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Abstract: The Müller-Wichards model (MW) is an algebraic method that quantitatively estimates
the performance of sequential and/or parallel computer applications. Because of category theory’s
expressive power and mathematical precision, a category theoretic reformulation of MW, i.e., CMW,
is presented in this paper. The CMW is effectively numerically equivalent to MW and can be used to
estimate the performance of any system that can be represented as numerical sequences of arithmetic,
data movement, and delay processes. The CMW fundamental symmetry group is introduced and
CMW’s category theoretic formalism is used to facilitate the identification of associated model
invariants. The formalism also yields a natural approach to dividing systems into subsystems in
a manner that preserves performance. Closed form models are developed and studied statistically,
and special case closed form models are used to abstractly quantify the effect of parallelization upon
processing time vs. loading, as well as to establish a system performance stationary action principle.

Keywords: system performance modelling; categorification; performance functor; symmetries;
invariants; effect of parallelization; system performance stationary action principle

1. Introduction

In the late 1980s, D. Müller-Wichards proposed a concise novel approach for estimating the total
performance of computer-based (but machine independent) applications by algebraically combining
the known performance estimates of the individual arithmetic, data movement, and delay elements
that comprise the applications in a manner that also accounts for various degrees of parallelism
that can occur during processing [1]. The essence of the mathematical framework upon which the
Müller-Wichards model (MW) is based is abstracted by the expression ϕ : H → P , where H is a monoid
(i.e., a semigroup with identity) representation of the application, P is the Müller-Wichards performance
algebra (also a monoid), and ϕ is a monoid homomorphism. The image ϕ(h) in P of a single application
element h in H provides a numerical performance measure for h. The total numerical performance
estimate for the application results naturally from the associative binary operations in H and P and
the homomorphism property of ϕ, which algebraically combines the performance estimates for each
application element in H.

Every area of mathematics (e.g., group theory, topology) is described by numerous definitions,
theorems, and constructions. However, many common mathematical concepts occur naturally with
only slight variation in the various areas of mathematics. Category theory is that branch of mathematics
which identifies and studies these common concepts and provides formal mechanisms for mapping
them from one area of mathematics to another. More specifically, a category (e.g., the category of sets)
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consists of a class of objects (e.g., sets), morphisms between objects (e.g., maps between sets), an identity
morphism for each object (e.g., the set identity map), and a rule for associatively composing morphisms
(e.g., composition of maps). Functors provide formal maps between categories (e.g., from the category
of groups to the category of sets) by associating objects and morphisms in different categories subject
to the constraints that morphism composition and object identities are preserved.

Because of its generality category, theory has found application in recent years in such diverse
areas as physics (e.g., [2–5]), design specification (e.g., [6,7]), data fusion (e.g., [8]), computer
science (e.g., [9]), computer security (e.g., [10,11]), systems engineering (e.g., [12]), manufacturing
(e.g., [13]), theoretical biology (e.g., [14–16]), network theory (e.g., [17]), multi-agent systems models
(e.g., [18]), concurrent system design verification (e.g., [19]), emergence (e.g., [20]), and artificial general
intelligence (e.g., [21]). Motivated by category theory’s mathematical precision and expressive power,
this paper introduces a new category theoretic application useful for numerical systems engineering
modelling and analysis via a very simple straightforward categorification of MW for the case that the
application monoid H is a free monoid generated by a finite set of basis processes, i.e., H is the set of
all finite sequences of basis processes, including the empty sequence-where each sequence represents
a system and each basis process corresponds to either an arithmetic process, a data movement process,
or a delay process-and catenation of systems serves as the associative binary operation. The categorified
MW-denoted by CMW-is comprised of three components: a single object category of systems that is
specified by H and has elements of H as its set of morphisms; a single object performance category that is
specified by P and has the elements of P as its set of morphisms; and a performance functor specified
by ϕ with the category of systems as its domain and the performance category as its codomain.

CMW is effectively numerically equivalent to MW with the added benefit that the formalism
introduced by categorification provides a precise vocabulary useful for identifying and discussing
certain fundamental properties of both the model and the systems modelled by it. In particular,
the CMW fundamental symmetry group is introduced and the category theoretic formalism is used
to facilitate the identification of associated symmetry invariants found in the model. In addition,
the formalism provides a natural approach to system factorization-i.e., dividing a system into subsystems
in a manner that maintains its integrity-i.e., preserves the performance of the undivided system.

As indicated above, the objective of this paper is to provide a categorified version of the MW
model and exploit the associated category theoretic vocabulary to provide additional insights into
properties of the MW model, as well as the systems modelled by it. In order to make this paper
reasonably self-contained, relevant definitions, terminology, and preliminary lemmas are summarized
in the next section (for additional depth and clarification the reader is invited to consult such references
as [22–24]). The remainder of this paper is organized as follows: The Müller-Wichards performance
categories are defined, and their category theoretic properties discussed in Section 3. The category
of systems and the Müller-Wichards performance functors are introduced in Section 4. The CMW
fundamental symmetry group is defined and its associated model invariants are identified in Section 5.
System factorization and a “product of categories” performance model are discussed in Section 6.
Closed form models are developed in Section 7 and several aspects of closed form models are studied
statistically in Section 8. Special case closed form models are developed in Section 9. These special case
closed form models are applied in Section 10 to abstractly demonstrate the effect of parallelization on
system processing time vs. loading and to obtain a stationary action principle for system performance.
Concluding remarks comprise the final section of this paper. To avoid disrupting the flow of the text,
proofs for all theorems (including those for the special case closed form models) are consigned to
Appendix A.
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2. Definitions, Terminology, and Preliminary Lemmas

2.1. Categories and Morphisms

A category C consists of a collection ObjC of objects such that ([22], p. 2)

1. For every pair of objects X, Y ∈ ObjC there is a (possibly empty) set MorC (X, Y) of morphisms
from X to Y;

2. For any X, Y, Z ∈ ObjC there is a composition “◦” of morphisms

◦ : MorC(X, Y)×MorC(Y, Z)→ MorC(X, Z) (1)

given by ( f , g) 7→ g ◦ f with the properties:
3. For every X ∈ ObjC there is an identity morphism 1X ∈ MorC(X, X) such that for

f ∈ MorC(X, Y) and g ∈ MorC(Y, X), f ◦ 1X = f and 1X ◦ g = g;
4. When defined, composition of morphisms is associative, i.e., ( f ◦ g) ◦ h = f ◦ (g ◦ h).

To illustrate this definition, consider the following canonical examples of categories:

• The category Set where ObjSet is the collection of all sets, the morphisms are the ordinary
mappings between sets, and ◦ is the usual composition of maps.

• The category Grp where ObjGrp is the collection of all groups, the morphisms are the ordinary
group homomorphisms, and ◦ is the usual composition of homomorphisms.

It is easily verified that Set and Grp satisfy items 3 and 4 above.
A category C is a subcategory of a category D if ([22], p. 7): every object of C is an object of D;

for all objects X, Y of C, MorC(X, Y) ⊆ MorD(X, Y); the composition of two morphisms in C is the
same as their composition in D; and for all objects X of C, 1X is the same in D as it is in C. If ObjC
is a set, then C is a small category ([22], p. 6) and if MorC(X, Y) 6= ∅ for all X, Y ∈ ObjC, then C is
a connected category ([22], p. 19).

Morphisms are classified in a variety of ways according to their composition properties. Of interest
here are monic and epic morphisms. A morphism f is monic ([22], p. 11) if f ◦ g = f ◦ h implies g = h
and it is epic ([22], p. 12) if g ◦ f = h ◦ f implies g = h. For example, in the category Set injective maps
are monic morphisms and surjective maps are epic morphisms. A morphism that is both monic and
epic is a bimorphism ([22], p. 15). A morphism h is factorizable ([22], p. 43) if h = f ◦ g, where f is monic
and g is epic.

