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Abstract: As systems continue to grow in scale and complexity and have to operate safely in
challenging disruptive environments, system safety and resilience has become a critical requirement.
This recognition has drawn attention to the concept of resilience, which has different definitions
and several different interpretations that tend to be domain specific. For example, resilience in
health care clinics means something quite different than resilience in self-driving cars, or energy
grids. This paper reviews the different characterizations of resilience and assesses their value
proposition in realizing engineered resilient systems. This paper emphasizes the importance of
systems modeling in engineering resilient systems and presents an overarching methodology that
employs different modeling approaches for operational tasks as a function of problem context.
This paper specifically focuses on systems modeling in partially observable and potentially hostile
environments. It discusses the need for system model verification, which is key to safety, and system
flexibility and adaptability, which are key to resilience. It introduces a formal, probabilistic modeling
construct called the “resilience contract.” This construct employs a state-based representation that
formalizes the concept of resilience while enabling system model verification and affording requisite
flexibility for adaptation and learning. The key findings of our research are that different system
modeling approaches and algorithms are needed based on mission tasks and operational context;
adaptive capacity and continual adaptability are the two promising characterizations of resilience
that can be cost-effectively realized in real-world systems; and the resilience contract construct is an
effective means for probabilistic verification of system model correctness while affording flexibility
needed for adaptation and learning. Collectively, these findings contribute to the body of knowledge
in both model-based systems engineering (MBSE) and engineered resilient systems.

Keywords: engineered resilience; resilience modeling; resilience definitions

1. Introduction

As systems continue to grow in scale and operational missions become increasingly more complex
and disruption prone, system resilience has become essential for assuring safe and successful mission
accomplishment in the face of systemic faults and unexpected environmental conditions. System
resilience has been characterized variously as the ability to rebound, resist/absorb, dynamically adapt
capacity, and continually adapt in the face of ongoing change [1-3]. These different interpretations have
inadvertently become a source of confusion to the systems engineering community. Compounding
the problem is the fact that system resilience tends to be achieved through a combination of domain
independent methods (e.g., physical redundancy), and domain-specific techniques (e.g., functional
redundancy; adapting to a patient surge in a health care clinic, ensuring perimeter security of a military
asset at an outpost). While the definitions of resilience abound in the literature, some are more useful
than others. Some of the more useful definitions are:
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e  resilience is the capability of a system to maintain its function and structure in the face of internal
and external change and to degrade gracefully when it must [4];

e resilience is “the ability of a system to withstand a major disruption within acceptable degradation
parameters and to recover within a suitable time and reasonable costs and risks [5];

e given the occurrence of a particular disruptive event (or a set of events), the resilience of a system
to that event (or events) is that system’s ability to efficiently reduce both the magnitude and
duration of deviation from targeted system performance levels [6];

e resilience is the ability of a system to anticipate and adapt to potential surprise as well as failure

—this definition is rooted in the notion that when prevention is impossible, the system’s ability to
cope with disruptions becomes paramount [7];

e aresilient system can adapt to internal and external errors by changing its mode of operation

without losing it ability to function [8].

Collectively, these definitions inform the kinds of system modeling approaches that are needed.
They also help with determining which of the common resilience viewpoints offer productive lines of
inquiry in the sense that they can be realized in engineered systems in the real world.

Over the last decade, several innovative concepts have appeared in the literature to realize
resilience in systems [1,8-15] these include complexity management; context-sensitive topology
selection; on-demand addition of various resource types; reversion to a safe mode, when failing
or compromised; preemption of cascading failures through proper design of links between nodes
to minimize likelihood of failure propagation; provision of buffers (i.e., safety margins) and buffer
management to absorb impact of disruptions; functional redundancy, whereby a function can be
performed using different means; and dependable means for evaluating trust and reputation especially
in system-of-systems.

The common resilience concepts [4] include (1) identification of critical functions or services and
protection of not only critical functions but also those functions that could potentially interfere with or
break those critical functions (a simple example might be a sneak circuit in which a benign function
suffers a fault which propagates to a critical function through a circuit path caused by the fault);
(2) redefining decision thresholds based on context; (3) maximizing achievable reorganization given memory
constraints; and (4) incorporating safety margins through pre-engineered or adaptive capacities, or facilities
for continual adaptation in the face of ongoing changes.

