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Abstract: Governments around the world have introduced a number of stringent policies to try to
contain COVID-19 outbreaks, but the relative importance of such measures, in comparison to the
community response to these restrictions, the amount of testing conducted, and the interconnections
between them, is not well understood yet. In this study, data were collected from numerous online
sources, pre-processed and analysed, and a number of Bayesian Network models were developed,
in an attempt to unpack such complexity. Results show that early, high-volume testing was the
most crucial factor in successfully monitoring and controlling the outbreaks; when testing was low,
early government and community responses were found to be both critical in predicting how rapidly
cases and deaths grew in the first weeks of the outbreak. Results also highlight that in countries
with low early test numbers, the undiagnosed cases could have been up to five times higher than the
officially diagnosed cases. The conducted analysis and developed models can be refined in the future
with more data and variables, to understand/model potential second waves of contagions.
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1. Introduction

Based on official estimates, as of early May 2020, there are over 3,000,000 cases of COVID-19
worldwide with over a quarter of a million deaths. Such numbers are the result of a disease with a
much higher (around 1%) fatality rate than a typical seasonal influenza [1]. Furthermore, it is caused
by a virus (SARS-CoV-2) that is transmitted very efficiently, including by people who are only mildly
ill or presymptomatic [2]. This high transmission ability by relatively healthy people makes it very
difficult to contain the COVID-19 outbreak.

At the time of writing, most governments around the world have taken numerous actions in
response to the COVID-19 pandemic to try to “flatten the curve”, i.e., reduce the transmission rate in
order to have a number of cases spread over a longer period of time. This is to avoid overcrowding
hospitals over a short-term period, while also buying time to better prepare the country through more
dedicated tools and facilities and better testing/tracing capabilities, with the end goal of “holding on”
until a vaccine or an effective cure is developed. The magnitude and timing of government responses
have varied remarkably. Countries such as Italy established a very heavy lockdown, with significant
economic consequences, while other countries such as Sweden have adopted a lighter approach,
with very limited restrictions and in turn, lower direct economic impacts. Of equal importance, is how
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society, and each individual, has reacted to the pandemic threat and adapted their lifestyle to the
newly imposed rules or recommendations. Although it is proven that residents of heavily affected
areas suffered from anxiety, stress, and other mental health issues [3], recent research also shows that
the community response to COVID-19-related physical distancing measures is not necessarily high,
and can vary considerably based, for instance, on a community’s education and trust in science [4].

In synthesis, it is sensible to state that the effectiveness of a government response to the COVID-19
outbreak relies on its people, and that in turn, the community response is affected by the way their
government handles the pandemic crisis, starting from how much and how consistently the importance
of respecting restrictions is highlighted through different media outlets.

These complex interactions and the interconnectedness between government response, population
response, COVID-19 cases, and deaths, and in turn, community mental health, country economy,
climate, pollution, education system, population density, population age distribution, global travels,
etc., makes understanding the causes and effects of the COVID-19 pandemic almost impossible with
traditional approaches and with available data. Consequently, a systems thinking approach [5]
is recommended to better quantify and understand such complex behaviours. This has been
previously used by some authors to model complex multi-disciplinary problems [6,7]. A conceptual
model, i.e., casual loop diagram, illustrating all the factors affecting the COVID-19 pandemic
system, has been developed elsewhere [8]. Several of the aforementioned variables across the
environmental-health-socio-economic subsystems are inherently difficult to numerically quantify;
however, for some key variables, such as government and community responses, data currently exist
through a number of online resources or other research studies. Therefore, by using a combination of
traditional data-driven analyses and more complex systems approaches, such as Bayesian Networks [9],
it was possible to model a small sub-system within the larger, overall COVID-19 pandemic network, to
gain a better understanding and quantification of why certain countries have faster outbreaks and/or
more deaths at this point in the pandemic crisis.

2. Results

2.1. Data Analysis Outputs

Firstly, Figure 1 illustrates a breakdown of countries hit the most by COVID-19 as of mid-April,
based on how quickly the virus went out of control and caused several deaths. Specifically, it shows
how many days passed before significant negative milestones, in terms of death counts, were reached.
For every figure presented, the bullets represent the actual measurements whilst the lines are simply
connecting the bullets for visual clarity.