Another useful notion involving morphisms is the sieve ([25], p. 206) on an object. For some
X ∈ ObjC consider the set of morphisms ΨX = { f : f ∈ MorC(X, Y) f or all Y ∈ ObjC} and observe
that ΨX is closed under left composition, i.e., g ◦ f ∈ ΨX when f ∈ ΨX and g ∈ MorC(Y, Z) for any
Z ∈ ObjC. An X−sieve is the subset Ψ ⊆ ΨX that is closed under left composition, i.e., g ◦ f ∈ Ψ when
f ∈ Ψ. Note that there are at least two sieves for every X ∈ ObjC, namely ΨX and the empty sieve ∅.

2.2. Functors

Functors can be regarded as morphisms between categories and-in a sense-they provide a “picture”
of what one category looks like in another. If F is a covariant functor-or simply a functor (contravariant
functors are not used here) ([22], p. 73)-from category C to category D (denoted F : C→ D ), then it
assigns to every X ∈ ObjC an FX ∈ ObjD and to every f ∈ MorC(X, Y) an F f ∈ MorD(FX, FY)
such that:

1. F1X = 1FX for every X ∈ ObjC; and
2. When f ◦ g = h is defined in C, then F f ◦ Fg = Fh is defined in D and F f ◦ Fg = F( f ◦ g) = Fh.

F is full ([22], p. 97) if for all X, Y ∈ ObjC the mapping MorC(X, Y)→ MorD(FX, FY) defined
by f 7→ F f is surjective, and is faithful ([22], p. 97) if this mapping is injective. Simple examples of
functors include:
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• The identity functor 1C : C→ C which makes the assignments 1CX = X for every X ∈ ObjC and
1C f = f for every f ∈ MorC(X, Y).

• The forgetful functor U : Grp→ Set which assigns to every group G ∈ ObjGrp its underlying set
UG ∈ ObjSet and to each homomorphism f ∈ MorGrp(G, H) the set map U f ∈ MorSet(UG, UH)

(i.e., U forgets group structure going from Grp to Set).

It can be determined by inspection that these functors satisfy the required properties given above
by items 1 and 2.

Preservation and reflection are two important features of functors. A functor F : C→ D preserves
a categorical property ([22], p. 97) π if-whenever an object, morphism, or diagram has property π

in C, then the image under F of that object, morphism, or diagram has property π in D. Similarly,
F reflects property ([22], p. 97) π if-whenever the image under F of an object, morphism, or diagram
has property π in D, then that object, morphism, or diagram has property π in C.

It is readily deduced from item (2) that, in general, functors preserve commutative triangles of
morphisms. For example, if Figure 1 is the commutative triangle for f ◦ g = h in C, then it must be
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F in D. Note that Figure 1 is a factorization of h when f is monic and g is epic.

2.3. Preliminary Lemmas

The following lemmas are needed to prove and discuss the main results of this paper. They have
been established elsewhere and are stated here without proof for the reader’s convenience.

Lemma 1 [9]. Any monoid M specifies a category M with M as its only object, the elements of M as its only
set of morphisms, and the binary operation on M as its composition of morphisms.

Lemma 2 [9]. Each monoid homomorphism f : M→ N specifies a functor F : M→ N with FM = N and
Fx∈ MorN(N, N) = N for x ∈ MorM(M, M) = M such that Fx ◦ Fy = Fz in N when x ◦ y = z in M.

Lemma 3 [24]. Let FX be the free monoid on a set X and S be any monoid. If ϕ0 is any mapping of X into S,
then ϕ0 can be extended in one and only one way to a homomorphism ϕ of FX into S as ϕ(x1x2 · · · xn) =

ϕ0(x1)ϕ0(x2) · · · ϕ0(xn).

Lemma 4 [22]. Every faithful functor reflects monics, epics, and commutative triangles.
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Lemma 5 [24]. A free monoid FX is cancellative (i.e., uv = uw and vu = wu implies v = w for u, v, w ∈ FX)
and equidivisible (i.e., uv = wz implies there exists an x such that either u = wx and z = xv or w = ux
and v = xz for u, v, w, x, z ∈ FX).

As an example of equidivisibility, suppose uv = wz is a commutative square in a free monoid
with u = a1a2a3a4a5, v = a6a2a4a7, w = a1a2, and z = a3a4a5a6a2a4a7. Then there exists an x = a3a4a5

such that u = wx and z = xv.

3. The Müller-Wichards Performance Categories

As mentioned in the introduction, in 1988 Dieter Müller-Wichards posited a (computing)
machine independent “performance algebra” designed to estimate the total performance of a specific
implementation of an application on a machine using the (known) performance characteristics of
its individual building blocks. This approach enabled trade-off studies and analyses of applications
using its various decompositions and implementations [1]. As indicated above, similar studies and
analyses can be performed using CMW to estimate the numerical performance of any system that can
be represented as sequences of arithmetic, data movement, and delay processes.

The Müller-Wichards performance algebra consists of a set whose elements are ordered in triples
along with an associative binary operation, which defines how the elements of the set are to be
multiplied. These elements are partitioned into three distinct subsets depending upon whether they
are arithmetic, data movement, or delay elements. The first and second entries in each triple correspond
to a performance value (e.g., a processing or data movement rate) and a weight value (e.g., the number
of operations to be performed or the amount of data to be moved), respectively (delay elements are
a special case—see below). The third entry is either a 0-which defines the element as a data movement
or delay element-or a 1-which defines the element as an arithmetic element. Multiplication of an
arithmetic element by any element produces another arithmetic element, whereas the product of a data
movement element with a data movement element or a delay element is a data movement element.
The set of delay elements is closed under this multiplication.

Multiplication is defined in terms of a positive real valued parameter q, which provides a family
of (“skewed” time) results that interpolate between completely sequential and completely parallel
execution of the associated application. The value of this parameter can be selected to account for
execution time “speedup” or for degrees of machine and application parallelism.

The sets that define the Müller-Wichards performance algebra are:

R+ ≡ the set of positive real numbers, (2)

C ≡ R+ ×R+ × {1} ≡ the set of arithmetic elements, (3)

D ≡ R+ ×R+ × {0} ≡ the set of data movement elements, (4)

V ≡ (R+ ∪ {∞})× {i} × {0} ≡ the set of delay elements , (5)

where i =
√
−1,

℘ ≡ C ∪ D ∪V, (6)

and
℘′ ≡ C ∪ D. (7)

Each element in C, D, and V is a triple g = (r, w, u), where r is a performance value, w is a weight
value, and u ∈ {0, 1} determines the element type (i.e., C, D, or V).

Let 1 ≤ q ≤ ∞, and define the operation ⊗q as follows:

1. If g1 = (r1, w1, u1) ∈ ℘ and g2 = (r2, w2, u2) ∈ ℘′, then g1 ⊗q g2 = (r, w, u), where

u = u1 ∨ u2, (8)
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w = Re[u1w1 + u2w2 + ¬u(w1 + w2)], (9)

and

r =


|w|[(

|w1|
r1

)q
+

(
|w2|

r2

)q]1/q , q < ∞

|w|

max
[
|w1|

r1
, |w2|

r2

] , q = ∞
(10)

2. If g1, g2 ∈ V, then g1 ⊗q g2 = (r, i, u), where u and r are given by Equations (8) and
(10), respectively.

The elements g1, g2 are comparable if g1, g2 ∈ C or g1, g2 ∈ D or g1, g2 ∈ V. If g1, g2 ∈ ℘,
then g1 ≤ g2 when g1, g2 are comparable and either |w2|

r2
< |w1|

r1
or |w2|

r2
= |w1|

r1
and r2 ≥ r1.

Theorem 1. (℘,⊗q) is a commutative monoid Mq with identity e = (∞, i, 0).

Since (℘,⊗q) is the monoid Mq, then (℘,⊗q) specifies a category according to the prescription
given by the next theorem.

