), containing the positive and negative externalities given by revenue, unde-
sirable outputs, preserved areas, and the diversity index, where T will be given by (x, y).
Thus, mathematically, this technological set for calculating eco-efficiency is represented by
T = (x, y), where x can produce y.

In this way, given a set of Decision-Making Units (DMUk) and their respective inputs
and outputs (x, y), a space, Rp+q, will be structured, given by ε(Rq), and the space of
the Technological Frontier (TF) or Efficiency Frontier (F) will be constituted, given by a
linear segment that connects each efficient DMUs. Below this frontier will be located the
inefficient DMUk, presenting the need to improve the inputs and outputs of the production
process [25]. Therefore, the distance between the frontier given by TF and DMUk represents
the optimization needed to make DMUk equally efficient to other DMUs, which is called
the benchmark [26–28].
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This is how the eco-efficiency index can be measured, considering the x inputs and y
outputs of farming activities and economic, environmental, and social factors, by optimizing
the variables, maximizing the outputs, and minimizing the inputs of the production process
through what [25] called technical efficiency.

2.3. Eco-Efficiency DEA Model

Based on the study and concept of productivity [25], the first Data Envelopment
Analysis (DEA) model was proposed for analyzing the technical efficiency of decision-
making units (DMUs), known as the CRS model [6]. The CRS model considers constant
returns to scale, i.e., variations in the productive frontier of input and output occur at
a steady rate [6]. However, most industrial processes do not exhibit this behavior, and
the relationships between inputs and outputs vary, consolidating the second classic DEA
model, VRS [7,27].

The DEA model is fundamental to evaluate eco-efficiency (based on Microeconomic
Firm Theory), which considers inputs and outputs of different natures, such as economic,
environmental, and social. This model allows efficiency to be evaluated by combining
variables with varying units of measurement, allowing a quantitative analysis of these
variables. It starts by generating more outputs with a smaller amount of input, making the
DMU more efficient [8].

The indicators that measure eco-efficiency take into account a desirable economic
measure, aligned with the input of some environmental measure in the process; this is
because economic growth is always aligned with increased environmental degradation,
being necessary a set of technologies and legislations applicable to the process to allow an
innovative and sustainable growth with the lowest possible ecological impacts [15].

Going back to the idea of [29], where efficiency is achieved when the DMU has quan-
tities of inputs and outputs that cannot be improved without simultaneously worsening
the other, as well as when based on the performance of other DMUs, there are no improve-
ments that can be made without negatively affecting the inputs and outputs. Therefore,
eco-efficiency can only be achieved when the use of resources is minimized without increas-
ing the environmental impacts of agro-industrial activities (emission of polluting gases,
deforestation of woods and forests, or monoculture).

Therefore, a set of inputs, Xi, can produce a set of outputs, Qj; however, maximiz-
ing these outputs will not always be a strict eco-efficiency objective because the vari-
able Qj takes into consideration positive externalities and undesirable outputs, the latter
generally related to environmental impacts caused by industrial activities. Then, X can
produce (Qdesirable, Qundesirable). To solve this problem of maximizing undesirable out-
puts, one can treat Yundesirable as the inverse of its original value. Then, X can produce
(Qdesirable, 1

Qundesirable
). Thus, when the linear model maximizes outputs, it minimizes un-

desirable outputs. Thus, eco-efficiency is calculated as a Linear Programming Problem
(LPP) identical to the efficiency models described as a constant scale model with output
orientation defined by Equation (1):

min φ
n

∑
i=1

ViXi + V0,
m

∑
j=1

WjQjk = 1, ∀r, ∑ j = 1mWjQjr −
n

∑
i=1

ViXir + V0 ≤ 0, ∀r, Wj, Vi ≥ 0, ∀j, i (1)

Consider θ̂CRS and φ̂CRS the input-oriented and output-oriented eco-efficiency of the
CRS model. θ̂VRS and φ̂VRS represent the input-oriented and output-oriented eco-efficiency
of the VRS model. One has a similar interpretation of the CRS model that θ̂CRS = 1

φ̂CRS
;

however, due to the orientation of the VRS model, one has that θ̂VRS ̸= 1
φ̂VRS

. Thus, the
eco-efficiency of the VRS model will always be higher than that of the CRS model, caused
by a larger number of eco-efficient DMUs in the VRS model than in the CRS model.
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Shannon–Weaver Diversity Index

One of the very important variables for calculating eco-efficiency is the Shannon–
Weaver Diversity Index (SWDI), which captures the environmental impacts of monoculture.
According to [30], the diversity index can be calculated as follows:

IDSW = e−∑C
c=1 Pcr∗ln(Pcr), (2)

where Pcr represents the total proportion, P, of the municipalities, r, that is dedicated to
culture, c. In this way, the index will have a value from 0 to 1, that is, when the value of the
index is equal to 1 it points out a monoculture activity, which is an activity that wears out
the soil; therefore, the inverse of this value was made because it is an undesirable output,
1/IDSW, to calculate eco-efficiency.

