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Abstract: The subject of this article is the dynamics of water in a soil pedostructure sample whose
internal environment is subjected to a potential gradient created by the departure of water through
surface evaporation. This work refers entirely to the results and conclusions of a fundamental
theoretical study focused on the molecular thermodynamic equilibrium of the two aqueous phases
of the soil pedostructure. The new concepts and descriptive variables of the hydro-thermodynamic
equilibrium state of the soil medium, which have been established at the molecular level of the fluid
phases of the pedostructure (water and air) in a previous article, are recalled here in the systemic
paradigm of hydrostructural pedology. They allow access to the molecular description of water
migration in the soil and go beyond the classical mono-scale description of soil water dynamics. We
obtain a hydro-thermodynamic description of the soil′s pedostructure at different hydro-functional
scale levels including those relating to the water molecule and its atoms. The experimental results
show a perfect agreement with the theory, at the same time validating the systemic approach that
was the framework.

Keywords: pedostructure; systemic modelling; systemic variables; hydro-thermodynamic equilib-
rium; Gibbs free energy; fundamental thermodynamic variables; molecular; real and eulerian fluxes;
hydric conductivity of the pedostructure

1. Introduction

The problem of water transfer equations in soil dates back to the beginning of soil
science. The best-known equation and the basis of all models of water circulation in the
soil, is the “Richards” equation, which associates Euler′s law of continuity and Darcy′s law
extended to unsaturated soils:

dθ

dt
= −d f

dz
and f = k

dh
dz

(1)

where θ is the volumetric water content (unit less), t is time, f the flow, z the vertical
coordinate, k the water conductivity and h the soil water retention pressure.

We resume here the study of the water transfer equation in the soil with a completely
new approach: that of the systemic approach we recently theorized [1–3] from the work
of Bertalanffy, initiator of the general theory of systems [4] and Le Moigne [5], author of
the General System model. The application of this systemic approach applied to pedology
has created a new paradigm of characterization, water modeling, and representation of the
natural environment (multi-scale mapping). It is named hydrostructural pedology [1–3]
and is presented schematically in Figure 1.
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Hydrostructural pedology allowed the development of a new physics of soil water,
qualified as systemic, based on the recognition of the pedostructure and the two types
of water associated with it [6–9]. We demonstrated that these two types of water in the
pedostructure are two aqueous phases in pressure equilibrium (hmi(Wmi) = hma(W)) and
distinguished by their thermodynamic properties.

Figure 1. Place of hydrostructural pedology among the earth sciences [10].

This new physics of water in the soil has led to reconsideration the fundamental
bases of classical thermodynamics; in particular, those of Gibbs free energy [11]. This
study, associated with the new concept of “system organized into organized subsystems
that are molecules and their atoms”, has made it possible to develop a new vision of
the thermodynamic equilibrium of the soil medium. The liquid and gas phases are all
recognized as subsystems organized in molecules and themselves in atoms, relative to
the solid phase that makes up the soil structure. Classical variables such as temperature,
entropy, pressure, internal energy, and Gibbs free energy, can then be physically redefined
and precisely explained accounting the two levels of organization: molecular and atomic.

In the present article, we will introduce these two levels of organization into the
current description of the pedostructure organization for re-examining the terms of the
Richards equation (Appendix A) after having rewritten it in the systemic framework of the
hydrostructural pedology [1–3]. The new formulation will allow for taking into account
all functional volumes as thermodynamics variables (volume of the whole system and
volumes of hydro-functional subsystems). We will see then that the challenge becomes how
to associate in the same equation an extensive variable (volume) and an intensive variable
(potential). This is currently done empirically using Darcy′s law extended to unsaturated
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soils. In this article, we will see that the organization level, in which the extensive and
intensive variables meet, is the molecular level of organization. At this level, the terms
internal or external energy, internal or external pressure and internal or external chemical
potential are all in equilibrium relationship, as explained in [11].

2. Updated Theoretical Background of Hydrostructural Pedology
2.1. The Pedostructure, Test Body of Hydrostructural Pedology
2.1.1. Preparation of a Standard Sample of Pedostructure

The pedostructure is the fundamental concept at the basis of hydrostructural pedology.
Materially, it constitutes the first two levels of organization of the soil horizon: that of the
clay plasma and that of the assembly of primary aggregates between them and possibly
with other mineralogical or biological grains of sand size. Pedostructure is present in all soil
horizons (Figure 2); its volume percentage in the horizon and its specific hydrostructural
properties, due to the clay plasma that makes up the primary aggregates, characterize the
hydrostructural behavior of a soil horizon.