Theorem 2. (℘,⊗q) specifies the Müller-Wichards performance category ℘q with Mq as its only
object, Mor℘q

(
Mq, Mq

)
= ℘ as its only morphism set, and composition of morphisms defined by ⊗q.

In order to identify additional categorical properties derived from the algebraic structure of
(℘,⊗q), let ℘C ≡ C ∪ {e}, ℘D = D ∪ {e}, ℘CD = ℘′ ∪ {e}, and ℘V = V.

Theorem 3.
(
℘X

q ,⊗q
)

, X ∈ {C, D, CD, V}, are submonoids of (℘,⊗q).

This leads to the following result:

Theorem 4. If X ∈ {C, D, CD, V}, then
(
℘X ,⊗q) specifies the Müller-Wichards performance category ℘X

q

with MX
q as its only object, Mor℘X

q

(
MX

q , MX
q

)
= ℘X as its only morphism set, and composition of morphisms

defined by ⊗q.

Note that although Mor℘X
q

(
MX

q , MX
q

)
⊂Mor℘q

(
Mq, Mq

)
, ℘X

q is not a subcategory of ℘q because

MX
q 6= Mq.

Theorem 5. Each of the categories ℘q and are small and connected.

Theorem 6. Every morphism in ℘X
q , X ∈ {C, D, V}, is a bimorphism.

The following result is included for completeness and is a category theoretic statement of the fact
that multiplication in the performance algebra is biased towards arithmetic elements, i.e., the product
of any element in set ℘ ≡ C ∪ D ∪V with an element in set C is an element in C.

Theorem 7. The set C is an Mq - sieve in category ℘q.

4. The Category of Systems and the Müller-Wichards Performance Functors

In this section, the category of systems is obtained from the free monoid IA generated by a finite
set A of basis processes. Although this approach is similar to that employed in [1] to define H,
for simplicity the catenation operation in IA is used here instead of the two operations⊗ and⊕ used in
H to distinguish between portions of an application that have sequential and parallel implementations.
A product of categories construction will be introduced for this purpose in Section 6.
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Recall from Section 1 that IA consists of all finite sequences of basis processes of A called systems.
The catenation of systems u, v ∈ IA is the system w = uv ∈ IA and u and v are subsystems of w.
The empty system ε ∈ IA is the system with no basis processes and serves as the identity element for
IA with εu = uε = u.

The category of systems=A associated with a basis process set A is obtained from IA, as prescribed
in the following theorem.

Theorem 8. IA specifies the category of systems =A with FA as its only object, Mor=A(FA,FA) = IA as its
only morphism set, and composition of morphisms defined by catenation of systems.

Thus, a morphism in =A is a system and composition of morphisms in =A is catenation of systems.

Theorem 9. =A is a small connected category.

Theorem 10. Every morphism in =A is a bimorphism.

Any functor from =A into ℘q or ℘X
q , X ∈ {C, D, CD, V}, is referred to here as a Müller-Wichards

performance functor for =A and the performance for any system in =A is its image under
a Müller-Wichards performance functor in ℘q or ℘X

q , X ∈ {C, D, CD, V}. These functors are defined
by unique extensions of gauge maps from the set of basis processes into the associated Müller-Wichards
performance monoids as described by the following theorem (here “gauge” emphasizes the fact that
these maps set the performance gauge for each basis process).

Theorem 11. For any gauge map ϕ0 : A→ (℘,⊗q) [ ϕ0 : A→
(
℘X ,⊗q), X ∈ {C, D, CD, V} ] there is a

unique Müller-Wichards performance functor Fϕ0 : =A → ℘q

[
FX

ϕ0
: =A → ℘X

q

]
such that

Fϕ0 a1a2 · · · an = ϕ0(a1)⊗q ϕ0(a2)⊗q · · · ⊗q ϕ0(an) (11)

[ FX
ϕ0

a1a2 · · · an = ϕ0(a1)⊗q ϕ0(a2)⊗q · · · ⊗q ϕ0(an) ] (12)

where a1a2 · · · an ∈ Mor=A(FA,FA).

5. The CMW Fundamental Symmetry Group and Associated Invariants

Based upon the discussion above, it is clear that CMW can be abstracted by the functor expressions
Fϕ0 : =A → ℘q and FX

ϕ0
: =A → ℘X

q , X ∈ {C, D, CD, V} . In this section, the CMW fundamental
symmetry group is introduced and associated model invariants (which at an abstract level can be
viewed as invariants of the modelled system) are identified. Recall that, in general, a symmetry
associated with a “situation” is related to an “immunity to change” for some aspect of the “situation”.
In order for a “situation” to have a symmetry: (i) the aspect of the “situation” remains unchanged
or invariant, when a change or symmetry transformation acts upon the “situation”; and (ii) it must
be possible to perform the change, although the change does not actually have to be performed [26].
Here, symmetry and symmetry transformation are used interchangeably.

An automorphism of=A is a bijection α : Mor=A(FA,FA)→ Mor=A(FA,FA) , which preserves the
catenation operation in IA. Since Mor=A(FA,FA) remains unchanged under α and it is possible-but
not necessary-to apply α, then items (i) and (ii) above are satisfied and α is a =A symmetry. The set of
all such symmetries under the operation composition of bijections forms the automorphism group
Aut(=A). This group is the CMW fundamental symmetry group.
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Theorem 12. The CMW fundamental symmetry group is isomorphic to the group of permutations of the set A
of basis processes.

The following corollary is obvious and is stated without proof.

Corollary 1. |Aut(=A)| = |A|!

A CMW invariant is a CMW property that remains unchanged after every symmetry in the CMW
fundamental symmetry group has been applied to Mor=A(FA,FA).

Theorem 13. The images of =A in ℘q and ℘X
q under the Müller-Wichards performance functors Fϕ0

and FX
ϕ0

, X ∈ {C, D, CD, V}, respectively, are CMW invariants.

Theorem 14. If ∆ is a commutative triangle in =A , then ∆ and its image under Müller-Wichards performance
functors are CMW invariants.

6. System Factorization and Product Performance Models

Recall from Section 2 that a morphism h is factorizable if h = f ◦ g, where f is a monic morphism
and g is an epic morphism. In the category of systems, this means that when a system w is factorizable
as w = uv, then w can be divided into the two subsystems u and v without affecting the order and
content of the base processes in w. The integrity of a factorization is maintained if the performance of w is
identical to that of uv.

Theorem 15. Every commutative triangle in =A corresponds to a system factorization, which maintains its
integrity.

A commutative square in =A corresponds to an equation uv = wz, where u, v, w, z ∈
Mor=A(FA,FA).

Theorem 16. For every commutative square in=A there are two systems in the square, which have factorizations
that maintain their integrity.

Corollary 2. Whenever uv = wz is a commutative square in =A , then either FX
ϕ0

u and FX
ϕ0

z or FX
ϕ0

w and FX
ϕ0

v
are factorizable in ℘X

q , X ∈ {C, D, V}.

Corollary 3. If Fϕ0 u = Fϕ0 v⊗q Fϕ0 w , thenu is factorizable in =A and maintains its integrity when Fϕ0 is
faithful.

Results similar to Corollary 3 also apply for FX
ϕ0

, X ∈ {C, D, CD, V}.
Additional modelling flexibility can be obtained using products of categories when a system

is comprised of subsystems that have different sequential and/or parallel characteristics. Here,
two basis sets A and B of processes and two morphism compositions ⊗q and ⊗p form the product
category of systems =AB = =A ×=B and the associated Müller-Wichards product performance category
℘qp = ℘q × ℘p, respectively. For the product category =AB the single object is the pair Obj=AB =

Obj=A ×Obj=B = {(FA,FB)} ≡ {FAB}, the set of morphisms are ordered pairs Mor=AB(FAB,FAB) =

Mor=A(FA,FA)× Mor=B(FB,FB) such that for ( fA, fB) ∈ Mor=AB(FAB,FAB), fA : FA → FA and
fB : FB → FB with composition performed component wise. Similarly, for the product category ℘qp

the object is the pair Obj℘qp = Obj℘q ×Obj℘p =
{(

Mq, Mp
)}
≡
{

Mqp
}

, the set of morphisms are
ordered pairs Mor℘qp

(
Mqp, Mqp

)
= Mor℘q

(
Mq, Mq

)
×Mor℘p

(
Mp, Mp

)
such that for gqp ≡

(
gq, gp

)
∈

Mor℘qp

(
Mqp, Mqp

)
, and gp : Mp → Mp with composition performed component wise. It is easily
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verified that =AB and ℘qp are categories where 1FAB = (ε, ε) and 1Mqp = ((∞, i, 0), (∞, i, 0)) are the
object identities.