3. DEA-Stochastic Model
3.1. Outlier Detection

Because it is a deterministic measure, DEA is extremely sensitive to the presence
of outliers to calculate punctual efficiency values, and removal is necessary to avoid
skewing the result. The reasons for the presence of outliers in the data can be explained by
three main factors: (i) data errors during the process of publishing or collecting the data,
(ii) atypical correct values caused by extreme induction, (iii) exceptional values, which
perform relatively considerably below, or above, most of the data [31].

The bootstrap concept was introduced by [32], then [33,34] introduced the descriptive
methods to identify data influence for non-parametric computation. These methods allow
the use of statistical inference without compromising the non-parametric nature of the
problem; however, it requires manual work, which often makes it impractical due to the
amount and diversity of data handled, as in the case of this research (5563 observations,
5 inputs, and 4 outputs). The use of these methods would bring a disadvantage in their
use [35].

To identify outliers, an alternative is to use a cloud methodology, where for each matrix
(M) of parameters n and p, each DMUi (each point) is removed from the space Rn and Rp,
where the volume (V) is recalculated by removing the DMUi from the matrix, generating
a new volume Vi, then calculating the ratio (R) between V and Vi, given by Ri = Vi/V,
where R will be close to 1 if the value of Vi does not change significantly, so when there is
an outlier there will be an R value significantly lower than 1 [31].

Therefore, ref. [36] proposed a new model that combines bootstrap (stochastic model)
and Jackknife resampling (deterministic model) for detecting these outliers, where, for each
DMU, the efficiency scores of all other DMUs are calculated, the observed DMU is removed,
and discrepant outlier values are detected and can either be removed automatically or
manually (being a feasible number) from the database.

The author describes some steps for applying the methodology, organized into seven steps:

I. First, an algorithm is implemented based on the Jackknife resampling technique.
Randomly choose approximately 10% of the set r with (r = 1, . . . , p) to form a
subset that we will call t with (t = 1, . . . , p).

II. Calculate the efficiencies of the DMUs by the DEA of θ̂t com t = 1, . . . , p.
III. Then, one must recalculate each of the efficiencies by removing each of the DMUs

θ̂t,b with t = 1, . . . , p and t ̸= b, where each b = 1, . . . , p represents the DMU that
was removed. Thus, one must calculate the standard deviation ϕb of θ̂t,b with
respect to θ̂t:

σb =

√
∑

p
t=1,t ̸=b(θ̂

∗
t,b − θ̂t)

p − 1
. (3)

IV. Repeat (1, 2, and 3) S times, accumulating the leverage information in θbs, where
nb = St/p.
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V. The average leverage (a value that measures the impact of removing the DMU from
the set, given by the standard deviation) is calculated for each DMU. The idea is that
outliers will exhibit behavior with a higher leverage than the average of the other
DMUs, so it will be selected with a lower probability, where σ̄b = ∑nb

s=1 σbs/nb.
VI. Posteriorly, the overall leverage is calculated by summing the average leverage of

each DMU, where σ̄ = ∑
p
b=1 σ̄b/p.

VII. After Jackknife resampling, bootstrap is applied to insert confidence intervals and in-
formation by leveraging to reduce the probability of choosing outliers for stochastic
resampling samples; the probability is calculated based on the Heaviside function.
In this way, the DMU with a considerable leverage value for overall leverage
is discarded.

3.2. Statistical Inference of DEA-Stochastic with Bootstrap

According to [21], another problem of the classic DEA models is their deterministic
nature, causing point values to be considered the efficiency estimation without taking into
account the uncertainties of the problem values caused by possible noise in the model used
and imprecision involving the efficiency estimation. One way to address the problem would
be to use statistical inference techniques within the eco-efficiency model to complement the
analysis, bringing more robust results by defining confidence intervals, hypothesis testing,
and correlating the variables involved, bringing greater reliability and acceptance of the
scores resulting from the DEA model. This model, known as stochastic DEA, is based on
bootstrap techniques.

The concept of the bootstrap was introduced by [32]. Still, its application with the
DEA model was only presented by [37], where the bootstrap simulates a sample with the
application of the original estimator, making the simulation results replicate the original
sample through a Process of Data Generation (PGD), in a process of resampling, repeated
several times. This is somewhat complex when estimating a non-parametric frontier, a set
of variables that can have errors and inferences, considering that the inputs and outputs
are random variables made up of a little-known data generation process. The model is
based on five steps for its application:

I. For each observation of the original sample (xi, qi), i = 1, . . . , p, the DEA corre-
sponding to each DMUi of the original sample represented by θ̂CRS or θ̂VRS is
calculated (given the result of the scale backtest, the model is represented by θ̂i).