Figure 2. Representation of the internal organization of the pedon, hierarchized into its hydro-
functional levels of organization: horizons, pedostructure, primary peds (after Braudeau et al.
2009 [12]).

The variables that are used for the systemic description of the pedostructure of any
soil horizon are listed in Table 1. They all are reported to the same mass of solids: the
pedostructural mass of the considered total soil volume.

Table 1. Pedostructure state variables. Subscripts mi, ma and s; refer to micro, macro and solids; ip, st, bs and re, refer to the
name of the corresponding shrinkage phase of the shrinkage curve: interpedal, structural, basic and residual [12].

Volume of
Concern

Specific Volume
[dm3/kg]

Specific Pore Volume
[dm3/kg]

Specific
Water Content
[kgwater/kgsoil]

Non
Saturating Water

[kgwater/kgsoil]

Saturating Water
[kgwater/kgsoil]

Suction
[kPa]

Pedostructure V Vp W h
Interpedal porosity Vpma Wma wst wip hma, hip

Primary peds Vmi Vpmi Wmi wre wbs hmi
Primary particles Vs

It is, therefore, necessary to define the representative sample of pedostructure in the
laboratory: that sample upon which all the measurements of the hydro-functional curves
of the soil will relate as well as the determination of their parameters. These characteristic
curves are the shrinkage curve, V(W), the water retention curve, h(W), the unsaturated
soil water conductivity, k(W) and the swelling curve of primary aggregates as a function of
time, Wmi(t) [2,9].
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In our study, a standard laboratory pedostructure sample is a soil sample that is
reconstituted with what is traditionally called “fine earth”, the 2 mm sieved soil from the
fractionation of a moderately dry soil sample (<pF3) on a 2 mm sieve (can be 4 mm when
the sample is very clayey with swelling clay). The fine earth is added layer by layer in a
cylinder of 5 cm diameter and 5 cm height, placed on a damp terry cloth; each layer added
wets along with the filling. The objective is to obtain a homogeneous sample in terms
of structure and hydrostructural behavior. The soil cylinder is then subjected to 2 cycles
of desiccation-humidification, the desiccation being carried out using either the Richards
press at pF3 (15 bar) or evaporation in ambient air, the sample being positioned, in this
case, so that the evaporation occurs simultaneously on both sides of the cylinder.

These preparation standards for the pedostructure sample are at the same level of
importance as the oven temperature standard of 105◦ for the definition of dry soil. The term
“pedostructural mass” is the mass of the solid phase that constitutes the pedostructure
of the sample: it constitutes the universal benchmark for the extensive variables of a soil
horizon (water content, salts etc. referred to the pedostructural mass).

2.1.2. Characterization and Modelling of the Hydrostructural Properties of the Soil

The parameters of the two equilibrium equations of the hydrostructural state of the
pedostructure, the shrinkage curve V(W) and the soil water retention curve h(W), are
determined from the curves measured on the standard sample using the TypoSoil® device
which can simultaneously process up to 8 samples [12]. This characterization is totally
accepted by the soil water model Kamel [9,13] and was fully established within the systemic
paradigm of hydrostructural pedology with constant reference to the notions of nested
organizations, hydro-functional levels of organizations (primary aggregate, pedostructure,
soil horizon, pedon, primary soil unit, etc.), and using only variables, functions and
parameters, said to be systemic because they are defined in the systemic description
network of the hydrostructural pedology [1–3]. All the extensive variables of the studied
homogeneous organized system, in particular the cut volume of the sample taken, are
related to the fixed mass of the solid phase comprising the structure cut out in this volume.

However, the exact thermodynamic formulation of the water retention curve h(W) at
equilibrium of the two aqueous phases of the pedostructure [8] and, from this, the exact
distribution of the two kinds of water content (Wma and Wmi) in the pedostructure as
function of W, raises a new and important question about the descriptive variables of the
model. This equation h(W) links an extensive variable (water content) to an intensive
variable (water suction). Indeed, we use a mini tensiometer (2 mm thick) planted laterally
in a soil sample at depths z, to simultaneously obtain water suction (h = hmi = hma),
micro and macro water contents (Wmi and Wma) at thermodynamic equilibrium, locally
in the same soil mini-layer. To answer the fundamental question of what exactly the
spatial extension of is Wmi and Wma corresponding to hmi and hma, we must recall the
principal results of the previous article [11] on the hydro-thermodynamic equilibrium of
the pedostructure at the molecular and atomic levels.