Spain was the country that recorded the fastest spike in deaths, with only 31 days between
recording the 100th case and 10,000 official deaths. Following Spain, Italy recorded the second quickest
high death count, followed by the USA, France, and the UK, respectively. Following the 10,000 deaths
milestone in Europe, both Italy and Spain were more successful than the UK and France in slowing
down the death rate. Similarly, though the USA trajectory was the same, the exponential increase in
deaths continued past the first 10,000 deaths, reaching the sad milestone of 20,000 deaths far quicker
than any other country. In contrast, Germany recorded lower and later deaths at the beginning of the
outbreak, as well as a slower increase in death count. Canada and Sweden had even an even slower
and more delayed death count, while at the time of writing, Japan recorded only a few hundred deaths,
which also started to accumulate well after the first few registered COVID-19 cases.

Figure 2 illustrates how prompt the overall response of different governments was in the early
stages of their respective national COVID-19 outbreaks. A complete figure showing the overall time
series based on normalized (Figure A1) and overall (Figures A2 and A3) number of cases, as per
10 April 2020 is provided in the Appendix A.

The lowest government action (GA—refer to Section 4.2) early scores were from Scandinavian
governments, such as in Sweden and Norway. Spain, Italy, France, and Germany followed thereafter.
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The quickest countries to implement measures were Saudi Arabia, UAE, Japan, the USA, and Canada.
Australia had a moderate early response, though a constant stepwise introduction of new measures
quickly made it the country with the highest GA score. Noticeably, these charts put the government
action in perspective, based on the country population. Australia has a population which is about 13
times lower than the USA; hence, if the government action score was compared against the absolute
number of cases, Australia would comparatively have a much prompter and earlier response, while
the USA would plummet in this ranking (Figures A2 and A3). In Appendix A, the same charts for the
Stringency Index [10,11] are presented for comparison purposes (Figures A4–A6). The trends are quite
similar with the main differences being France, Italy, and Spain having comparatively a higher early SI
than GA, while the USA, UAE, and Australia had lower SI scores in comparison to their respective
GA results.Systems 2020, 8, x FOR PEER REVIEW 3 of 18 
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Figure 3, in contrast, displays the calculated overall population action score (refer to Section 4.2),
and its variation over time during the early stages of the outbreak.
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Figure 3. Overall population action score for different countries vs. recorded number of cases in
proportion to country’s population.

Both the UK and the USA started with very low scores, with values increasing over time to
low-to-medium range values, with the UK score then decreasing again. Despite appearing to have
an early and steep score increase, the large populations of the USA and UK compared to the other
countries shown in Figure 3 highlights that their increase in population score was not particularly
prompt when considering the absolute number of cases (Appendix A—Figure A7), but instead it
occurred when several cases were already recorded. Germany and Sweden, although slightly better,
recorded low scores and little improvement over time, while France started low but had a more
significant improvement as cases increased. Canada, Italy, and Singapore had moderate initial scores,
with improvements over time (Italy did not have early data as the outbreak in the country began before
the survey study commenced). Japan, the UAE, and Saudi Arabia all had very high scores, although
the latter showed a decrease over time.

Figure 4 displays the total number of reported tests performed over time in relation to the number
of recorded cases.

A stark difference can be noticed between Australia, Germany, and Canada, and other countries
such as the UK, USA, Sweden, Italy, and France. By the time 5000 cases were recorded in each country
of the former group, approximately three times more tests were performed than by the countries in the
latter group. Japan’s testing numbers fall between the two aforementioned groups. Countries with no
or limited data to more recent days (e.g., Spain or UAE) are not shown in Figure 4.

Relating to the above figure, Figure 5 displays the relationship between the amount of testing
performed and the number of patients recovered in intensive care units (ICUs) at a specific point in
time, when 5000 cases were officially recorded.

A non-linear negative relationship is evident, illustrating that countries with very low number
of patients in ICUs, such as Australia, Germany, and the UAE, were, with the exception of the USA,
those who performed the highest number of early tests. All countries recording high numbers of ICUs
(e.g., Italy, Sweden, France) also performed the lowest number of early tests. As shown in later tables
(Table 1) and Appendix charts (Figure A9), those countries with higher patients in ICUs and lower
testing had a shorter time delay between the number of cases and number of deaths.
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Table 1. Qualitative summary of the results and data for each analysed country.