II. Through a resampling process, a set of data is randomly drawn from the original
sample. The bootstrap method is used to generate this random sample from the
original sample of size p, which corresponds to the eco-efficiency scores, θr, with
r = 1, . . . , p, providing a distribution of a population estimated by the resampling
process bootstrap θ∗1 , . . . , θ∗p.

III. From this random sample, we have the inputs and outputs generated in the resam-

pling X∗ = [x∗1 , . . . , x∗p], Q∗ = [q∗1 , . . . , q∗p], x∗r =
(

θ̂r
θ∗r

)
xr, r = 1, . . . , p.

IV. We calculate the estimated bootstrap for the eco-efficiency scores for each DMUr

given the values from step (III) θ̂∗(i,b) of i for i = 1, . . . , p, via a Linear Programming
Problem (LPP) with DEA constraints:

θ̂∗(i,b) = min

{
θ |

p

∑
r=1

λrX∗
i,b ≤ θxio,

p

∑
r=1

λrQmr ≥ qmo∀m,
p

∑
r=1

λr = 1, λr ≥ 0, ∀r

}
(4)

Equation (4) is input-oriented. The output-oriented model follows the same logic.
V. We repeat steps (II) to (IV) B times (by default, B = 1000) to obtain the result with

the confidence interval of 95%, given each observation i = 1, . . . , p, in a set of
estimates, where {θ̂∗i,b, b = 1, . . . , B}.
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3.3. Test of the Return to Scale Model

According to [38], it is of strict importance to understand the nature of the behavior
of the return to scale for the correct application of the analysis model (CRS, OR VRS)
because errors can occur in the analysis due to the distortion of the result due to the type of
return, causing a loss of statistical efficiency. Therefore, testing the observations’ behavior
is necessary to identify the Technological Frontier (F) behavior. H0 is defined as the F with
constant returns to scale and H1 as the F with variable returns to scale.

We calculate each DMU’s efficiency using the CRS and VRS models to define whether
the hypothesis is null. Thus, we define the scale efficiency (θ̂E) as follows: θ̂E = θ̂CRS/θ̂VRS,
where θ̂E ≤ 1.

If θ̂E is approximately equal to 1, this indicates that DMU L has a Constant Returns to
Scale (CER) behavior, and the efficiency analysis can be done using the CRS model (θ̂CRS).
If θ̂E is significantly smaller than 1, this indicates that DMU L has Variable Returns to Scale
(VRS) behavior, and efficiency analysis should be done using the VRS model (θ̂VRS). One
then has that H0 is θ̂E = 1, with F being RCC, and H1 is θ̂E < 1 , with F is VRS.

The authors of [38] propose that scale efficiency can be calculated as follows: θ̂E =

∑
p
r=1 θ̂r,CRS/∑

p
r=1 θ̂r,VRS.

To define whether θ̂E is significantly smaller than 1, the critical value Cα is calculated,
where if θ̂E > Cα, H0 is accepted. The authors propose using the bootstrap method, with
the help of the R function boot.sw98, using the FEAR package; in this way, one can accept
H0, provided that Ha is accepted, and calculate the estimated value of θ̂E and the critical
value Cα. If Ha is defined as θ̂E greater than Cα, the model is CRS, and if Hb is defined as θ̂E
less than Cα, the model is VRS.

Therefore, even if θ̂E is less than 1, the model is considered to be CRS by accepting Ha,
if θ̂E is not significantly smaller than 1.

4. Analysis Variables

The research has as a prerogative the analysis of the Brazilian Municipalities through the
Data Envelopment Analysis (DEA). This totals approximately 5563 municipalities from all Brazil-
ian states, plus the Distrito Federal. Subdivided between the northern region
(Acre—AC, Amapá—AP, Amazonas—AM, Pará—PA, Rondônia—RO, Roraima—RR,
Tocantins—TO), northeast region (Maranhão—MA, Piauí—PI, Ceará—CE, Rio Grande do
Norte—RN, Paraíba—PB, Pernambuco—PE, Alagoas—AL, Sergipe—SE, Bahia—BA), mid-
western region (Distrito Federal—DF, Goiás—GO, Mato Grosso—MT, Mato Grosso do Sul—MS),
southeast region (São Paulo—SP, Rio de Janeiro—RJ, Minas Gerais—MG, Espírito Santo—ES),
and southern region (Paraná—PR, Santa Catarina—SC, Rio Grande do Sul—RS).