Now use the gauge maps ϕ0 : A→ (℘,⊗q) and θ0 : B→ (℘,⊗p) to define Fϕ0,θ0 : =AB → ℘qp
as Fϕ0,θ0 ≡ Fϕ0 × Fθ0 =

(
Fϕ0 , Fθ0

)
such that Fϕ0,θ0FAB =

(
Fϕ0FA, Fθ0FB

)
=
(

Mq, Mp
)
= Mqp and

for f ≡ ( fA, fB) ∈ Mor=AB(FAB,FAB), Fϕ0,θ0 f =
(

Fϕ0 fA, Fθ0 fB
)
=
(

gq, gp
)
= gqp. It is readily

seen that Fϕ0,θ0 is a functor because Fϕ0,θ01FAB =
(

Fϕ0 ε, Fθ0 ε
)

= ((∞, i, 0), (∞, i, 0)) = 1Mqp and
for h, k ≡ (hA, hB), (kA, kB) ∈ Mor=AB(FAB,FAB), if, then Fϕ0,θ0 f ◦ h = Fϕ0,θ0( fA ◦ hA, fB ◦ hB) =(

Fϕ0 fA ◦ hA, Fθ0 fB ◦ hB
)
=
(

Fϕ0 kA, Fθ0 kB
)
= Fϕ0,θ0 k.

Thus:

Fϕ0,θ0 a1a2 · · · am, b1b2 · · · bn =
(

Fϕ0 a1a2 · · · am, Fθ0 b1b2 · · · bn
)

= (ϕ0(a1)⊗q ϕ0(a2)⊗q · · · ⊗q ϕ0(am), θ0(b1)⊗p θ0(b2)⊗p · · · ⊗p θ0(bn))

=
(

gq, gp
) (13)

Of course, a similar construction can be made using products of a finite number of categories of
systems and Müller-Wichards performance categories.

Thus, generally distinct performance triples gq ≡
(
rq, wq, uq

)
and gp ≡

(
rp, wp, up

)
are obtained,

which yield separate performance estimates for systems comprised of A basis processes and for systems
comprised of B basis processes, respectively. Obviously, unless q = p, gq and gp cannot be properly
combined algebraically to obtain a single performance estimate for a process comprised of both A and
B basis processes. However, an inequality can be established by letting g1 = gq, g2 = (∞, i, 0) = g3,
and g4 = gp in Lemma 2.6 in [1]. These yields gq⊗p gp ≥ gq⊗q gp when 1 ≤ q ≤ p ≤ ∞. An alternative
approach is to estimate the combined processing time for systems composed of A processes and for

systems composed of B processes from gq and gp using tAB = tA + tB, where tA =
|wq|

rq
and tB =

|wp|
rp

.

7. Closed Form Models

In this section, the above theory is used to develop general closed form system performance
estimation models where a system’s performance r and weight w are explicit functions of the
performances and weights of the processes that comprise the system. The next theorem provides
models for systems comprised entirely of a finite number of arithmetic processes or data movement
processes. In what follows, let N = {1, 2, · · · , n}.

Theorem 17. Let a1a2 · · · an ∈ Mor=A(FA,FA). If ϕ0(ai) ∈ C, i ∈ N, or ϕ0(ai) ∈ D, i ∈ N, then

FX
ϕ0

a1a2 · · · an = (r1, w1, x)⊗q (r2, w2, x)⊗q · · · ⊗q (rn, wn, x) = (r, w, x), (14)

where x = 1 or 0 when X = C or D, respectively, w = ∑n
i=1 wi, and

r =
w[

∑n
i=1

(
wi
ri

)q] 1
q

(15)

Now consider systems comprised entirely of a finite number of delay processes.

Theorem 18. Let a1a2 · · · an ∈ Mor=A(FA,FA). If ϕ0(ai) ∈ V, i ∈ N, then

FV
ϕ0

a1a2 · · · an = (r1, i, 0)⊗q (r2, i, 0)⊗q · · · ⊗q (rn, i, 0) = (r, i, 0), (16)

where
r =

1[
∑n

i=1

(
1
ri

)q] 1
q

. (17)
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The last two theorems can be used to construct closed form models for systems comprised of
finite numbers of arithmetic, data movement, and delay processes.

Theorem 19. Suppose the system a1a2 · · · an ∈ Mor=A(FA,FA) is comprised of nC arithmetic processes, nD
data movement processes, and nV delay processes such that nC + nD + nV = n. Then

Fϕ0 a1a2 · · · an = (rC, wC, 1)⊗q (rD, wD, 0)⊗q (rV , i, 0) = (r, wC, 1), (18)

where
r =

wC[(
wC
rC

)q
+
(

wD
rD

)q
+
(

1
rV

)q] 1
q

, (19)

with rC and wC given by Theorem 17 when X = C and n = nC; rD and wD given by Theorem 17 when X = D
and n = nD; and rV given by Theorem 18 when n = nV .

8. Statistical Properties of r for Closed Form Models

Since system performance studies are often stochastic in nature, it is instructive to examine the
statistical characteristics of the system performance variable r for several cases using the closed form
models of Theorem 17 for arithmetic and data movement elements.

8.1. Fixed Rates and Independent Random Weights

Assume that for both element types each rate ri = rI , i ∈ N, where rI is a fixed value, and each
weight wi, i ∈ N, is an independent random variable described by the same Poisson distribution with
mean λ. In this case-for a fixed q, n, and λ-Equation (15) can be written as:

r = rI
∑n

i=1 wi(
∑n

i=1 wq
i

) 1
q

(20)

Note that it necessarily follows that ∑n
i=1 wi is also Poisson distributed with mean nλ.

Using these assumptions, 104 trials were generated for each λ and q combination, where λ ∈
{10, 20, 40} and q ∈ {1.5, 2, 2.5, 3, 4, ∞}, when n = 10 and rI = 1. A kernel estimator of the
probability density function (pdf) for the overall system rate r associated with each combination
is shown in Figure 3. Observe from Equation (20) that since this figure is generated using rI = 1,
the horizontal axes of this figure can be interpreted as the ratio r/rI . Thus, multiplying each pdf by
0 < rI 6= 1 yields the pdf for the associated rI .

Inspection of Figure 3 quantifies-for a system comprised of a fixed number of basis processes
and a fixed processing rate-the intuitively pleasing facts that: (i) for a fixed q value, the peak value
of the pdf increases, the r value of the peak of the pdf effectively remains fixed, and the width of the
pdf narrows as the mean process weight λ increases (i.e., the probability that the value of the overall
system rate r will be within a small fixed interval about the peak r value increases with increasing
mean process weight); and (ii) for a fixed mean process weight, the peak value of the pdf for r increases
and the width of the pdf broadens as q increases in value (i.e., the overall peak system rate r increases
and the probability that r will be within a small interval about the peak rate decreases with increasing
system “speedup” or parallelism).