Country Days Before
10,000 Deaths

Early ICU Early Gov
Action

Early SI Early Pop
Action

Early
Testing

Lag to Death
(R2)

Australia L H M L but + H 7 (0.53)
Canada M H H M H 14 (0.9)
France 36 H L M L L 6, 14 (~0.5)

Germany L L L L H 12 (0.91)
Italy 34 H L H H L 6 (0.94)
Japan M L but + M H M 10 (0.71)

Norway M M L but + L 12 (0.62)
Saudi
Arabia H H H but − 8 (0.69)

Spain 31 L M L 2 (0.94)
Sweden H L L L L 7 (0.79)

UAE L M H H H 8 (0.74)
UK 38 H M M L L 7 (0.92)

USA 35 L H M L L 7 (0.97)

“H” = high; “M” = medium; “L” = low; “+” = increasing with time; “−” = decreasing with time; blank = no data.
“Lag to death” = number of days between number of cases and number of death providing the highest correlation.
R2 = coefficient of determination.
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2.2. Bayesian Network Outputs

Figures 6 and 7 show the sensitivity analysis outputs of the Bayesian Network (BN) models,
which were developed to predict the number of days before 5000 cases were reached (BN 1), and the
number of days (starting from the day when 100 cases were recorded) before 1000 deaths were reached
(BN 2). The numbers “0.02” and “0.05” relate to the % of cases (0.02% and 0.05%) against the total
country population, as per Figures 2 and 3. In the figures, variables are ranked from those having
the highest variance of beliefs (thus higher sensitivity) to those having the lowest one. Although the
two BNs can be used to predict the two aforementioned variables, the focus in this section is on the
sensitivity analysis since, rather than predicting, the main objective was to try to understand what
factors cause a more (or less) rapid spread of the virus in the analysed countries. Sensitivity analysis
made it possible to rank the different input variables in terms of their importance in affecting such
spread, and thus they fulfil the purpose of identifying those population/government actions that most
successfully helped reduce the diffusion rate of the virus.
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It can be noticed that early (i.e., at 0.02% and at 5000 cases) government action is the most
important factor in predicting the number of days before 5000 cases are recorded, since they are
the two variables with the highest variance of beliefs. Conversely, the very early population action
(0.02%) was much more important than population action at 0.05%, meaning that the way individuals
behaved since the very beginning of the outbreak was crucial in establishing the transmission rate of
the virus; however, the government response was even more crucial. Importantly, three out of the six
most important variables were related to early number of tests. Finally, SI related variables were less
important compared to the equivalent GA ones, providing an indication that the herein developed
GA better captures the relevance of government actions in relation to the early transmission rate of
the virus.

In relation to Figure 7, the three most important variables (i.e., with highest variance of beliefs)
were all related to an early population response. Very early testing and stringency related variables
followed, but with considerably lower importance (i.e., lower variance of beliefs). Overall, it appears
that, while early testing amount emerged as important for predicting both early cases and early deaths,
early government action was found to be significant in predicting/controlling early cases, while early
population action was more important in predicting the early number of deaths.
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3. Discussion