2.2. Molecular Thermodynamic Equilibrium of the Fluid Phases of the Pedostructure
2.2.1. Internal Molecular Organization of the Aqueous Phases at Equilibrium

The water molecule and simple gas molecules constitute the material point of the
fluid phases of the natural environment. These molecules have a specific energy volume
Vm, the sum of the volumes occupied by their constituent atoms, and a mass, the sum of
the masses of their atoms. The free energy that the atom develops in the parent molecule
is of the oscillatory type: 1

2 mλ2ν2. The sum of the atomic free energies of the molecule
constitutes the oscillatory energy of the molecule contained in its volume (Vm = ∑ Vai). It
is this internal “free” energy of the molecule that has been identified as the temperature of
a molecule. Thus, because of the mathematical property of fractions:

(
a
b = c

d = a+c
b+d

)
, not
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only is the internal pressure equal everywhere in the molecule (P = T
V = ∑ Tai

∑ Vai
), but also

the chemical potential defined by µm = T
m = Tai

mai
= ∑ Tai

∑ mai
.

In the aqueous or gaseous fluid phases in which the molecules, while being optionally
ionized, maintain their chemical compositions in atoms, the internal oscillatory energies(

T = 1
2 m(λν)2

)
of the molecules are balanced with the kinetic energies acquired and

maintained by what can be called thermal agitation (Emv = T(S− 1) = 1
2 mv2): the “shocks”

or meetings of molecules of the fluid phase between them. We can then associate each
molecule with an occupancy volume: Vmt, that contains the two types of energy: oscillatory
and linear kinetics (Figure 3).

Figure 3. Conceptual model of the thermodynamic equilibrium at molecule scale; v is the celerity of the molecule and ν2 is
the number of shocks per unit of time [11]. The figure represents one molecule (in red) of volume Vm, in its occupational
volume, Vmt, of diameter D2 (red + blue). The external volume of the molecule, in blue, is Vmv = Vmt −Vm, the volume of
its external energy: Emv = T(S− 1 ) = 1

2 mv2. In a fluid phase, the volume concentration of energy, the pressure, is the
same everywhere, in atoms, molecule and the intermolecular space.

At equilibrium, the volume concentrations of the internal and external energies (pres-
sures) of the molecules are the same and this is where the molecular entropy of the phase
(Sa) comes in. Sa is a fractional number equal to ∑ Vmt

∑ Vm
, which makes thermodynamic

equilibrium possible where all molecules have the same internal and external pressure.
Moreover, given that each molecule necessarily has the same chemical potential

µmi = Ti/mi as that of its atoms and the same mass volume, equilibrium is achieved if the
chemical potential of the molecules is the same in all the phases. Molecules of chemical
masses have different temperatures in the fluid phase in equilibrium, but have the same
molecular chemical potential (µm = Ti/mi) and a chemical potential (µmα = µmSα) that
depends on the entropy (Sα) of the α phase. We can define the chemical potential of the
phase that concerns only the external kinetic energy of the molecules, which we will call
the intermolecular chemical potential, µvα, (index v void):

µvα = µm(Sα − 1) (2)

The big difference with statistical thermodynamics is in the definition of temperature
and the understanding of the free energy of the thermodynamic system (homogeneous
liquid and gaseous fluid phases in equilibrium). The temperature of the phase is not the
statistical average of a variable temperature around a value but, rather, the exact average
of the temperatures of a finite number of molecules of different chemical species, the
molecules of the same species having the same temperature (internal energy).

A phase is characterized by its entropy Sα, an intensive state variable having the same
value throughout the phase. At phase equilibrium, since the internal chemical potential
of molecules, µm, is the same everywhere, the overall molecular chemical potential of the
phase, µα = µmSα, is, therefore, an intensive variable characteristic of the phase. It is the
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same for the external chemical potential of molecules of the phase (µvα), more specifically
the characteristic kinetic potential of the phase ( 1

2 v2). This means that all molecules,
regardless of their mass, have the same linear speed in the phase.