The data were collected from the Agribusiness Census of the Brazilian Institute of
Geography and Statistics [1], in the 2017 Agricultural Census (last published to date) to
collect the input variables: x1—Area of establishments (hectares), x2—Annual expenditure
on fuels and lubricants (Thousand reais), x3—Annual expenditure on inputs for plant
and animal production (Thousand reais), x4—Labor employed in establishments (salaried
and family), and x5—Other expenditure (Thousand reais). The desirable output variables
were as follows: y1—Annual gross revenue (Thousand reais) and y2—Area of natural and
planted woods and forests on farms (hectares). The undesirable output variables were as fol-
lows: y3—Annual greenhouse gas emissions from the agricultural sector (tons GWP), taken
from the Greenhouse Gas Emissions Estimation System (SEEG), and y4—Shannon–Weaver
diversity index, calculated using planting variables [1]. Each variable was collected for all
5563 Brazilian municipalities. The data are summarized in Table 1. Access to the databases
used for the calculations is: www.figshare.com/articles/dataset/Analysis_of_the_Eco-effic
iency_of_Agriculture_in_Brazilian_Municipalities_Based_on_the_Stochastic-DEA_Model
/23703174 (accessed on 5 March 2024).

www.figshare.com/articles/dataset/Analysis_of_the_Eco-efficiency_of_Agriculture_in_Brazilian_Municipalities_Based_on_the_Stochastic-DEA_Model/23703174
www.figshare.com/articles/dataset/Analysis_of_the_Eco-efficiency_of_Agriculture_in_Brazilian_Municipalities_Based_on_the_Stochastic-DEA_Model/23703174
www.figshare.com/articles/dataset/Analysis_of_the_Eco-efficiency_of_Agriculture_in_Brazilian_Municipalities_Based_on_the_Stochastic-DEA_Model/23703174


Systems 2024, 12, 136 8 of 17

Table 1. Descriptive statistics of inputs (x) and outputs (y).

Variable Average Median Dev.Pad Maximum Minimum

x1 63,147.55 24,480.80 138,808.71 4,810,916.30 0.001000
x2 4264.12 1476.00 17,276.88 1,107,997.00 0.042275
x3 51,104.04 18,329.00 109,730.62 1,740,972.06 34.035800
x4 2715.28 1768.00 2,944.54 48,246.00 0.001000
x5 3509.74 955.00 9881.26 251,959.00 0.001000
y1 88,650.06 41,829.00 172,537.12 3,258,836.00 0.001000
y2 18,222.27 4773.00 49,424.62 1,125,574.00 8.391978
y3 101,297.16 39,154.58 206,618.66 4,485,536.54 40.518500
y4 0.080088 0.074229 0.041666 1.000000 0.017115

5. Results Analysis DEA

The results show the process of removing the outliers with the bootstrap. Then, the
confidence intervals are analyzed, and the bootstrap is used to construct these intervals. The
type of return to scale of technology (F) was defined to determine which model (CRS or
VRS) would be appropriate for analysis, and the eco-efficiencies of the municipalities were
computed.

5.1. Removing the Outliers

Because the data can present errors, missing data in the 2017 census (a data protection
measure to avoid exposing information certain important properties to third parties) or
low homoscedasticity can cause distortions in the results of the DEA analysis or even the
heterogeneity of DMUs due to technological differences. Therefore, it is necessary to verify
the model’s outliers and remove them so that the result is not biased.

To apply the DEA methodology, the Jackstrap package is used in RStudio to analyze
the outliers and apply the bootstrap (available in the R library at: https://cran.r-project.o
rg/web/packages/jackstrap/index.html (accessed on 1 May 2023)), as proposed by Sousa
and Monte (2020). With subsets of 10% of the total DMUs to form a subset, t, and the number
of repetitions equal to 1000, the average leverage, overall leverage, and withdrawals of the
outliers are calculated, according to the steps described in Section 3.2.

As there is a large amount of data, a possible solution is partitioning the data analysis
by regions (north, northeast, mid-western, southeast, and south). This simplifies the
analysis due to the considerable use of computational processing to remove the outliers in
a unified way. The Jackstrap function is used for analysis, with Heaviside and Kolmogorov–
Smirnov (K–S) criteria for testing which model has a more satisfactory return. In the
southeast region, no outliers are identified for either criterion. Since the Heaviside criterion
presented more restricted data, that method was chosen. At the end of the five regions,
143 DMUs were considered outliers. The results are presented in Table 2.

Table 2. Result of outlier removal.

Region Municipalities Heaviside K–S Municipalities without Outliers

North 450 17 13 433
Northeast 1794 61 21 1733

Mid-Western 467 23 10 444
Southeast 1662 - - 1662

South 1191 42 21 1149

To understand the influence of outliers on the measurements, the density plots present
the frequencies of each region where outliers were found (Figure 1).

https://cran.r-project.org/web/packages/jackstrap/index.html
https://cran.r-project.org/web/packages/jackstrap/index.html
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Figure 1. Density curves of eco-efficiencies by Region.

Therefore, it is verified that the outliers cause misrepresentation of the data, all biased
towards lower eco-efficiency values. The Wilcoxon test comparing the efficiencies with
and without outliers found that the mean and median of the two distributions diverged
(p-value < 2.2 × 10−16, in the regions where outliers were identified). These divergences
become more explicit in the boxplots of the efficiencies for each region (Figure 2).