Understanding critical functionality is the key to pre-planning responses to known disruptions.
Decision thresholds come into play in determining whether or not a system is able to absorb a shock
without having to restructure or reconfigure. It is important to note that recovery time is an important
metric in assessing system resilience post-disruption when a decision threshold is not exceeded.
Memory constraint determines the degree to which a system can reorganize in response to a disruption.
Adaptive capacity is key to dealing with both surprise surges and downturns. It is also the key
to exploiting resilience opportunities and conforming to limits in a safe-to-fail manner. Another
relevant metric is coverage, which includes detection and recovery, and whether or not it occurs before
sustaining permanent damage, or mission loss. The time dimension is integral to all conceptualizations
of resilience [1,5].

This paper reviews various characterizations of resilience and their value proposition in formalizing
the concept of resilience and demonstrating its use on a representative real-world problem. This paper
is organized as follows. Section 2 reviews the many facets of resilience and the challenges they pose,
along with specific criteria to evaluate their potential usefulness for a particular problem domain.
Section 3 presents exemplar resilience strategies for different domains and appropriate resilience
strategies to cope with them. Section 4 presents the overall methodology. It begins by presenting
probabilistic and adaptive modeling using Partially Observable Markov Decision Process (POMDP) and
introduces “resilience contract,” an innovative modeling construct which combines key concepts from
traditional contracts with POMDP and heuristics to enable system (model) verification while enabling
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adaptability through its state-based representation. Section 5 summarizes the main findings from this
work and its key contributions to both model-based systems engineering and resilience engineering.

2. The Different Characterizations of System Resilience

Resilience is a complex concept with multiple characterizations and definitions [1,2]. Therefore,
it is important to evaluate these different characterizations in terms of their potential to provide useful
lines of inquiry (i.e., those that can lead to successful realization of resilient systems).

At the outset, we note that when developing resilience strategies and mechanisms, there is the
likelihood of unintended consequences that can lead to dramatic sudden failures without warning [1,5].
These undesirable outcomes are invariably the result of unexpected side effects [1] arising from unknown
interactions; undesirable change cascades [1,4] arising from interdependencies and interactions among
subsystems; unexpected conflicts [4] that can arise among resilience mechanisms that are introduced
in the system at different levels; and flawed assessments of what is wrong [4]. The problem is further
exacerbated by the fact that researchers from different disciplines and communities do not share a
common vocabulary about resilience.

Against the foregoing backdrop, Table 1 presents domain-independent characterizations of
resilience which were derived from a review of the resilience literature [1,2,5].

Table 1. System Resilience Characterizations.

Resilience = restoration of pre-disruption state (“capacity to rebound”).

Resilience = withstand disruption within performance envelope (“capacity to resist”).

Resilience = extend resources to fit a surge-type disruption (“capacity to adapt”).

Resilience = continue to meet performance requirements in the face of ongoing changes (“capacity to
continually adapt”).

The first characterization, which is also the most intuitive (i.e., “capacity to rebound”), implies that
a system can fully or partially restore its previous state (i.e., operational performance and trajectory)
following a disruption. Reduced to its basic implication, it is akin to saying, “if it is broken, fix it,”
with no guidance or clue on how to do that. In other words, there is no “how to” implied in
this characterization.

The second characterization unfortunately makes a false equivalence between resilience and system
robustness and consequently has led to some confusion in the engineering community. Robustness
is a well-defined concept in dynamics and control. It implies that a system can absorb and survive
disruption without undergoing any structural change or reorganization. It does not address system
performance outside the system’s designed performance envelope. For example, Avizienis et al. [16]
defined robustness as “dependability with respect to external faults.” Resilience, on the other hand,
addresses system adaptability which invariably requires some form of structural change. Unlike
robustness, resilience also implies graceful degradation when the disruption is outside the system’s
designed performance envelope.

The third characterization is that of “adaptive capacity.” Woods has defined a special case of
this concept as “graceful extensibility” in his recent publication [2]. This characterization implies
that a system can sustain performance and/or bring to bear dynamic change in available resources or
capability when disruption magnitude and duration challenge designed performance boundaries.