The table below (Table 1) qualitatively summarises the data presented in the Results section for
each country. At the time of writing, only France, Italy, Spain, the UK, and USA had reached 10,000
COVID-19 related deaths. Interestingly, all of them have a very low amount of early testing performed,
as well as poor government or population responses (or both). Lack of early high testing numbers
seems to emerge as a crucial, missing action that resulted in an uncontrolled, rapid spread of the virus.
The more early, timely, and targeted tests, the more people with mild symptoms could be identified,
thus isolating them before they could spread the virus further. Unlike previous outbreaks such as
Ebola, the lethality of COVID-19 is significantly lower and usually results in mild to no symptoms
for most infected people. As a result, it is much more difficult to identify and control. Therefore,
it is logical that a lack of appropriate amounts of testing in the early days of the outbreak did not
allow those countries to contain the virus. The under-detection of infected patients is clear from the
significantly higher number of patients in ICUs, given the same overall number of cases diagnosed.
Early studies [12] showed that approximately 4% of symptomatic patients in different Asian countries
had to go through the ICU; in Italy, once the number of daily tests was finally boosted throughout
April, the proportion of ICU patients compared to the total active cases followed a decreasing trend,
from 4% towards 2%. With statistical studies and early serological surveys showing that the true
number of infected, and particularly asymptomatic patients being significantly higher than reported
through tests [13], it is safe to say that the number of patients in ICU would represent much less than
2% of the real, total amount of infected people. Regardless, even if 2% is taken as a reference, given 462
patients had already recovered in Italian ICUs at the time 5000 cases were detected, this translates to
a more realistic figure of infected patients being over 23,000, which is almost five times higher than
the official 5000 recorded cases, resulting from only 42,000 tests. With over 18,000 untested cases and
the vast majority of them most likely having mild or no symptoms, while also being able to move
around for several days before the first major lockdown rules were established on 9 March 2020, the
Italian COVID-19 outbreak was already well underway and unnoticed before significant action could
be taken. Our results from Figure 6 illustrate that early government action is crucial in controlling the
speed of the outbreak, especially if early tests were limited: this is sensible since early government
responsiveness could have helped in Italy and other countries to better control the untested, infected
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citizens who likely contributed significantly to the spread. Instead, the consequence was an early
overcrowding of hospitals, leading to an extremely high number of deaths. The shorter lag between
the time series of daily cases and daily deaths supports this hypothesis, since it seems that due to
overcrowding and unpreparedness, hospitalised and ICU patients had less support and lower chances
of survival, with only a week passing between the peaks in cases and peaks in deaths. This is similar
for the other hard-hit European countries. Our findings from Figure 7 point at the early response of
the population as critical in limiting the number of deaths within the first few weeks of the outbreak;
with the death toll being a more robust measure of the diffusion of the virus, compared to the number
of cases (biased and proportional to the number of tests performed), the citizen’s risk perception of the
virus, and the way they abide to the restrictions and rules established by their respective governments
emerged as crucial indicators of the severity of the early spread of the COVID-19 outbreaks.

Interestingly, the population’s response is itself affected by the government response; countries
such as the UK and USA, whose initial public messages seemed to downplay the severity of the
COVID-19 emergency, had a low initial population response (Figure 3), with citizens not feeling
particularly worried and in turn, not practicing increased personal hygiene or wearing face masks. A
systems thinking approach is crucial for understanding all these interconnections; the proposed BN
models provide a first step in this direction. With a greater quantity of more reliable data becoming
available, these models can be improved and refined over time.

Germany is the only large European country that successfully contained the outbreak from a death
toll perspective; despite limited government action aside testing, the very high number of early tests
allowed them to more effectively control the outbreaks and individual clusters, since a higher number
of infected people with mild symptoms were detected and isolated. The delay between recorded
number of cases and recorded number of deaths for this country is two weeks, resulting from an early
testing response, an excellent healthcare system and a younger average population than Italy [14]. All
other countries with a high amount of early tests, such as Australia and Canada, were able to control
the outbreak and, in the case of Australia, completely “flatten the curve” at the time of writing, thus
managing to contain the number of cases and deaths, as it can be seen from the data we collected
and analysed. Hence, it seems that early government action becomes crucial only if early testing was
limited (leading to several untested, infected people, free to spread the virus in their communities if
no strict rules are imposed). This seems to be validated by the example of South Korea, which is not
analysed in this study due to partial lack of necessary data, where government measures were limited,
but the country managed to control the outbreak and flatten the curve by establishing an aggressive
testing and contact tracing regime, while also enforcing quarantine policies [15].

An interesting case is provided by Sweden. Sweden is well-known for having adopted a “relaxed”
approach to dealing with the COVID-19 pandemic [16]. In order to avoid catastrophic economic
consequences, they did not impose a full lockdown, with very mild restrictions put in place instead.
Although the government view suggested that they would rely on the citizens to do the right thing,
the surveys highlight that the population response was instead quite poor. This unexpected response
is then aggravated by a very low number of early tests performed. Although the number of cases and
deaths seem to be relatively low, they are comparatively much higher than neighbouring Scandinavian
countries such as Norway and Finland, and still rising at the time of writing. The high number of early
patients in ICUs, coupled with low testing, seems to point at a higher number of actual infected cases
(as high as 13,000 undetected) which, with more delay compared to other European countries, is now
causing a gradual spread.