Figure 2. Bloxplots with and without outliers.

As can be seen in Figures 1 and 2, the averages of both graphs are shifted to a lower
efficiency score, pulling the eco-efficiencies to a lower performance.

Thus, it is understood that the outliers influence the consistency of the results. Their
removal is necessary to analyze the eco-efficiency of the municipalities assertively, resulting
in more robust efficiencies. The 143 DMUs removed represent approximately 2.57% of the
total, thus consolidating 5420 municipalities for efficiency analysis.

5.2. Scale Return Test

From the new sample resulting from the data without outliers, we can analyze the type
of scale return of the data, thus defining which is the best model (CRS or VRS), because the
use of any kind of scale return (constant or variable) can generate inadequate results, and
it can also cause misrepresentations in the analyses by the evaluation being of a different
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nature from the real behavior of the sample. As described in Section 3.3, the first hypothesis,
H0, is that the technology Frontier (F) has constant returns to scale as long as the scale
efficiency, θ̂E, is equal to 1 (CRS); the H1 considers that the technology Frontier (F) has
variable returns to scale as long as the scale efficiency, θ̂E, is less than 1 (VRS). Given the
alternative hypothesis, Ha, we can accept H0 if the estimated value is greater than the
critical value (θ̂E > Cα).

The output orientation is used because the problem deals with undesirable outputs. It
is not attractive to keep the emissions as they are to minimize the resources. Still, it is more
appealing to keep the inputs and maximize the outputs, which, in the case of undesirable
outputs, will be minimized by the model. The data is not partitioned in this step, so the
5420 municipalities return eco-efficiency scores jointly, with 1000 resamples obtained by
bootstrap and α = 0.05.

The estimated value θ̂E = 0.9210 and the critical value Cα = 0.8385 is calculated. Thus,
H0 is accepted and F is considered with Constant Returns to Scale (CRS). Therefore, it is
understood that regardless of the size of the farm, it can be eco-efficient. This is a good
indication for agricultural production since approximately 89% of farmers own a farm of
less than 100 hectares and are responsible for 80% of the rural income.

At first, this may be somewhat difficult to understand, considering that most of the sets
analyzed often have variable scale behavior, especially in the private sector when analyzing
industry [39]. However, from the results, Brazilian agriculture shows different and constant
behavior, which confirms an issue related to the fact that inequality in agriculture does not
occur by the size of the properties but by the technological availability of them [40].

5.3. Statistical Inference of DEA Eco-Efficiency of Municipalities

It is accepted that the technology is CRS and that the production-oriented eco-efficiency
indices are estimated. Due to the abundance of data, the analysis is divided into two parts.
Tables 3 and 4 refer to the results of the application of the DEA methodology with bootstrap
and the ranking of the best and worst eco-efficiency indices by region, where through the
application of the bootstrap the confidence intervals of α = 95% of the eco-efficiency indices
of the values (with correction) are structured. Thus, through the methodology adopted,
more robust and reliable results were found than the simple application of the classic DEA
model (without correction).

Table 3. Ranking of the eco-efficiency index of the best municipalities by region.

Municipalities Region Without Outliers with Correction
95% Confidence Interval

Without Outliers without Correction
Maximun Minimum

Afuá (PA) North 0.9340 0.9953 0.9160 1.0000
Presidente Fig. (AM) North 0.9336 0.9905 0.9130 0.9999

Manaus (AM) North 0.9295 0.9898 0.8981 0.9999
Porto Walter (AC) North 0.9195 0.9498 0.8938 0.8620

Pimenta Bueno (RO) North 0.9150 0.9698 0.8895 0.8346

Araripina (PE) Northeast 0.9818 0.9914 0.9739 0.7597
Santo Estêvão (BA) Northeast 0.9814 0.9931 0.9715 0.9499

Macaúbas (BA) Northeast 0.9806 0.9974 0.9728 0.9474
Itapipoca (CE) Northeast 0.9792 0.9958 0.9697 0.9736

Iguatu (CE) Northeast 0.9773 0.9893 0.9683 0.7265

Nova Lacerda (MT) Center-West 0.9618 0.9947 0.9446 1.000
Ribeirãozinho (MT) Center-West 0.9533 0.9947 0.9214 0.8420

Inocência (MS) Center-West 0.9528 0.9952 0.9307 0.6985
Turvânia (GO) Center-West 0.9520 0.9953 0.9304 0.8385
Edealina (GO) Center-West 0.9519 0.9888 0.9188 0.7847

Nova Campina (SP) Southeast 0.9004 0.9261 0.8780 0.6447
Itatinga (SP) Southeast 0.8888 0.9539 0.8621 0.7763