The fourth characterization of resilience equates resilience with continual (i.e., sustained)
adaptability. This characterization implies that a system can continue to function by adapting
as needed without getting trapped in “unsafe” states as conditions evolve over time. In practice, it is
difficult to build a system that adapts continually in a variety of ways to circumvent, survive or recover
from disruptions.
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Based on the resilience literature, the right resilience characterization for a particular problem
domain depends on how well that characterization can advance inquiry leading to realizable resilience in
that domain, and whether that characterization can enable quantification of resilience. The application
of these criteria to the different characterizations in Table 1 provides insights into which definitions are
worth pursuing.

Characterizing resilience as the capacity to rebound (Figure 1) has thus far not been particularly
useful in that it offers little insight into possible implementation. In other words, this interpretation does
not shed light on possible resilience mechanisms that can be realized in engineered systems. As a result,
this characterization has not yielded fundamental findings, foundational theories, or new engineering
techniques [1,2]. However, being one of the first and most obvious characterizations of resilience, it did
manage to stimulate interest in resilience research. Therefore, its value is primarily historical.
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Figure 1. General form of resilience curve for resilience defined as rebound.

Characterizing resilience as robustness creates confusion and is in fact erroneous. In dynamics
and control, robustness is defined as the ability of a system to withstand internal/external threats
or changes without requiring structural modification or reconfiguration and without experiencing
degradation in system performance [9]. In other words, robustness is focused on preventing a system
from degrading and maintaining functionality within acceptable levels post-disruption. Resilience on
the other hand is the ability of a system to adapt to change or disruptions by multiple means including
structural modification and dynamic reconfiguration. Creating a false equivalence between resilience
and robustness is both incorrect and unhelpful. Specifically, it does not help answer how systems
adapt in the presence of unmodeled or poorly modeled disruptions. The point here is that there are
different degrees to which systems can be protected from disruptions. Robustness is a valid approach
but is limited in what it can do.

Characterizing resilience as adaptive capacity is prescriptive and therefore useful. It is concerned
with a system’s ability to dynamically extend capacity on demand to counter disruptions. It implies
elasticity in system behavior (i.e., the system has the ability to “stretch” or “shrink” to handle a surge or
drop in demand for a capability or a resource). It specifically addresses systems with finite resources in
dynamic environments having to extend capacity to respond to disruptions that challenge performance
boundaries (i.e., envelope). Without this ability to extend, a system becomes brittle, leading to sudden
collapse in performance. Of course, the magnitude and duration of the surge determines the most
appropriate resilience strategy. Imagine a health care clinic or trauma center which experiences a
sudden surge in patients [17,18]. These clinics need to decide how to respond in a way that exhibits
resilience. This response, in turn, requires an analysis of the disruption. In this example, the clinic
needs to assess the magnitude and expected duration of the surge. If the surge is determined to be a
temporary spike, then the clinic can get by with paying overtime to existing employees. If the surge is
likely to be for a longer period, it pays to add temporary personnel and possibly more beds for the
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duration of the surge. If the surge is determined to be a trend (i.e., expected to last for an indefinite
period), the clinic needs to hire permanent personnel, invest in more beds, and possibly add more space.
In this regard, graceful extensibility, a term coined by Woods [2] is applicable. Graceful extensibility
is a form of adaptive capacity. A more general concept than “graceful degradation,” it means being
prepared to adapt to handle disruptions that are at or beyond the designed performance boundary.

Characterizing resilience as continual or sustained adaptability builds on the recognition that
adaptability is a central concept in resilience. However, a resilient system may need to continually
adapt, hence the concept of continual or sustained adaptability. This characterization is not meant
to imply that the adaptation is always going to be in the same dimension. Adaptation can vary (e.g.,
draw on reserve physical resources, replenish fuel or parts inventory, optimize coverage of an area
with scarce resources by repositioning the limited available resources). Layered networks and complex
adaptive systems typically exhibit this property. However, most systems are not equipped to exhibit
continuous adaptation in multiple dimensions. In fact, most systems fail to adapt completely or in time
resulting in sudden collapse when confronted with a new change event, or a new requirement. The key
issues that arise when engineering for sustained adaptability pertain to: governance constraints and
architectural properties that facilitate sustained adaptation; design principles and techniques that
enable engineering systems and system-of-systems (SoS) for sustained adaptability; and ensuring that
the engineered system/SoS has the ability to continually adapt as needed over time and in response to
change precipitating events.