We, therefore, have a fundamental relationship between the chemical potential of the
molecule, the entropy of the phase and the speed of the molecules in the phase:

µvα = µm(Sα − 1) = µmα − µm =
vα

2

2
(3)

where vα is the linear speed of molecules of the phase at the thermodynamic equilibrium state.
The pressure of the water molecules in this intermolecular space is Tw(Sα − 1)/(Vmtw −Vmw),
which is equal to the internal molecular pressure Tw/Vmw and the total molecular pressure in
the phase: (TwSα)/Vmtw .

However, the suction pressure measured by the tensiometer in soil science, as shown
previously [11], has the expression:

h = ρw(µw − µw◦) (4)

where µw◦ is the chemical potential of free water under air pressure and standard tempera-
ture. According to the Equation (3), and because µm is equal everywhere in all phases of
the system at thermodynamic equilibrium, we can substitute the chemical potential of the
water (µw) by the intermolecular chemical potential (µvw) without changing the value of
the pressure h.

h = ρw(µvw − µvw◦) (5)

This allows µvα to be identified with the pressure potential of the water in the tensiometer,
relating h to the speed squared of molecules in the phase (Equations (3) and (5)).

The particularity of this speed is being the same for all molecules of the phase, what-
ever their mass, at thermodynamic equilibrium state since the criterion of intra and inter
phase thermodynamic equilibrium is the molecular chemical potential (µm) and not the
temperature (Ti) as was shown in [11]. The temperature, identified with molecular energy,
is in fact different for each chemical species of the phase since it is obtained from the molec-
ular chemical potential µm of the fluid phases of the system in equilibrium (Ti = miµm).
The temperature of water molecules, for example, is equal to:

Tw = mwµm = mw
µmα

Sα
= mw

µvα

Sα − 1
(6)

With these state variables of the thermodynamic equilibrium of the fluid phases (liquid
and gaseous) of the pedostructure defined at the two organization levels, the molecule and
the phase, we are able to search for the existing relationships between these newly defined
variables and the usual ones (flow, water content, pressures, suction, etc.). It should be
remembered that this link is only possible between variables defined according to the
systemic approach, whether intensive or extensive.

We give in Table 2 the exhaustive list of hydro-thermodynamic variables qualified as
systemic and which cover the four levels of organization: macroscopic and microscopic of
the aqueous phase then molecular and atomic of the phase.

Table 2. Primary thermodynamic variables and their units.

Variables Symbols Equation Type Units

Total molecular energy Emt 1
2

[
m(λν)2 + mv2

]
Energy joule

Temperature T = Em 1
2 m(λν)2 Energy joule

Entropy S S Vmv/Vm inter-mol. Vol./molecular Vol. number

Pressure P P = Pm = Pmv = Pmt T
Vm

, T(S−1)
Vmv

, TS
Vmt

Energy/Volume joule/m3; Pa

Chemical potential µ µm, µmv, µα
T
m , T(S−1)

m , TS
m

Energy/Mass joule/kg

Temperature is pseudo-intensive, the others are true intensive variables and they represent each point of the medium and stay unchanged
across scales [11].
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2.2.2. Identification of Constants Ema and Emi as Intermolecular Free Energies of
the Pedostructure

We know that at the macroscopic level of the phases of the pedostructure, the free
energies of the two aqueous phases of the pedostructure (Emi and Ema) are observed
constant despite a change in the water content of this phase in the defined system of the
pedostructure. Following Sposito [13], Emi and Ema was identified before as the free energy
Gmi = µwmiWmi and Gma = µwmaWma, Wmi and Wma being the water contents micro and
macro of the pedostructure. Now, following our previous study [11], which differentiates
the intermolecular energy (T(Sα − 1)) from the total energy (TSα), Emi and Ema are defined
as the intermolecular energy, corresponding to kinetic energy of molecules:

Ewma =
1
2

mwmavma
2 = µvmamwma = nwmamwµvma (7)

Ewmi =
1
2

mwmivmi
2 = µvmimwmi = nwmimwµvmi (8)

This relationship involves the number of water molecules nwα in the aqueous phase
“wα” (macro or micro), whose molecular mass is mw. The horizontal line above the extensive
variables signifies the ratio to the solid mass present in the same elementary volume.