Cananéia (SP) Southeast 0.8656 0.9513 0.8467 0.6580
Josenópolis (MG) Southeast 0.8502 0.9521 0.8321 0.7097
Carbonita (MG) Southeast 0.8432 0.9732 0.8373 0.6688

Caxias do Sul (RS) South 0.9400 0.9912 0.9094 0.8493
Giruá (RS) South 0.9221 0.9663 0.8998 0.8099

Barão do Tri. (RS) South 0.9174 0.9949 0.9119 0.7158
Mafra (SC) South 0.9165 0.9755 0.8947 0.8988

Congonhinhas (PR) South 0.9163 0.9935 0.8976 0.7499
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Table 4. Ranking of the eco-efficiency index of the best municipalities by region.

Municipalities Region Without Outliers with Correction
95% Confidence Interval

Without Outliers without Correction
Maximun Minimum

Aurora do Pará (PA) North 0.6182 0.6510 0.6056 0.9230
Ariquemes (RO) North 0.6160 0.6855 0.6001 0.9643

Conceição do A. (PA) North 0.5986 0.6481 0.5841 0.8317
Rio Sono (TO) North 0.5962 0.6442 0.5796 0.8541
Amajari (RR) North 0.5169 0.5786 0.4997 1.0000

Mucugê (BA) Northeast 0.7354 0.7568 0.7259 0.9841
Aldeias Altas (MA) Northeast 0.7214 0.7244 0.7179 0.9053

Açailândia (MA) Northeast 0.7200 0.7573 0.7000 0.9223
Itinga do Mar. (MA) Northeast 0.7164 0.7410 0.6944 0.9509
Muquém do S.F (BA) Northeast 0.6867 0.7156 0.6704 0.8742

Antônio João (MS) Center-West 0.7037 0.7345 0.6882 0.8650
Planaltina (GO) Center-West 0.6836 0.7204 0.6660 0.8915
Amambai (MS) Center-West 0.6758 0.6953 0.6581 0.8442

Nova Andradina (MS) Center-West 0.6474 0.6676 0.6339 0.7609
Nova A. do Sul (MS) Center-West 0.6447 0.6709 0.6244 0.8676

Jaíba (MG) Southeast 0.4163 0.4764 0.4191 0.8162
Morro Agudo (SP) Southeast 0.4139 0.4874 0.4218 0.6971

Paraguaçu Paul. (SP) Southeast 0.4124 0.4679 0.4043 0.7646
Ecoporanga (ES) Southeast 0.4105 0.4996 0.4345 0.8066

Ataléia (MG) Southeast 0.3781 0.4490 0.3981 0.7420

Eldorado do Sul (RS) South 0.5720 0.6321 0.5583 0.8259
Santo Inácio (PR) South 0.5667 0.6041 0.5516 0.7305

Iguaraçu (PR) South 0.5383 0.6088 0.5325 0.8105
Colorado (PR) South 0.5130 0.5448 0.5016 0.7438
Colorado (RS) South 0.5130 0.5448 0.5016 0.7530

The municipalities listed in Table 3 are the highest ranked, thus providing valuable
information on which municipalities should be considered as benchmarks so that other
municipalities can improve their practices in terms of economic and environmental outputs.
Table 4 shows which municipalities are in a worrying situation, serving as a reference
point for other municipalities to check whether they are close to the least eco-efficient
municipalities.

It is verified for the inefficient DMUs that the uncorrected values benefit the eco-
efficiency scores, making the inefficient DMUs’ scores higher compared to the corrected
scores of the same DMUs. Also, the uncorrected eco-efficiency scores of the efficient DMUs
are underestimated; that is, they presented values below the scores with corrected values.
One can visualize this difference in the corrected and uncorrected scores in Figure 3.

Figure 3. Region eco-efficiency density chart.

The regions had higher means, medians, and interquartile ranges of the uncorrected
data than the corrected data. In this way, the most robust data are obtained. Table 5 contains
the descriptive statistics of the efficiencies calculated with outliers, without outliers, and
with correction without outliers.
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Table 5. Average, median, and range of eco-efficiencies.

Region
Descriptive Statistics

North Northeast Center-West Southeast South

Mean with original outlier 0.7343 0.8909 0.6408 0.9589 0.8393
Mean without outlier without correction 0.8355 0.9225 0.8742 0.7265 0.8000

Mean without outliers with correction 0.7839 0.9067 0.8348 0.6802 0.7526
Median with original outlier 0.7571 0.8912 0.6259 0.9661 0.8428

Median without outlier without correction 0.8250 0.9253 0.8649 0.7228 0.7894
Median without outliers with correction 0.7881 0.9125 0.8359 0.6915 0.7526

Amplitude with original outlier 0.2801 0.0650 0.2317 0.0309 0.1112
Amplitude without outlier without correction 0.0529 0.0380 0.0918 0.0753 0.1027

Amplitude without outlier with correction 0.0838 0.0532 0.0761 0.0829 0.0864

Given the average eco-efficiency of the results from the corrected data for the north,
northeast, center-west, southeast, and south regions of 0.7839, 0.9067, 0.8348, 0.6802, and
0.7526, respectively, it indicates a possibility for the municipalities of improvements of
21.62%, 9.33%, 16.52%, 31.98%, and 24.74% from each region, which results in an average
increase of 20.84% of gross revenue and natural area on farms. There is a decrease in
greenhouse gas emissions from the agricultural sector and Shannon–Weaver diversity
index, with an average value of 20.84%.