3. Exemplar Domain-Specific Resilience Strategies

The discussion in Section 2 set the stage for discussing resilience strategies for different domains.
Table 2 presents examples of resilience strategies for four different domains. For each exemplar domain,
resilience strategies are presented for specific disruptions.

The first problem domain is a health care clinic. A particular disruption that a health care clinic
is susceptible to is a patient surge. The resilience strategy for patient surge depends largely on the
duration and magnitude of the surge. For a constant magnitude surge, the response strategy is a
function of surge duration as shown in Table 2.

The second problem domain is multi-unmanned aerial vehicle (UAV) operations. The specific mission
is maintaining perimeter security of a parked transport aircraft. Typical disruptions are loss of a UAV
due to low battery power or system malfunction. The key modifiers are degree to which coverage is
lost as a result of loss of a UAV. The resilience strategy is intended to restore coverage in the shortest
time. Coverage is quantified by a fitness function (i.e., higher the fitness function, better the coverage).

The third problem domain is self-driving vehicles. Disruptions can take a variety of forms. Let us
say that the disruption is an accident ahead on the freeway and the autonomous vehicle is notified
about the accident. The modifiers in this case is the distance to the accident location and severity of the
accident that translates into time to clear up the accident. The resilience strategies are a function of the
time to clear up the accident and the magnitude of the accident (i.e., fender-bender to major pileup).
The resilience strategies for this case are: exit the freeway and take surface streets (if time to clear
freeway is significant; most navigation systems provide this recommendation); stay on the freeway
in the rightmost lane to exit fast if needed (if a fender-bender); hand off mission/task assignment to
another vehicle beyond the location of the accident (if a major pileup).

The fourth problem domain is spacecraft swarm. The disruption is the existence of an untrustworthy
spacecraft in the swarm (i.e., a Byzantine fault). The key modifier is the density of inconsistent
observations sent to the swarm. These observations impact situation awareness within the swarm.
The resilience strategies in this case are: guaranteed message delivery protocols (“preemptive strategy”);
unique spacecraft identifiers (“preemptive spacecraft strategy”); formal trust and reputation evaluation
resulting in ignoring faulty spacecraft (“adaptive behavior”); formal mechanism to rehabilitate
spacecraft if fault is cleared (“adaptive behavior”).
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Table 2. Exemplar Resilience Strategies for Different Domains.

m  Health Care Clinic
»  Disruption: patient surge
o  Modifiers: magnitude and duration of surge
> Resilience strategies: function of modifiers

o  Short-duration surge (“spike”): overtime pay for personnel;
o  Extended surge (“pulse”): add temporary personnel, rent additional beds;
o  Long-duration surge (“trend”): hire new staff, invest in infrastructure.

m  Multi-Unmanned Aerial Vehicle (UAV) Operations
»  Disruption: drop in perimeter coverage due to loss of a UAV resource
o Modifiers: degree to which coverage is lost

> Resilience Strategies: function of reduction coverage (measured by value of fitness
function)

o  Launch backup UAV to replace grounded UAV (“adaptive capacity”);
o Restore coverage by optimizing location and attitude of remaining good UAVs
(“continual adaptability”).

m  Self-Driving Vehicles
> Disruption: notification of accident ahead on freeway
o Modifiers: distance to accident ahead, severity (time to clear freeway)
> Resilience Strategies (“adaptive behaviors”):

o  Get off freeway and take surface streets (if long clear-up time);
o  Stay on freeway in rightmost lane to exit fast if needed (fender-bender);
o  Hand-off task assignment to vehicle beyond the accident (if major pileup).

m  Spacecraft Swarm
»  Disruption: untrustworthy spacecraft (Byzantine fault)
o  Modifiers: density of inconsistent observations sent to swarm (impacts SA)
>  Resilience Strategies:

o  Guaranteed message delivery protocols (“preemptive strategy”);
Unique spacecraft identifiers (“pre-emptive strategy”);
Formal trust and reputation evaluation resulting in ignoring faulty spacecraft
(“adaptive behavior”);

o Formal mechanism for rehabilitating a spacecraft if fault is cleared (“adaptive
behavior”).