Kernel estimator pdfs were also obtained for r using 104 trials and Equation (20) with rI = 1
for n ∈ {2, 4, 8, 10, 16} and q ∈ {1.5, 2, 2.5, 3, 4, ∞}. The weights for each trial were determined from
a Poisson distribution with λ = 10. These results are presented in Figure 4 where-as expected from the
Figure 3 results-it is seen for each n that the peak r value increases, the distribution broadens, and the
value of the pdf peak decreases with increasing q. Also expected is the fact that-although the pdf peak
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values and distribution width effectively remain the same-the distributions shift to larger r values with
increasing q as n increases.Systems 2019, 6, x 11 of 24 
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Figure 3. Probability density functions for r for various q values when rI = 1, n = 10, and λ = 10, 20, 40
(top to bottom).

8.2. Random Rates and Random Weights

Now consider trials where for each trial—in addition to having Poisson distributed random
weights as just described—the rates ri in Equation (15) are also randomly assigned using the
exponential distribution:

f (x, γ) =

{
γe−γx, x ≥ 0
0, otherwise

. (21)

Using this methodology, kernel estimator pdfs for r were obtained using 104 trials per combination
for a range of γ values and each q ∈ {1.5, 2, 2.5, 3, 4, ∞} when λ = 10 and n = 10. These results are
presented in Figure 5 for γ ∈ {2, 10} and in Figure 6 when q is also unity and γ ∈ {1, 2, 3}. Each of the
pdfs in the two lower Figures in Figure 6 are scaled by their γ values, i.e., all of the resulting r values
are divided by their respective γ values, so that the pdfs for all γ values fit on the same horizontal axis
value range.
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Figure 6. Probability density functions for 𝑟  when 𝑛 = 10, 𝜆 = 10, 𝛾 ∈ 1,2,3 ,  and 𝑞 ∈1,1.5,2,2.5,3,4, ∞ . Each 𝑟 value for 𝛾 ∈ 2,3  has been divided by the associated value of 𝛾. 

Observe from these figures that—when compared with the previous results for fixed 𝑟 —the 
inclusion of random rates causes the 𝑞 parameterized pdfs to be closer together and overlap. The 
presence of randomness increases the variance associated with each 𝑟 pdf and, interestingly, tends 
to significantly decrease the sensitivity of the pdfs to the value of 𝑞. This comparison is made more 
clear in Figure 7 where the graphs of the pdfs for 𝑛 = 10, 𝜆 = 10, and 𝑞 ∈ 1.5,2,2.5,3,4   are placed 
one above the other for the case where both the rates and weights are randomly selected as above 
when 𝛾 = 10 (upper Figure) and the case where the rates all have unit value and only the weights 
are Poisson distributed (lower Figure). Each of the pdfs in the upper Figure are scaled by the 
associated 𝛾 = 10 value. 

Figure 6. Probability density functions for r when n = 10, λ = 10, γ ∈ {1, 2, 3}, and q ∈
{1, 1.5, 2, 2.5, 3, 4, ∞}. Each r value for γ ∈ {2, 3} has been divided by the associated value of γ.

Observe from these figures that—when compared with the previous results for fixed rI—the
inclusion of random rates causes the q parameterized pdfs to be closer together and overlap.
The presence of randomness increases the variance associated with each r pdf and, interestingly,
tends to significantly decrease the sensitivity of the pdfs to the value of q. This comparison is made
more clear in Figure 7 where the graphs of the pdfs for n = 10, λ = 10, and q ∈ {1.5, 2, 2.5, 3, 4} are
placed one above the other for the case where both the rates and weights are randomly selected as
above when γ = 10 (upper Figure) and the case where the rates all have unit value and only the
weights are Poisson distributed (lower Figure). Each of the pdfs in the upper Figure are scaled by the
associated γ = 10 value.
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Figure 7. Probability density functions for 𝑟 when 𝑛 = 10, 𝜆 = 10 and 𝑞 ∈ 1.5,2,2.5,3,4 . 

9. Special Case Closed Form Models 

Here, Theorems 17–19 are used to produce several closed form models when the performance 
values and the weight values are assumed to be equal for all processes in a system. Such processes 
are equal processes and the associated system models are special case closed form models (SCCFMs). 

SCCFM 1. If 𝑎 𝑎 ⋯ 𝑎 ∈ 𝑀𝑜𝑟𝑨(ℱ , ℱ )  is a system such that 𝜑 (𝑎 ) = (𝜌, 𝜆, 1) ∈ 𝐶, 𝑖 ∈ 𝑁 , then 𝐹 𝑎 𝑎 ⋯ 𝑎 = (𝑟, 𝑤, 1) , where 𝑤 = 𝑛𝜆  and 𝑟 = 𝑛  𝜌 . The time required for the system to 

complete its arithmetic operations is 𝑡 = 𝑛 . 

Since the next model is also a direct consequence of Theorem 17 and its proof follows that of the 
previous model, it is stated without proof. 

SCCFM 2. If 𝑎 𝑎 ⋯ 𝑎 ∈ 𝑀𝑜𝑟𝑨(ℱ , ℱ )  is a system such that 𝜑 (𝑎 ) = (𝜎, 𝜔, 0) ∈ 𝐷, 𝑖 ∈ 𝑁 , then 𝐹 𝑎 𝑎 ⋯ 𝑎 = (𝑟, 𝑤, 0) , where 𝑤 = 𝑛𝜔  and 𝑟 = 𝑛  𝜎 . The time required for the system to 

complete moving all of its data is 𝑡 = 𝑛 . 

SCCFM 3. If 𝑎 𝑎 ⋯ 𝑎 ∈ 𝑀𝑜𝑟𝑨(ℱ , ℱ )  is a system such that 𝜑 𝑎 = (𝛿, 𝑖, 0) ∈ 𝑉, 𝑗 ∈ 𝑁 , then 𝐹 𝑎 𝑎 ⋯ 𝑎 = (𝑟, 𝑖, 0), where 𝑟 = 𝑛  𝛿. The time delay for this system is 𝑡 = 𝑛 . 

Note that: (i) when 𝑞 = 1, the processing is sequential and as required, the time  𝑡 , 𝑋 ∈ 𝐶, 𝐷, 𝑉 , 
for the systems to complete their processing is the sum of the 𝑛  individual times required to 
complete each process in the system; (ii) when 1 < 𝑞 < ∞ , the processing time is “skewed” or 
“compressed” and 𝑡 < 𝑡 . 

SCCFM 4. Suppose the system 𝑎 𝑎 ⋯ 𝑎 ∈ 𝑀𝑜𝑟𝑨(ℱ , ℱ )  is comprised of 𝑛  equal arithmetic 
processes, 𝑛  equal data movement processes, and 𝑛  equal delay processes such that 𝑛 + 𝑛 +𝑛 = 𝑛. Then:  𝐹 𝑎 𝑎 ⋯ 𝑎 = (𝑟 , 𝑤 , 1) ⊗ (𝑟 , 𝑤 , 0) ⊗ (𝑟 , 𝑖, 0) = (𝑟 , 𝑛 𝜆, 1), (22) 

Figure 7. Probability density functions for r when n = 10, λ = 10 and q ∈ {1.5, 2, 2.5, 3, 4}.

9. Special Case Closed Form Models

Here, Theorems 17–19 are used to produce several closed form models when the performance
values and the weight values are assumed to be equal for all processes in a system. Such processes are
equal processes and the associated system models are special case closed form models (SCCFMs).

SCCFM 1. If a1a2 · · · an ∈ Mor=A(FA,FA) is a system such that ϕ0(ai) = (ρ, λ, 1) ∈ C, i ∈ N,

then FC
ϕ0

a1a2 · · · an = (r, w, 1), where w = nλ and r = n1− 1
q ρ. The time required for the system to

complete its arithmetic operations is tC
q = n

1
q
(

λ
ρ

)
.

Since the next model is also a direct consequence of Theorem 17 and its proof follows that of the
previous model, it is stated without proof.

SCCFM 2. If a1a2 · · · an ∈ Mor=A(FA,FA) is a system such that ϕ0(ai) = (σ, ω, 0) ∈ D, i ∈ N,

then FD
ϕ0

a1a2 · · · an = (r, w, 0), where w = nω and r = n1− 1
q σ. The time required for the system to

complete moving all of its data is tD
q = n

1
q
(

ω
σ

)
.