Thus, it is verified that the removal of the outliers, the parameterization of the data,
and the correction of the data generate more robust efficiency scores, thus bringing the
results closer to the reality of each municipality and Brazilian region.

There is an analysis to define which region has the most eco-efficient municipalities;
however, it would be unfair to compare the region that has the most eco-efficient munic-
ipalities, given that some regions have more than twice as many municipalities as other
regions. One way is to compare eco-efficiency oriented to output and the selection of the
five best DMUs in each Region.

In the comparison of the ten best municipalities, it is verified that the southeast, south,
and north regions were the ones that came out best, respectively. The northeast and mid-
western regions (which did not appear among the ten best municipalities in Table 6) had
the worst performance.

Table 6. Eco-efficiency of the top-ten municipalities.

Municipalities Region Without Outliers with Correction
95% Confidence Interval

Without Outliers without Correction
Maximun Minimum

Araripina (PE) Northeast 0.9818 0.9914 0.9739 0.9660
Santo Estêvão (BA) Northeast 0.9814 0.9931 0.9715 0.9569

Macaúbas (BA) Northeast 0.9806 0.9974 0.9728 0.9849
Itapipoca (CE) Northeast 0.9792 0.9958 0.9697 0.9933

Iguatu (CE) Northeast 0.9773 0.9893 0.9683 0.9703
Nova Lacerda (MT) Mid-West 0.9618 0.9947 0.9446 0.9894
Ribeirãozinho (MT) Mid-West 0.9533 0.9947 0.9214 0.8947

Inocência (MS) Mid-West 0.9528 0.9952 0.9307 0.9087
Turvânia (GO) Mid-West 0.9520 0.9953 0.9304 0.8886
Edealina (GO) Mid-West 0.9519 0.9888 0.9188 0.8639

Regarding the best-placed municipalities, the values with corrections presented values
above the uncorrected scores, and some DMUs presented values above the corrected score.
By the confidence interval, we can differentiate the eco-efficiency among these units. Thus,
a confidence interval for the scores is defined.

The overall average of the municipalities is 0.7891 (value without outliers and with
confidence bias), which is different from the regional averages of the eco-efficiency index of
the north (0.7839), northeast (0.9067), center-west (0.8348), southeast (0.6802), and south
(0.7526) regions. An interesting point of the regional averages is that the northeast region
presents, on average, higher score values than all regions, which shows that the region,
despite having few eco-efficient municipalities, is closer to the productive frontier compared
to other regions; this shows a greater homogeneity between the areas of agricultural activity
in the region.
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The southeast and the south have the lowest averages per region of 0.6802 and 0.7526,
respectively, below the general average, which shows that the municipalities that are not
part of the productive frontier of these regions are more distant from the eco-efficient
frontier, pointing to a greater heterogeneity between the areas of agricultural activity in
the region.

This is the case of the Ataléia (MG) municipality, with an eco-efficiency score of 0.3782.
Therefore, the southeast and south regions present good performances for some DMUs but
also represent the lowest municipal performances.

5.4. Geocoding of Eco-Efficiency Score Data in Brazilian Municipalities

Geocoding was used to describe different production and sustainability patterns in
municipalities and regions. In this way, the greater the homogeneity between the municipal-
ities of a region, the better distributed the resources and sustainable measures are because
the municipalities are equally efficient, as well as pointing to a lesser influence of location
on eco-efficiency; thus, in this region, improvements in policies and incentives could occur
at the state or regional level, different from the heterogeneous areas, which demonstrate
that some municipalities are not very eco-efficient in comparison with neighboring mu-
nicipalities that have similar resources and conditions in terms of location, climate, and
precipitation, among other external factors that can influence production, so policies and
tax incentives must be evaluated on a more individual basis for each municipality as they
address a local problem.

This can be visualized in the geocoding of eco-efficiency score data in municipalities,
generated using the geobr package from RStudio (Available in the R library at https:
//cran.r-project.org/package=geobr (accessed on 5 March 2024) by Pereira et al. (2022)).
It pulls data from IBGE to carry out the geocoding; this way, the scores calculated for
eco-efficiency and the geocoding information available from IBGE from 2017 are combined,
and the available scale graphs are plotted in Figure 4. The blank sites are the missing
municipalities that do not present eco-efficiency scores because they are considered outliers.