4. Methodology

Our overall methodology employs a structured prescriptive framework for choosing the right
modeling approach for different problem contexts (Tables 3-5). Problem context is defined by the
mission objective, a priori knowledge of system states, state of the environment (e.g., observability, existence of
threats), status of own assets (e.g., number of UAVs available to pursue mission, their battery state, etc.),
and tasks that need to be performed within the overall planning and decision-making rubric to achieve
mission objectives. Examples of such tasks are navigation/route planning, perimeter surveillance
around a high value asset, and responding to environmental disruptions and enemy actions.

The key heuristic used in model selection is “choose the simplest modeling construct/approach that
achieves objectives with minimal computational load.” Achieving objectives includes accounting for
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the state/status of all relevant variables (i.e., those that bear on decision making) and system and
environment constraints. The model should also allow the system to respond to systemic malfunctions
and external disruptions (including those caused by an intelligent adversary). Table 3 presents how
the modeling approach varies with operational context for planning and decision-making tasks.

Table 3. Modeling Approach Selection for Planning and Decision Making as a Function of Context.

Context Modeling Approach/Algorithm
Full observability, perfect sensors Rule-based Logic, Decision Tree, Finite State Machine (FSM)
Full observability, noisy sensors Markov Decision Process (MDP)
Partial observability Partially Observable Markov Decision Process (POMDP)
Partial observability with intelligent Re-initialized POMDPs (where re-initialization occurs with
adversaries (i.e., threats) appearance of new threats)

In the same vein, Table 4 illuminates how the modeling approach changes as a function of context
for waypoint navigation tasks.

Table 4. Modeling Approach Selection for Waypoint Navigation as a Function of Context.

Context Modeling Approach/Algorithm
Full observability, perfect sensors Finite State Machine (FSM)
Full observability, noisy sensors Markov Decision Process (MDP)
Partial observability Partially Observable Markov Decision Process
Partial observability with pop-up threats Re-initialized POMDPs

It is equally important to recognize that not all tasks require a state-based approach. Table 5
presents a modeling approach for surveillance tasks that require an entirely different modeling approach
(e.g., adaptive optimization using fitness function).

Table 5. Modeling Approach Selection for Surveillance as a Function of Context.

Context Modeling Approach/Algorithm
Full observability, no resource constraint Perimeter Coverage Optimization
Full observability, resource constrained Adaptive Optimization of Fitness Functions

The foregoing three tables convey three key points. First, for certain tasks, as the context gets more
complex, the state machine representation also becomes more complex. This is shown through the
progression from Finite State Machine (FSM) to Markov Decision Process (MDP) to Partially Observable
Markov Decision Process (POMDP) for planning and decision-making and waypoint navigation tasks.
Second, state machine representations can be employed at different levels of abstraction (e.g., planning
and decision-making and waypoint navigation are two different levels). Third, not every task requires
a state machine representation. For example, a surveillance task requires adaptive optimization of the
fitness function.

The following subsections elaborate on specific modeling approaches that we have employed in
our ongoing research.

4.1. Probabilistic and Adaptive Modeling Using POMDP

Today, ad-hoc safety-net functions are commonly used to increase system resilience. Safety-net
functions comprise transitioning a malfunctioning system to safe and sustainable operation thereby
enabling time for human intervention. Researchers have explored a variety of promising, formally
checkable representations that show promise in realizing more rigorously defined resilience [19-24].
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In this spirit, we are pursuing a variant of Contract-Based Design (CBD) [25-28], because it is intuitive,
rigorous, and extensible in dealing with unknown-unknowns. CBD is a means for defining system
requirements, constraints, behaviors, and interfaces by a pair of assertions, C = (A, G), in which A is an
assumption made on the environment and G is the guarantee a system makes if the assumption is met.
Assumptions are system invariants and preconditions while guarantees are system post-conditions.
More precisely, invariant contracts describe a system that produces an output o € O when in state s € S
for an input i € I, where O is the set of all outputs, S is the set of all system states, and I is the set of
all inputs. An implementation, M, satisfies a contract if it satisfies all contract guarantees when their
associated assumptions hold.