SCCFM 3. If a1a2 · · · an ∈ Mor=A(FA,FA) is a system such that ϕ0
(
aj
)
= (δ, i, 0) ∈ V, j ∈ N,

then FV
ϕ0

a1a2 · · · an = (r, i, 0), where r = n−
1
q δ. The time delay for this system is tV

q = n
1
q
(

1
δ

)
.

Note that: (i) when q = 1, the processing is sequential and as required, the time tX
1 , X ∈ {C, D, V},

for the systems to complete their processing is the sum of the n individual times required to complete
each process in the system; (ii) when 1 < q < ∞, the processing time is “skewed” or “compressed”
and tX

q < tX
1 .

SCCFM 4. Suppose the system a1a2 · · · an ∈ Mor=A(FA,FA) is comprised of nC equal
arithmetic processes, nD equal data movement processes, and nV equal delay processes such that
nC + nD + nV = n. Then:

Fϕ0 a1a2 · · · an = (rC, wC, 1)⊗q (rD, wD, 0)⊗q (rV , i, 0) = (rCDV , nCλ, 1), (22)

where rC and wC are given by SCCFM 1 when n = nC; rD and wD are given by SCCFM 2 when n = nD;
rV given by SCCFM 3 when n = nV ; and:
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rCDV =
nCλ[

nC

(
λ
ρ

)q
+ nD

(
ω
σ

)q
+ nV

(
1
δ

)q] 1
q

. (23)

The time required for this system to complete its processing is:

tCDV
q =

[(
tC
q

)q
+
(

tD
q

)q
+
(

tV
q

)q] 1
q

. (24)

Again, note that when q = 1, tCDV
1 is the sum of the system delays, the time required for the

system to complete processing its arithmetic operations, and the time required for the system to
complete its data movement operations.

10. Applications of Special Case Closed Form Models

Special case closed form models are useful for understanding and describing fundamental
properties and dynamics of CMW system performance models. The following subsections provide
several examples of this.

10.1. The Effect of q Upon the tX
q − nX Dependence, X ∈ {C, D, V}

It is easily seen from SCCFM1-SCCFM3 that the differential of tX
q (with respect to nX) can be

written as:
dtX

q =
1
q

tX
q

dnX
nX

, X ∈ {C, D, V}. (25)

Dividing both sides of this equation by tX
q yields:

dtX
q

tX
q

=
1
q

dnX
nX

(26)

which can be written as
d ln tX

q =
1
q

d ln nX (27)

or as
d ln tX

q

d ln nX
=

1
q

. (28)

It follows from this that for these SCCFMs, ln tX
q varies linearly with ln nX with an associated

slope of q−1. This implies the intuitively pleasing result that for SCCFM1-SCCFM3, increasing the
system’s parallelization (i.e., increasing the q value) decreases the processing time tX

q -regardless of the
number nX of basis processes that must be processed.

10.2. A Stationary Action Principle for SCCFM4 System Performance

Consider SCCFM4, assume for fixed q that
[(

tC
q

)q
+
(

tD
q

)q
+
(

tV
q

)q]
= χ(t) ≡ χ is time

dependent, and let the function:

Lq ≡ Lq
(
χ,

.
χ
)
=

1
q

χ
1−q

q
.
χ, (29)

where
.
χ ≡ dχ

dt , describe the system’s performance with time. Using Equation (29), it is found that:

d
dt

(
∂Lq

∂
.
χ

)
=

∂Lq

∂χ
, (30)
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i.e., Lq satisfies the Euler-Lagrange equation. Consequently, Lq is the performance Lagrangian
for the system, Equation (30) is the associated equation of motion for the system’s performance,
and the integral ∫ τ

0
Lqdt (31)

is stationary so that its first variation δ vanishes (e.g., [27]). This has the following interpretation:
If ∑ is the configuration space χ× t ⊂ R+ ×R+ and processing begins at t = 0 and is completed at

t = τ, then the actual processing path followed by
[(

tC
q

)q
+
(

tD
q

)q
+
(

tV
q

)q]
in ∑ during the fixed

processing interval [0, τ] is such that:

δ
∫ τ

0
Lqdt = 0 (32)

with respect to all path variations in ∑, which vanish at the end-points of the interval.

10.3. Invariance of the Equation of Motion

Note that for any arbitrary (twice differentiable) function φ(χ), the transformed
performance Lagrangian

L#
q ≡ Lq +

.
φ (33)

also describes the processing path followed by
[(

tC
q

)q
+
(

tD
q

)q
+
(

tV
q

)q]
in ∑ during the fixed

processing interval [0, τ] since:

δ
∫ τ

0
L#

qdt = δ
∫ τ

0
Lqdt + δ[φ]τ0 = δ

∫ τ

0
Lqdt = 0. (34)

Thus, although the performance Lagrangian is not unique, by extension, it can be concluded
that the equation of motion for the system’s performance is invariant under all transformations of the
performance Lagrangian of the form given by Equation (33).

11. Concluding Remarks

This paper has presented a category theoretic reformulation of the Müller-Wichards system
performance model. The use of category theoretic terminology provides a precise and efficient
mathematical vocabulary for defining categories of systems, system performance, and system
performance functors. These functors were shown to be useful for discussing factorizing systems
without changing their performance and identifying model symmetries and invariants. Such formal
mathematical properties of models tend to characterize aspects of the real systems that the
models represent.

A practical feature of the model is that it can be implemented in a relatively straightforward
manner as a software package. A user can assign to each basis process—via a gauge map—its numerical
triple in the performance category. This defines for each basis process its type (arithmetic, data
movement, or delay element), rate, and weight. The associated performance functor then uses these
assignments to automatically generate a final performance triple for any system (string of basis
processes) in the category of systems defined by the process basis set. Several other useful features of
the model include using closed form performance models to provide “quick” performance estimates,
as well as to provide “sanity checks” for results obtained from software implementations of the model;
generating stochastic-based performance studies by treating rates and weights as random variables
(as illustrated in Section 8); and applying closed form models to abstractly characterize aspects of
system performance (as illustrated in Section 10).

Future research involves defining an appropriate metric d on Mor=A(FA,FA) that measures
the similarity between systems; and finding an approach for classifying subsets of interest in the
associated metric space

(
Mor=A(FA,FA), d

)
such that the systems within such a class are very

similar [28]. An implementation of this classification scheme in a software package, which also
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uses Fϕ0 to automatically evaluate in ℘q the performance of the systems in such a class can be useful for
scheduling analysis, as well as for making informed high level system engineering design trade-offs.
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Appendix A

Proof of Theorem 1. This result was proven in [1]. �

Proof of Theorem 2. This follows directly from Lemma 1. �

Proof of Theorem 3. Let g1, g2 ∈ ℘X. Case i. If X = C, then u1 = 1 = u2. Since u = u1 ∨ u2 = 1,
then g1 ⊗q g2 = (r, w, 1) ∈ ℘C. Case ii. If X = D, then u1 = 0 = u2 and u = u1 ∨ u2 = 0. Thus,
g1 ⊗q g2 = (r, w, 0) ∈ ℘V . Case iii. Cases i–ii apply when g1 and g2 are both in C or in D. Now let
g1 ∈ C and g2 ∈ D. Then u1 ∨ u2 = 1 so that g1 ⊗q g2 = (r, w, 1) ∈ C ⊂ ℘CD. Case iv. If X = V, then
u1 = 0 = u2, w1 = i = w2. Since u = u1 ∨ u2 = 0 and w = i, then g1 ⊗q g2 = (r, i, 0) ∈ ℘V . Clearly,
if either or both of g1 or g2 are the identity element e for each of these cases, then g1 ⊗q g2 ∈ ℘X , X ∈
{C, D, CD, V}. Consequently, each

(
℘X ,⊗q), X ∈ {C, D, CD, V} is a submonoid of (℘,⊗q). �

Proof of Theorem 4. Each of these monoids determines an associated category in the manner
prescribed by Lemma 1. �

Proof of Theorem 5. Each category is small because Obj℘q and Obj℘X
q

, X ∈ {C, D, CD, V}, are singleton

sets. They are connected because ℘q and ℘X
q , X ∈ {C, D, CD, V}, have only one object and

Mor℘q

(
Mq, Mq

)
= ℘ 6= ∅ 6= ℘X = Mor℘X

q

(
MX

q , MX
q

)
. �

Proof of Theorem 6. It must be shown that any morphism g1 ∈ Mor℘X
q

(
MX

q , MX
q

)
is both monic and

epic. First show that g1 is monic, i.e., g1 ⊗q g2 = g1 ⊗q g3 g2 = g3. Observe that g1 = e is monic and
assume that g1 ⊗q g2 = g1 ⊗q g3 with g1 6= e 6= g2.