Figure 4. Geocoding of eco-efficiency scores per region.

In the north region, the most inefficient DMUs are located in the coastal part and close
to the northeast region; as the location moves towards the inner part of the region under
analysis, the eco-efficiency scores tend to increase. However, the scale of the map as a
whole also shows homogeneity.

https://cran.r-project.org/package=geobr
https://cran.r-project.org/package=geobr
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In the northeast region, as in the north region, the scores of the most inefficient DMUs
are closer to the coast or close to the borders of other states; however, this does not present
a significant scale contrast, presenting more homogeneous scores.

In the center-west region, we notice a greater heterogeneity among the scores compared
to the north and northeast regions, with a greater contrast among the scales of each
municipality. That is, both the efficient and the less efficient DMUs are randomly distributed
by the geographic spacing. However, the scale of the municipalities in this region mainly
presents scores closer to 1.

In the southeast region, a more excellent contrast is visualized, which points to high
heterogeneity in the data between the eco-efficiency score scales and a tendency for the
most inefficient DMUs to be located in the border areas of the mid-western and northeast
regions. In contrast, efficient DMUs tend to be located in the inner part of the region.

In the south, as in the southeast, the eco-efficiency scores show greater heterogeneity
among the municipalities, and the scores tend to be higher in the southern part of the graph.

6. Conclusions

In this work, we use the bootstrap method to verify the model’s outliers and estimate a
confidence bias of the efficiencies calculated for 5420 Brazilian municipalities. The Jackstrap
package is used to identify and eliminate the outliers that influence the quality of the results.
In theory, the DEA model is sensitive to outliers, and this can be proven by the present
research, which demonstrates that the outliers cause a shift in the average efficiency scores
to lower values compared to the efficiency scores with the presence of outliers. Then, a
scale-back test was performed to identify the technology (F) behavior of the model; as
a result, the CRS model was obtained to estimate the efficiency scores by means of the
boot.sw98 function.

As a result, differences were obtained between the density curves of the efficiency sets
of the data with the presence of outliers and the data without outliers for all regions, except
for the southeast region, where there are no outliers. This resulted in the elimination of
143 DMUs from the original data set, which shifted the mean of the density curves. This
shows that the presence of these outliers biased the results and, therefore, great caution
is necessary to interpret results when they are present in the model, highlighting the
importance of using bootstrap in the analysis.

The definition of the type of scale return as the CRS model is a relevant result for
understanding Brazilian agriculture, where there is a large availability of land distributed
heterogeneously (unevenly) among most rural producers because it was found that the
small, medium, and large producers can become equally eco-efficient. This becomes more
evident when the eco-efficiency scores of the municipalities are calculated, and the critical
value is estimated compared to the scale of eco-efficiency. It is analyzed that both large
and small producers were considered eco-efficient, which affirms the ability of the small
producer to become eco-efficient. However, it is essential to note that most municipalities
considered eco-efficient in the analysis were large and medium-sized because they have
greater access to technology.

The analysis allows the ranking of the ten most eco-efficient municipalities, these
being Araripina (PE), Santo Estêvão (BA), Macaúbas (BA), Itapipoca (CE), Iguatu (CE),
Nova Lacerda (MT), Ribeirãozinho (MT), Inocência (MS), Turvânia (GO), and Edealina
(GO), respectively, with highlights for the northeast and mid-western regions, Therefore,
through the descriptive statistics and the geocoding of eco-efficiency score maps, it is
understood that the regions that present higher eco-efficiency scores in the ranking also
show a greater homogeneity in the scores compared to other municipalities in the same
area, which highlights that the municipalities in the northeast and mid-western region
(better placed in the ranking) are at a closer level for eco-efficiency than in other areas.

Among the municipalities, one looks at the scores calculated with and without cor-
rection, analyzes the need to establish a confidence interval for the correct classification
of these DMUs, and demonstrates the need to be careful when calculating eco-efficiency
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scores deterministically, with care in the treatment of the data, removal of the outliers,
parameterization of the data, and use of the bootstrap to establish a confidence interval.

As a suggestion for future studies, it would be interesting to add a variable corre-
lated with the country’s consumption of fertilizers to analyze the efficiency of agriculture.
There are studies in the European Union on efficiency considering the production of
fertilizers [41], given the events of recent years involving the Russian war with Ukraine,
which has had an impact on the price of fertilizers for agriculture in Brazil. Therefore, it
would be relevant for further research.

Another possible future work is to make estimates without undesirable results and
then compare the current scenario with a hypothetical scenario. Given the depth required
for this type of analysis, considering the findings presented in the results, it is possible
to present questions and insights regarding the improvements that can be made by each
municipality, both in terms of financial gains and the reduction of undesirable emissions.
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