Recall that these two aqueous phases coexist in the section (elementary layer) at z, one
surrounding the other, in the pedostructure sample. They are indexed: Wma and Wmi. The
fact that the energy of the phase α (macro or micro), Ewα, is constant despite a change in
phase’s water content (mwα) or in its chemical potential (µwα), appears as a displacement
constraint for the molecules since a potential gradient is created as soon as a deficit of water
molecules appears in the system. This constraint is written:

dEwα = 0 = mwαdµvα + µvαdmwα = 0 (9)

or, for each α aqueous phase (macro or micro):

dµvα

µvα
= −dmwα

mwα
similar to d log(µvα) = −d log(mwα) (10)

As the soil medium of the pedostructure is in thermodynamic equilibrium, we have,
at every point of the medium, equality of the retention pressures between the two phases:

hz = hma = hmi = ρw(µvma − µvma◦)z = ρw(µvmi − µvmi◦)z (11)

This gives the following general equation, since µvma − µvma◦ = µvmi − µvmi◦ and
according to (10):

µvmad log(mwma) = µvmid log(mwmi) = −dµvma = −dµvmi (12)

Note that this equation is valid only if the saturated state corresponding to h = 0
is set and therefore the potential µvma◦ and µvmi◦ corresponds to Wma◦ = Wmasat and
Wmi◦ = Wmisat and that all these equilibrium equations are deduced from the fact that
the “free” energies Ewma and Ewmi of the two aqueous phases in equilibrium, defined and
expressed by the fundamental expressions (7) and (8), are constant and characteristic of
the pedostructure.

2.2.3. Definition of the Molecular Flux fma in the Pedostructure in
Thermodynamic Equilibrium

Consider the two aqueous phases of the pedostructure, one in the inter-aggregate
space (macro phase), surrounding the other (micro phase) in the clay plasma of the primary
peds. Only the macro phase is in contact with air and in capillary continuity throughout
the sample. It has the possibility of moving according to a potential gradient created by the
departure of water molecules from the surface. The micro phase has no capillary continuity
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and is in contact only with the macro phase with which it locally comes into pressure
equilibrium by exchanging water molecules.

In the absence of a potential gradient, the sum of the “speed” vectors of all molecules
is zero (zero divergence). When a potential gradient is set up, on the z axis for example, an
acceleration field automatically derives from the potential and is applied to the molecules
placed in this gradient; in the case of the macro phase:

γmaz =
dµvma

dz
(13)

In the case of our standard experiment of drying a soil cylinder by evaporation of
water on the surface, the force exerted on all molecules of the phase is, in accordance

with Newton′s second law:
→
F i = mi

→
γwma. This force determines the elementary pressure

carried by each molecule of the phase on its environment: (p = ρwγwma; cf. [11]), which
causes a molecular flux fma through the surface (sma) (occupied by the macro aqueous
phase) of the sample section at depth z, such as:

γmaz =
d fma

dt
=

dµvma

dz
(14)

where fma is the molecular flux of the macro phase, identified to the molecular speed of
phase molecules along a gradient line if it exists (non-zero divergence). It is, therefore,
an intensive phase variable that has the same value for each molecule in the phase. This
is what conceptually distinguishes this type of (molecular) flux from the flows usually
considered as flow in the Euler equation, defined as the speed of passage of a volume of n
molecules through a chosen surface and not the actual passage of molecules. Moreover, as
said above, the argument of velocity vectors of molecules of a phase is equal throughout
the phase in thermodynamic equilibrium, whatever their molecular masses.

3. Materials and Methods
3.1. Soils
3.1.1. Provenance

All tested soils in this study come from Martinique; they were collected and char-
acterized as part of a IRD project to establish a SIG of Soils of the Martinique [14]. The
goal of the project was to physically characterize the hydrostructural properties of the
soils described in the notice of the very detailed existing soil map of Martinique. Soils are
clayey of volcanic origin, differentiated by pedogenesis according to the geomorphological
situation and geographical position they occupy around the ancient volcano. These lead,
over small distances, to well-differentiated pedohydric regimes and different microclimates
and plant cover on the surface.