Assuming no disruptions, an invariant contract is one that must always be satisfied when
the assumption is true. Invariant contracts are readily expressed and may be represented by
deterministic Biichi automatons and by temporal logic [29]. However, most systems are at least partially
non-deterministic. Moreover, invariant constructs are not well matched with unknown and unexpected
disruptions that might arise from unpredictable environments, internal faults, prolonged system usage,
or previously undiscovered interactions with the operational environment. This recognition spurred
our research with resilience contracts (RCs).

To address partial observability and need for resilience, we define a mathematical construct called
the “resilience contract,” which extends the concept of a traditional “contract” from Contract-Based
Design (CBD) to address uncertainty and partial observability that contribute to non-deterministic
system behavior [13,14]. In a traditional contract, an implementation is said to satisfy a design contract
if it fulfills guarantees when the assumptions are true. This is the “assert-guarantee” construct that
underlies traditional contracts in CBD. What makes CBD attractive is the fact that statements in
the contract are mathematically provable. However, the limitation of a traditional contract in CBD
is that the assertions are invariant. This property limits its use in characterizing system reliance.
With a resilience contract (RC), the assert-guarantee pair is replaced by a probabilistic “belief-reward”
pair. This characterization affords the requisite flexibility while assuring probabilistic verifiability of
the model.

The RC is a hybrid modeling construct that combines invariant and flexible assertions and is
represented as a Partially Observable Markov Decision Process (POMDP). A POMDP is a special
form of a Markov Decision Process that includes unobservable states and state transitions. POMDPs
introduce flexibility into a traditional contract by allowing incomplete specification of legal inputs
and flexible definition of post-condition corrections [13,14]. The solution of a POMDP determines the
optimal action for each probability distribution (belief) over S when taking action a € A(s).

A POMDP models a decision process in which system dynamics are assumed to be a belief
Markovian Decision Process (MDP), a memoryless decision process with transition rewards. A belief
state, by, is the probability distribution over all states that represents the history of actions and
observations up to t.

A belief MDP comprises:
S Finite set of visible states;
p Set of hidden states;
by Probability distribution representing the history of actions and states;
A(s) Set of actions possible in state s;
T(s,s’,a) Probability of transition from s to s” when taking action a € A;

(
t(b,a,b’) The belief state transition function;
R(s,s’,a) Expected reward for taking action, a4, when transitioning from s to s’;
O(s,a) Set of observations.

Let r; € R be the reward received at time, f, and define a discount factor, y, where 0 <y <1
penalizes future rewards and is based on the “cost” for not taking immediate action. The goal of the
POMDP is to maximize the expected discounted reward, E[ZZO )/trt]. A policy, 7, describes how
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to select actions for a belief state based on the utility, U™ (s) of executing 7 when starting in state s.
An optimal policy 7* = argmaxU™(s) maximizes the expected utility of an action.

Expected utility may be computed iteratively using a number of methods including a dynamic
programming in which the ky, value is computed iteratively using Equation (1). The optimal policy is
determined by finding the policy that maximizes U™ (s) for each policy ;.

ug(s) =0
i

Uz (s) = R(s,

(5) o

Ui (s) = R(s, m(s)) +y Lyes T (s'ls, m(s)) U4 (")

The updated belief state, b’, is computed from the probability of transitioning from s to s’ when a
given action, g, is taken that results in observation, o.

plols’,a) Loes T(s'Is, a)b(s)
ZS’GS p(O‘S’,LI) ZSES p(S' 5 O)b(S)

b'(s") = p(s’ @

0,a,b) =

Simply stated, a RC extends a deterministic contract for stochastic systems. A RC introduces
the flexibility needed for the resilience “sense-plan-act” cycle that comprises iteratively sensing the
environment and system status (Sense = assumption); sequencing actions that maximize the likelihood
of achieving a goal (Plan) and executing those actions (Act = guarantee). The environment sand system
health are sensed and assessed after each action. The planning function determines whether to continue
with the current plan if the actions accomplish the desired outcome, or otherwise make changes.