There are obviously several other factors that might play a role in the spread of COVID-19,
which were not analysed here due to the lack of data or scientific evidence, such as population density
and age distribution, or climate [17,18]. The developed BNs provide a way to quantify the importance
of the analysed factors and provide a probabilistic prediction of the speed of the spread of COVID-19.
Once more research consistently highlights the importance of other factors; these and related data can
be easily incorporated in the BN structure and algorithms to reduce uncertainty.
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4. Materials and Methods

4.1. Data Collection

The data used in this study were collected from numerous freely available online sources. Data for
number of cases, deaths, cases in serious conditions, and tests were collected from Worldometers.info. As
the website states, Worldometer is run by a team of international researchers, developers, and volunteers
without any political, governmental, or corporate affiliation. With regards to COVID-19 data, the
data are collected regularly from official Government sources or reliable media outlets. The data is
then validated by a team of researchers before being published online. The data were collected for
the February 1–April 16 period, i.e., from the onset of the outbreak to the time where the exponential
trajectory of many European countries started to slow down, and in turn, where the effects of certain
government measures became evident. The data were collected during a specific day, and when time
series versions were not available, we accessed archived versions of the Worldometer COVID-19 main
webpage through websites such as web.archive.org. Data about number of COVID-19 tests were also
collected, or validated against, data from ourworldindata.org. Population behavioural response data
were collected from a publicly available dataset, illustrating the results of a research work, conducted
by YouGov and the Imperial College London—over population samples from 29 different countries.
The data is in the form of weekly survey responses to 18 questions in relation to COVID-19 [19]. All the
available data up to April 16 were collected. Regarding the quantification of the response of different
governments, a full database of descriptive information consisting of a range of government actions
around the world was available and downloaded from the ACAPS Government Measure Dataset [20]
and other available online sources, as of 2 April 2020.

4.2. Data Pre-Processing and Analysis

The government action data were grouped into one of the following categories: visa restrictions,
additional health documents required on arrival, border closure, domestic travel restrictions,
emergency administrative structures, economic measures, restriction enforcement and surveillance,
health protection, health screenings in airports and borders, lockdown, limit public gatherings,
public services closures, psychological support, quarantine policies, schools closure, state of emergency
declared, strengthening public health system, and testing policy. Once the category was chosen,
each intervention was then assigned a degree of severity, on a scale from 1 to 4 (maximum). For instance,
discouraging certain travel types was classified as a visa restriction Level 1, while a complete travel
ban was denoted as Level 4. In addition, since certain measures were location-specific, this was
incorporated within the severity degree. For instance, a strict lockdown on a specific region was
given a score of 2, similar to a mild lockdown that was enforced over an entire nation. A strict,
nationwide lockdown would be a Level 3 out of 3. Subsequently, since some of the categories could
be cross-correlated, 5 wider groups were created by summing the scores of the relevant categories.
These 5 groups were: (1) Political (e.g., special structures and enforcement groups); (2) coping/curing
(e.g., testing measures, health facilities); (3) external control (e.g., border closures, visa restrictions);
(4) internal control (e.g., lockdown, no public gatherings, school closures); and (5) socio-economic
(e.g., government support to unemployed). Finally, an overall “government action score” GA was also
calculated for each country by summing all the five individual scores. All such scores were calculated
over the entire analysed time period, daily. These scores were then analysed over time, and in relation
to the number of normalised cases (i.e., in relation to the nation’s population).

Similar indexes, at the time of writing, have been developed elsewhere such as the Stringency
Index (SI), which relies on a slightly different set of government response indicators and aggregated
indices [10,11]. Such SI was also analysed in a similar fashion to the herein developed government
action score for comparison purposes; this was done towards the end of our research work, hence SI
data were collected from [10] and analysed as of 2 May 2020. SI-related variables were included in the
developed Bayesian Networks, as explained in Section 4.3.
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With regards to the population behavioural response, an overall “Population Action Score” was
also calculated by averaging the survey results to a number of relevant questions, specifically: % of
people (1) with fear of catching the virus, (2) avoiding crowds, (3) wearing a face mask, (4) practicing
improved personal hygiene, and (5) not touching objects outside. This overall score was also analysed
against the normalised number of cases. Analyses on results for individual survey questions, not
shown here, was also conducted before calculating the overall Population Action Score.