3.1.2. Hydrostructural Characterization

Hydrostructural characterization consists of measuring the shrinkage curve and the
potential curve performed at the same time on the same sample [7]. At the time of the
project, TypoSoil did not exist yet and the hydrostructural characterization was accom-
plished by measuring the shrinkage curve V (W) and the suction curve h (W) (or water
retention) of the soil on two separate samples. The porous ceramic of the tensiometer had
to be placed in the center of the sample, and the water had to evaporate uniformly over the
entire surface so that the curve was representative of the sample.

3.2. Measuring Apparatus of the Hydric Conductivity of the Pedostructure

The apparatus used was manufactured to measure the water conductivity of the soil
pedostructure (Figure 4). It is composed of a balance on which rests a metal cylinder of
5 cm in diameter and 5 cm in height containing the soil sample, collected at a moisture
state close to the field capacity. The cylinder is provided with two holes that allow the
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introduction of two mini-tensiometers T1 and T2 (diameter 2 mm), positioned 1 cm and
2 cm, respectively, from the surface. The sample, reshuffled or not, is first brought to
saturation with its cylinder on a sandbox. The upper surface is then leveled at the edge of
the cylinder while the lower surface is covered with plastic film to prevent any evaporation
on this side. Finally a flat ring, with an outer diameter equal to the diameter of sample
and forming a strip a few millimeters in width, is laid on its upper face to limit the lateral
evaporation that occurs after reduction in the diameter by shrinking.

Figure 4. Device for measuring the hydric conductivity of the pedostructure.

The tensiometers are connected to a box of pressure sensors, in turn connected to
a computer. The assembly is placed in a thermostatic chamber at 34 ◦C. Tensions and
weights are recorded every 5 min. We deduce the values of the overall water content
(Wt), the water potential (µmi, µma) of the micro and macro phases at two positions of the
tensiometer as well as the corresponding local water contents (Wmi, Wma) by using the
following relationships:

Wt =
Mt −MS

MS
; h = hma = hmi = ρw(µma − µma◦) = ρw(µmi − µmi◦) (15)

h = ρwEma

(
1

Wma
− 1

WmaSat

)
= ρwEmi

(
1

Wmi
− 1

WmiSat

)
(16)

Ema = WmaµWma and Emi = WmiµWmi (17)

where Emi, Ema, WmaSat and WmiSat are the characteristic parameters of the retention curve
h (W) given by the previous hydrostructural characterization of a soil horizon.

3.3. Systemic Variables Used for Modelling the Water Movement at the Different Organization
Levels of the Pedostructure
3.3.1. Hierarchical Arrangement of the Solid, Liquid and Air Phases at a Given Depth

The standard object of the study being a sample of pedostructure of cylindrical shape
by which we study the variation of the water state along the z axis, all the descriptive
variables used must relatable to the same level of scale: that of the horizontal section of
the sample at depth z, then allowing us to relate the two microscopic and macroscopic
aspects of the sample. We can imagine this section, over an elementary height dz, surfaces
occupied by the well identified phases: the solid phase (ss), two aqueous phases (smi)
and (sma), and the gas phase (sair) such that the total surface of the section st is the sum
st = ss + smi + sma + sair. The entire surface is homogeneously filled with these 4 phases
with the essential constraint that the arrangement of the 4 phases between them is respected:
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the solid phase is surrounded by micro water, which is surrounded by the macro phase,
and the macro phase surrounded by the air phase.

Recall that the basic assumption of the systems approach is to consider the solid phase
of the structure as invariant in mass in the discretization of space: the elementary horizontal
layers of volume δV = stdz all contain the same quantity of structural mass.

δms

dz
=

ρsssdz
dz

= ρsss =
Ms

L
(18)

where ρsss is a fixed characteristic of the homogeneous sample in terms of structure and its
structural mass Ms; ρs is the actual density of the solid phase, Ms is the total mass of the
dry sample and L is its length.

The extensive variables, such as water contents and organized volumes and sub-
volumes (W, Wmi, Wma, V, etc.), are all related to the mass of the local structural phase:
δms = ρsssdz, the mass contained in the same volume δV as that in which the other
variables are defined. We have for example:

Wz =
ρwswdz
ρsssdz

=
ρwswz

ρsssz
(19)

In the systemic approach, this structural mass is the fixed reference to which are
attached all the variables of the same volume and which, in turn, is variable with the water
content. This ensures consistency in the creation and definition of descriptive variables as
well as their correct use.