Case i. If X = C and 1 ≤ q < ∞, then u1 = u2 = u3 = 1 ⇒ u1 ∨ u2 = u1 ∨ u3 = 1 ⇒
Re[w1 + w2] = Re[w1 + w3]⇒ w2 = w3 ⇒

w1 + w2((
w1
r1

)q
+
(

w2
r2

)q)1/q
=

w1 + w3((
w1
r1

)q
+
(

w3
r3

)q)1/q
=

w1 + w2((
w1
r1

)q
+
(

w2
r3

)q)1/q
(A1)

⇒ r2 = r3 ⇒ g2 = g3 ⇒ g1 is monic. Similarly for q = ∞.

Case ii. If X = D and 1 ≤ q < ∞, then u1 = u2 = u3 = 0 ⇒ u1 ∨ u2 = u1 ∨ u3 = 0 ⇒
Re[w1 + w2] = Re[w1 + w3]w2 = w3 ⇒

w1 + w2((
w1
r1

)q
+
(

w2
r2

)q)1/q
=

w1 + w3((
w1
r1

)q
+
(

w3
r3

)q)1/q
=

w1 + w2((
w1
r1

)q
+
(

w2
r3

)q)1/q
(A2)

⇒ r2 = r3 ⇒ g2 = g3 ⇒ g1 is monic. Similarly for q = ∞.
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Case iii. If X = V and 1 ≤ q < ∞, then u1 = u2 = u3 = 0 and w1 = w2 = w3 = i⇒

1((
1
r1

)q
+
(

1
r2

)q)1/q
=

1((
1
r1

)q
+
(

1
r3

)q)1/q
(A3)

⇒ r2 = r3 ⇒ g2 = g3 ⇒ g1 is monic. Similarly, for q = ∞.

To show that morphism g1 is epic it must be demonstrated that g2 ⊗q g1 = g3 ⊗q g1 ⇒ g2 = g3 .
Note that g1 = e is epic and observe that since ⊗q is commutative, then the Case i–iii arguments above
still apply so that g2 ⊗q g1 = g3 ⊗q g1 ⇒ g2 = g3 ⇒ g1 is epic. �

Proof of Theorem 7. Consider ℘ ⊗q C. Let g1 = (r1, w1, 1) ∈ C ⊂ ℘ and g2 = (r2, w2, 1) ∈ C.
Then g1 ⊗q g2 ∈ C because u1 ∨ u2 = 1 and w1 and w2 are real valued. If g1 = (r1, w1, 0) ∈ D ⊂ ℘,
then it is also the case that g1 ⊗q g2 ∈ C because u1 ∨ u2 = 1 and w1 and w2 are real valued.
If g1 = (r1, i, 0) ∈ V ⊂ ℘, then u1 ∨ u2 = 1, the resulting weight w is real valued, and the resulting
rate r is real valued so that g1 ⊗q g2 ∈ C. �

Proof of Theorem 8. This follows directly from Lemma 1. �

Proof of Theorem 9. =A is a small category because Obj=A is the singleton set {FA}. =A is a connected
category because it has only one object and Mor=A(FA,FA) 6= ∅. �

Proof of Theorem 10. This is a direct consequence of the fact that IA is cancellative (Lemma 5).
In particular, uv = uw⇒ v = w⇒ u is monic and vu = wu⇒ v = w⇒ u is epic. �

Proof of Theorem 11. From Lemma 3 a homomorphism ϕ : IA → (℘,⊗q) is established by extending
any gauge map ϕ0 : A→ (℘,⊗q) to a unique monoid homomorphism ϕ : IA → (℘,⊗q) according to:

ϕ(a1a2 · · · an) = ϕ0(a1)⊗q ϕ0(a2)⊗q · · · ⊗q (an) . (A4)

From Lemma 2, this homomorphism corresponds to the performance functor Fϕ0 : =A → ℘q
such that Fϕ0FA = M and:

Fϕ0 a1a2 · · · an = ϕ0(a1)⊗q ϕ0(a2)⊗q · · · ⊗q ϕ0(an) (A5)

Similarly, for the functors FX
ϕ0

: =A → ℘X
q , X ∈ {C, D, CD, V} . �

Proof of Theorem 12. Since Mor=A(FA,FA) = IA, it is clear that α : IA → IA is also
an automorphism of IA in which case Aut(=A) = Aut(IA). The theorem follows from the well-known
fact that Aut(IA) is isomorphic to the group of permutations of the elements of set A [24]. �

Proof of Theorem 13. For every α ∈ Aut(=A), α
(

Mor=A(FA,FA)
)

= Mor=A(FA,FA). Thus,
if w ∈ Mor=A(FA,FA), then w ∈ α(Mor=A(FA,FA)). Because ϕ0 is fixed, Fϕ0 w and FX

ϕ0
w, X ∈

{C, D, CD, V}, have the same images in ℘q and ℘X
q , respectively, after the application of every α as

they did before their application. �

Proof of Theorem 14. The existence of a commutative triangle ∆ in =A means that ∆ exists in
Mor=A(FA,FA). Since α

(
Mor=A(FA,FA)

)
= Mor=A(FA,FA) for every α ∈ Aut(=A), then ∆ also

exists in α
(

Mor=A(FA,FA)
)

for every α ∈ Aut(=A) and is a CMW invariant. That the Müller-Wichards
performance functor images of ∆ are also CMW invariants follows from the facts that (i) the images of
these functors are CMW invariants (Theorem 13) and (ii) all functors preserve commutative triangles.
�
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Proof of Theorem 15. Let w = uv be a commutative triangle in =A. It follows from Theorem 10
that u and v are bimorphisms in which case u is monic and v is epic and w = uv is a factorization
of w. Since functors preserve commutative triangles, then Fϕ0 w = Fϕ0 u ⊗q Fϕ0 v is the associated
commutative triangle in ℘q. It is clear that the integrity of the factorization of w is maintained because
Fϕ0 w = Fϕ0 uv = Fϕ0 u⊗q Fϕ0 v. Similarly for the functors FX

ϕ0
, X ∈ {C, D, CD, V}. �

Proof of Theorem 16. If uv = wz is a commutative square in =A, then, because IA is equidivisible
(Lemma 5), there exists an x ∈ Mor=A(FA,FA) = IA such that (i) u = wx and z = xv, or (ii) w = ux
and v = xz. These are factorizations because every morphism in =A is a bimorphism (Theorem 10)
so that in (i) w and x are monic and x and v are epic, or in (ii) u and x are monic and x and z are epic.
Because each of these factorizations corresponds to a commutative triangle in =A, it follows from
Theorem 15 that they maintain their integrity. �

Proof of Corollary 2. If uv = wz in Mor=A(FA,FA), then it must be the case that there is an x ∈
Mor=A(FA,FA) = IA such that u = wx and z = xv or w = ux and v = xz (Lemma 5). Since u = wx,
z = xv, w = ux, and v = xz are commutative triangles in =A, they are preserved by FX