Visual data inspection and time series analyses were performed to check the rapidity of the spread
of the virus, by calculating the number of days before a country reached certain milestones with regards
to cases and deaths. For these days, the number of tests conducted, as well as the number of patients
in ICUs, was collected when available and used to understand their relationships with the rate of the
virus spread, along with the other data. Furthermore, the time series for number of cases and the time
series for number of deaths were analysed, and the time delay (lag) between them, which maximised
the coefficient of determination (R2), was also calculated for each country. Twenty-nine countries were
initially selected, though not all were fully or partially analysed, due to either missing data or due to
having, at the time of writing, limited cases and deaths. Figure A9 shows the results for the final set of
the 17 countries analysed where data availability was sufficient at the time of writing.

4.3. Model Development and Application

Following the outcomes of the data analysis, a number of candidate input variables were selected
and used to develop data-driven naïve and Tree-Augmented Naïve (TAN) Bayesian Network models,
to try to predict critical variables linked to an early spread of the virus, specifically (1) Number of days
before 5000 cases were reached (BN 1); and (2) number of days (after 100 cases) before 1000 deaths
were reached (BN 2). Bayesian Networks rely on Bayesian theory, which in turn implies that the
Bayes’ theorem [21] can be used to infer or also update the degree of ‘belief’ given new information.
They are made of variables called “nodes”; each variable is discretised in a number of “states”. An “arc”
connects a “parent” node to a “child” node. The relationship between a child node and its parent
node(s) is quantified through a so-called conditional probability table (CPT). Populating CPTs can be
performed based on either numerical, or qualitative (e.g., expert opinion), data. Bayesian Networks
are an increasingly popular probabilistic modelling approach, which is well suited when only limited,
uncertain, and incomplete data are available, such as for this case [9,22,23]. Figure 8 illustrates the
structure of one of the developed BN.

Node discretisation and conditional probability table elicitation was performed and optimised
from the data. In general, a naïve BN consists of only one parent node with multiple child nodes;
more theoretical details can be found elsewhere, e.g., [9,24]; a TAN BN instead relaxes the strong
independence assumption between all the child nodes given the parent [25], and thus arcs between
child nodes are added. This can be noticed in Figure 8, where obvious links were added between
those child nodes logically dependant on each other (from a temporal point of view). The final TAN
structures were preferred to the naïve BN structures as typically they perform better [26] and they
add logical connections between, in this case, temporally related nodes. The software used was
Netica 5.22 32 bit (Norsys Software Corp, Vancouver, BC, Canada); the Netica API is available for
download from their website [27]. Sensitivity analyses were completed using the in-built Netica
algorithms; specifically, the sensitivity of different nodes was quantified by the “variance of node
beliefs” (formerly named “quadratic score” in older Netica versions): this is defined as the expected
change, squared, of the beliefs of the target node, taken over all of its states, due to a finding at the
node in consideration [28]. It varies between 0 and 1, where 0 would represent that the target node is
independent of the node in consideration, while the higher the value, the more sensitive the target
node is to the node in consideration.
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5. Conclusions

A number of data analysis and modelling approaches were deployed to understand the importance
and effectiveness of early government and population responses to COVID-19 outbreaks in several
countries. Out of all the data and variables considered, high numbers of early tests emerged as the
most crucial measure to control the transmission rate, as greater numbers of earlier tests lowered
the number of undiagnosed and non-isolated cases. We estimated that countries with a low initial
testing regime, such as Italy, might have had five times more actual cases than what was diagnosed.
Following testing, early effective government responses were strongly related to slowing down the
number of new recorded cases. Finally, the level of early population response, which in many ways
is related to the type of government approach, was strongly related to the number of early deaths,
which is a more reliable indicator of the spread of the virus. These conclusions point at the equally
important contribution of a rapid government response and an early population-based behavioural
change to abide with the new rules and health recommendations, which, in conjunction with aggressive
early testing policies, assisted in controlling and managing early COVID-19 outbreaks. Due to the
interconnectedness of the study’s variables, a systems thinking approach is recommended for future
studies to capture the inherent complexities of such a multidisciplinary problem. The developed
Bayesian Network models have the ability to capture some of this complexity and related uncertainty,
and can be refined and expanded to include more variables and data in the future, when they become
available, to gain an even better understanding and improvement of the early management COVID-19
outbreaks. This will be of crucial importance as governments have started to lift some of the restrictions
and are preparing for a potential “second wave” of infections.
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