As noted earlier, in a POMDP model, some states are unobservable (hidden) because of
uncertainties about system state or the outcomes of actions due to incomplete or imperfect information
(e.g., noisy sensors). Therefore, the resilience contract approach begins with a naive model of system
behavior comprising known (designed) states and transitions and predicted anomalous states and
transitions. New states are added when an observation does not fit any of the existing states, for example,
to accommodate unknown-unknowns, and the emission and transition probabilities updated. Note too
that an action could involve making another observation, invoking a function, selecting another model,
and so forth.

4.2. Example of a Resilience Contract Using POMDP

Figure 2 is a visual, graph-based representation of resilience contracts in a POMDP model.
The model comprises belief states, visible states, and hidden states. The belief state is updated using
Equation (2) in which T represents the probability that the system will transition from belief b to b’
when an action from A is taken having the highest utility (Equation (1)) and an observation O is made.
An observation may result from the current visible state but also might be created from a hidden
state. The action also influences transitions in the visible and hidden states. In a resilience contract
the assertion is defined by belief state and the guarantee results from a results-based utility function.
Significantly, this differs from an invariant contract in which visible states define assertions and the
guarantees are invariants.

A POMDP is seeded with visible states, and transition and emission probabilities determined
during system design. Hidden states are added that connect to some number of the visible states and
to each other. Initially these states are associated with very low, but non-zero transition and emission
probabilities. During system operation, a POMDP is trained by comparing its predictive behavior to the
behavior of the executing system. As needed, the transition and emission probabilities to hidden and
visible states are updated to improve the model. Moreover, as needed, additional hidden states can be
added when the initial set of hidden states is used and future observations warrant new hidden states.
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Figure 2. Resilience Contract Based on Partially Observable Markov Decision (POMDP).

Once trained, the model can be analyzed as a conventional Markov Model. For example, it can
be used to answer questions such as “what is the probability that the system is in a particular state,”
or “what is the probability that the system will fail given where it is now?”

Figure 3 is a partial instantiation of a hypothetical state progression for an unmanned aerial
vehicle (UAV) mission that begins with nominal health and waiting for a ready indication. The model
uses Moore Machine notation, i.e., s# means that when in state, s, perform action a and the transitions
between states is determined by Equation (2). Left transition functions, T; ., represent the transition
probabilities from state 7 to state j in the UAV Health model. Similarly, right transition functions labeled
T3 o fepresent the transition probabilities in the UAV mission model.

The UAV is tasked to image a designated reconnaissance target. The UAV Health POMDP (on the
left) shows states associated with battery health and sends status to the UAV Motion POMDDP. There
are three visible states: Healthy, Battery Yellow and Battery Red, and n hidden states. The n hidden
states represent conditions inconsistent with the visible states. The first hidden state sends “Battery
Degraded” to the UAV Motion POMDP while the n hidden state sends “Unknown.” The distinction
highlights that the next state and actions taken depend on the current state and observations.

The right-side of Figure 3 is the Mission POMDP that determines the motion action to take for
moving the UAV from its current position to its next position. The right-side also has visible, invariant
states, e.g., “Over Target,” as well as hidden states, described further below, that represent uncertainty
in the UAV position or health.

Figure 3 assumes a routing function (an external input to the UAV Motion POMDP) guides the
UAV to its target.

The path from the UAV launch base to the target is along predetermined waypoints. Each waypoint
is associated with one or more meta-actions that inform the UAV controller about its next step.
A meta-action is a generalized action instantiated at each waypoint and assigned specific parameters
determined by analyzing conditions at each waypoint.
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Figure 3. POMDP implementation of unmanned aerial vehicle (UAV) resilience contracts (RCs) for a
reconnaissance mission.

We further assume limitations in camera ground sampling distance that result in camera field of
view (FOV) quadrants as shown in Figure 4. Consequently, the UAV is certain of the target position if
the target falls in the center of a quadrant. However, there is uncertainty when the target falls on or
near a quadrant boundary or the UAV is not near the target. The UAV is considered over the target
when the target is entirely within the camera FOV. The UAYV is deemed to be not over target if the
target is not fully within the bounding box of the camera FOV.