ϕ0
in ℘X

q ,
X ∈ {C, D, V}, so that FX

ϕ0
u = FX

ϕ0
w⊗q FX

ϕ0
x and FX

ϕ0
z = FX

ϕ0
x ⊗q FX

ϕ0
v or FX

ϕ0
w = FX

ϕ0
u⊗q FX

ϕ0
x and

FX
ϕ0

v = FX
ϕ0

x⊗q FX
ϕ0

z. The result follows from the fact that every morphism in the image of FX
ϕ0

in ℘X
q ,

X ∈ {C, D, V}, is a bimorphism so that FX
ϕ0

w and FX
ϕ0

x are monic and FX
ϕ0

x and FX
ϕ0

v are epic, or FX
ϕ0

u
and FX

ϕ0
x are monic and FX

ϕ0
x and FX

ϕ0
z are epic. �

Proof of Corollary 3. If Fϕ0 is faithful, then the commutative triangle Fϕ0 u = Fϕ0 v⊗q Fϕ0 w in ℘q reflects
to the commutative triangle u = vw in =A (Lemma 4). Since every morphism in =A is a bimorphism
(Theorem 10), then u is factorizable because v is monic and w is epic. Since Fϕ0 u = Fϕ0 v ⊗q Fϕ0 w,
the factorization of u maintains its integrity. �

Proof of Theorem 17. That the action of the functor on a1a2 · · · an is as stated in the consequence
of the theorem follows from Theorem 11 and the fact that ϕ0(ai) = (ri, wi, x), i ∈ N, where x = 1
or 0 when X = C or D, respectively. The remainder of the proof is by induction. (i) For = 0, 1,
w = w12 = Re[xw1 + xw2 + ¬(xVx)(w1 + w2)] = xw1 + xw2 + ¬x(w1 + w2) = w1 + w2; w = w123 =

Re[xw12 + xw3 + x(w12 + w3)] = w12 + w3 = w1 + w2 + w3. Now assume that w = w12···n = w1 +

w2 + · · ·+ wn. Since w = w12···(n+1) = Re[xw12···n + xwn+1 + ¬(w12···n + wn+1)] = w12···n + wn+1 =

w1 + w2 + · · ·+ wn+1, it follows that w = w1 + w2 + · · ·+ wn. (ii) Since each weight is real valued,

r = r12 =
w1 + w2[(

w1
r1

)q
+
(

w2
r2

)q]1/q
(A6)

and increasing by one yields:

r = r123 = w12+w3[(
w12
r12

)q
+
(

w3
r3

)q]1/q =
w1+w2+w3

 w1+w2
w1+w2[

( w1
r1 )

q
+( w2

r2 )
q
]1/q


q

+
(

w3
r3

)q


1/q

= w1+w2+w3[(
w1
r1

)q
+
(

w2
r2

)q
+
(

w3
r3

)q]1/q .

(A7)

Now assume r = r12···n = w1+w2+···+wn[(
w1
r1

)q
+
(

w2
r2

)q
+···+( wn

rn )
q]1/q .
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Since
r = r12···(n+1) =

w12···n+wn+1[(
w12···n
r12···n

)q
+
( wn+1

rn+1

)q]1/q

= w1+w2+···+wn+1
 w1+w2+···+wn

w1+w2+···+wn[
( w1

r1 )
q
+( w2

r2 )
q
+···+( wn

rn )
q
]1/q


q

+
( wn+1

rn+1

)q


1/q

(A8)

Then
r =

w1 + w2 + · · ·+ wn+1[(
w1
r1

)q
+
(

w2
r2

)q
+ · · ·+

(
wn+1
rn+1

)q]1/q
(A9)

and the theorem is proved. �

Proof of Theorem 18. The action of the functor on a1a2 · · · an as stated in the consequence of the
theorem follows from Theorem 11 and the fact that ϕ0(ai) = (ri, i, 0), i ∈ N. It is also clear from item
2 in Section 4 that regardless of how many triples in set V are combined under ⊗q, the weight of the
resultant triple is i. The remainder of the proof is by induction. Since |i| = 1,

r = r12 =
1[(

1
r1

)q
+
(

1
r2

)q] 1
q

(A10)

and
r = r123 = 1[(

1
r12

)q
+
(

1
r3

)q] 1
q
= 1

 1
1[

( 1
r1 )

q
+( 1

r2 )
q] 1

q


q

+
(

1
r3

)q


1
q

= 1[(
1
r1

)q
+
(

1
r2

)q
+
(

1
r3

)q] 1
q

.

(A11)

Now assume that:

r = r12···n =
1[(

1
r1

)q
+
(

1
r2

)q
+ · · ·+

(
1
rn

)q] 1
q

. (A12)

Then
r = r12···(n+1) =

1[(
1

r12···n

)q
+
(

1
rn+1

)q] 1
q

= 1
 1

1[
( 1

r1 )
q
+( 1

r2 )
q
+···+( 1

rn )
q] 1

q


q

+
(

1
rn+1

)q


1
q

= 1[(
1
r1

)q
+
(

1
r2

)q
+···+

(
1

rn+1

)q] 1
q

(A13)

and the theorem is proved. �

Proof of Theorem 19. Since ⊗q is commutative, Fϕ0 a1a2 · · · an can be rearranged and written as
Fϕ0 a1a2 · · · an = (rC, wC, 1)⊗q (rD, wD, 0)⊗q (rV , i, 0), where rC and wC are given by Theorem 17 when
X = C and n = nC; rD and wD are given by Theorem 17 when X = D and n = nD; and rV is given
by Theorem 18 when n = nV . Because ⊗q is associative, this product can be evaluated in any order.
Consider first the product (rC, wC, 1)⊗q (rD, wD, 0). The weight wCD resulting from this product is
wCD = 1·wC + 0·wD + ¬(1V0)(wC + wD) = wC so that:
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rCD =
wC[(

wC
rC

)q
+
(

wD
rD

)q] 1
q

. (A14)

For the product (rC, wC, 1) ⊗q (rD, wD, 0) ⊗q (rV , i, 0), combining wCD = wC with the weight
of the third triple gives a final combined weight of wCDV = Re[1·wCD + 0·i + ¬(1V0)(wCD + i)] =
wCD = wC so that:

r = rCDV = wC[(
wCD
rCD

)q
+
(

1
rV

)q] 1
q
= wC

 wC
wC[( wC

rC

)q
+( wD

rD )
q
] 1

q


q

+
(

1
rV

)q


1
q

= wC[(
wC
rC

)q
+
(

wD
rD

)q
+
(

1
rV

)q] 1
q

(A15)

�

Proof of SCCFM1. The results for w and r follow from Theorem 17 since w = ∑n
i=1 λ = nλ and

r = nλ[
∑n

i=1

(
λ
ρ

)q] 1
q
= nλ[

n
(

λ
ρ

)q] 1
q
= n1− 1

q ρ. The processing time follows from the ratio tC
q = w

r = nλ

n1− 1
q ρ

=

n
1
q
(

λ
ρ

)
. �

Proof of SCCFM3. The results for the weight and r follows from Theorem 18. In particular, the weight

is i because FV
ϕ0

a1a2 · · · an is a delay process and r = 1[
∑n

i=1(
1
δ )

q] 1
q
= 1[

n( 1
δ )

q] 1
q
= n−

1
q δ. The delay time

follows from the ratio tV
q = |i|

r = 1

n−
1
q δ

= n
1
q
(

1
δ

)
. �

Proof of SCCFM4. Substituting the results from SCCFM 1—SCCFM 3 into the r of Theorem 19 gives
the desired result for rCDV . The time to complete processing is obtained by substituting this rCDV into
the ratio tCDV

q = nCλ
rCDV

, simplifying the resulting expression, and identifying the terms in the sum with
processing times for SCCFM 1–SCCFM 3. �
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