Figure 4. UAV position relative to a reconnaissance target (red star) and FOV (blue).
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Figure 4 shows the UAV positioned over a grid relative to the target position (red star). The UAV
camera FOV is shown in blue. The UAYV positions itself over the target area and takes images while
adjusting its position so that the target is centered under it.

4.3. Exemplar Resilience Contracts

Let us assume that VI and V2 are battery voltage thresholds that bear on operational mission
decision making. For V1 > V2, the UAV returns to base when its battery voltage drops below V1 or
has a non-critical fault condition. The UAV lands if the battery voltage falls below V2, or if the UAV
experiences a failure.

Representative RCs for the UAV mission are shown in Table 6. Although the assumptions shown
in Table 6 have the appearance of invariants, in the RC construct they represent a decision made on
the highest probability b’ (s’), in the POMDP belief state vector (Equation (2)). For example, the first
RC should be interpreted as, “if (the highest probability is that the UAV is not over the target && the
highest probability is that the UAV is healthy && the highest probability is that the battery is green)
then take the action goto_target.”

Table 6. Partial List of Contract for Exemplar Problem.

—overTarget && healthy && batteryGreen — goto_target
—batteryRed && degraded || batteryYellow — goto_base
batteryRed || failed — land

unknownHealth || unknownBattery — goto_base
overTarget && CTR && healthy — do_mission & hover
overTarget && NW && healthy — do_mission & goto SE
overTarget && NE && healthy — do_mission & goto SW
overTarget && SW && healthy — do_mission & goto NE
overTarge && SE&&health — do_mission & goto NW

O X0 NG

The RC invokes combinations of twelve meta-actions: goto_target, goto_base, land, do_mission,
goto_SE, goto_SW, goto_NE, goto_NW, goto_Up, goto_Down, continueAction, and hover. Meta-actions
goto_target and goto_base are generalizations comprising multiple directional moves that respectively
guide the UAV to its target and return to base. There are multiple propositions defined by the most
probable state, e.g., overTarget, healthy (all subsystems working), degraded (one or more subsystems
operating below specification), failed (one or more subsystems are non-functional), NW (the target is
inside the camera FOV and located north-west of UAV nadir), NE, SW, SE, CTR, batteryGreen (battery
voltage is > V1), batteryYellow (battery voltage is < V1 && battery voltage > V2), batteryRed (battery
voltage is < V2), unknownHealth, and unknownBattery.

5. Conclusions

In this paper, we investigated the concept of resilience to identify those definitions and
interpretations that have contributed to productive lines of query and successful realization of
engineered systems. We also formalized the definition of resilience using a rigorous state-based
probabilistic modeling construct that enables system (model) verification while having the requisite
flexibility to allow the system to respond to disruptions. We offered a prescriptive framework for
system modeling approach selection as a function of task and context (i.e., environment characteristics)
and provided an illustrative example of modeling based on flexible resilience contracts.

The key points made in this paper are that different system modeling approaches and algorithms
are needed based on mission tasks and operational context; adaptive capacity and continual adaptability
are the two promising characterizations of resilience that can be cost-effectively realized in real-world
systems; and the resilience contract construct is an effective means for probabilistic verification of
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system model correctness while affording flexibility needed for adaptation and learning. Collectively,
these findings contribute to the body of knowledge in both model-based systems engineering (MBSE)
and engineered resilient systems.

In conclusion, this paper is intended to stimulate interest in the model-based systems engineering
and resilience engineering communities and motivate researchers to explore different approaches
leading to the realization of engineered resilient systems in different domains. Future work, especially in
adaptive cyber—physical-human systems, can be expected to benefit from the use of these concepts [30].
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and D.E.; formal analysis, AM.M., D.E. and M.S.; investigation, AM.M., D.E., and M.S,; resources, A.M.M.; data
curation, D.E.; Writing—original draft preparation, A.M.M.; writing—review and editing, A M.M. and M.S.;
visualization, D.E.; supervision, A.M.M.; project administration, A.M.M. All authors have read and agreed to the
published version of the manuscript.
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