3.3.2. Extensive Variables such as Volumes and Water Contents

The crucial problem is indeed that defining the extensive variables of water content
and of volumes that depend on the organizational scale at which the variable is considered:
the macroscopic level of the entire system (Vt, Wt, etc.) or a discretized subsystem between
two depths (Vz1−z2 = ∆V1−2) or that considered at the molecular level, that of the horizontal
section at depth z.

(1) The global variables Wt, Vt, etc. marked with the index t, are considered homoge-
neous and in thermodynamic equilibrium over the entire pedostructural system, the subject
of the study. The volume (Vt) divided by the total mass of the solid phase (Mst) constituting
the structure of the system, is the mass volume, which we write as Vt: Vt = Vt/Mst.
Likewise, the overall water content of the system, Wt, is the mass water content of the
system (Mw) divided by the structural mass (Ms) and written as: Wt = Mw/Mst. These
variables, all related to the same structural mass, are additive: Wt = Wmat + Wmit . We have
the following equalities:

Wt = ρw
Vwt

Mst
= ρwVwt =

Mw

Mst
(20)

The mass volume of the pedostructure (mass pedostructural volume) is variable with
its water content in accordance with a characteristic property of the soil: its shrinkage
curve: Vt = f (Wt).

(2) A second type of variable is the local variable, defined for a delimited part of the
homogeneous medium of the total system. In our case of a standard sample of pedostruc-
ture, this is a horizontal layer of the sample between the dimensions z1 and z2. This layer
is a subsystem of the overall system, and has the same structural characteristics but the
extensive variables of volume and water content of the various mobile phases of the system
(aqueous and gaseous) are not related to the total structural mass of the system. They are
related to the local structural mass of the medium, between the depths z1 and z2. This type
of variable with an extensive character is indexed with ∆z

W∆z = ρw
Vw∆z
Ms∆z

= ρwVw∆z =
Mw∆z
Ms∆z

(21)
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(3) The third category of variables of an extensive nature is the “molecular” variable, a
function of z. These variables are attached to the horizontal section of the sample identified
by the corresponding z score. Let us redefine the mass volumes, like Vz, using all the
descriptive variables of the aqueous and gas phases defined at this depth z:

Vz = lim
dz→0

st

ρs ss

dz
dz

=
st

C
≡ Ms

−1L3 (22)

where
C =

ρs ss dz
dz

=
dms

dz
= ρs ss at depth z. (23)

Subsequently, the z index, indicating that the variable is molecular, will generally be
omitted.

Assuming that the medium is homogeneous from the perspective of its structure, we
can consider c as a constant that can be estimated at C = dms

dz = Ms
L for a cylindrical sample

of height L and structural mass Ms. We define the water content variables in the same way:

Wma =
ρw

ρs

sma

ss
=

ρw

C
sma = ρwVma (24)

Wmi =
ρw

ρs

smi
ss

dz
dz

=
ρw

C
smi = ρwVmi (25)

W =
ρw

ρs

sw

ss

dz
dz

=
ρw

C
sw = ρwVw (26)

Note that, since ρw and C are constants, any ratio of two occupied surfaces of a section
in z (sma/smi at depth z, for example) is equal to the ratio of the volumes based on these
surfaces and for height dz. This ratio of two differentiated surfaces at the molecular level
of a horizontal section of the sample, at z, can be considered equivalent to the ratio of the
corresponding extensive variables at the same z, for example:

sw

st
=

Vw

V
=

Vw

V
= θw =

W
ρw V

(27)

where sw is the area of the section at z occupied by water (sw = sma + smi) and st is the total
area, at z.

3.3.3. Concomitant Variation of Organizational and Fluxes Variables at z

The two water fluxes, f ew and fw, are, according to their physical definition (30) and
(31), proportional to the molecular flux according to:

ρw V f ew = Wma fw = W fma (28)

or, dividing by ρw V:
f ew = θwma fw = θw fma (29)

However, these Equations (32) and (33) do not provide any information on their
reciprocal variations in time and space: it must be the same dz for the same dt that makes
up the equations defining the three types of variable containing the equation (flux, volume
and mass). It is possible to resolve the uncertainty about dz by considering the derivative
of these variables with respect to z. The derivative of fma defined by Equation (31) gives:

d fma

dz
=

d
dz

(
sma

sma

−dz
dt

)
= − d

dt

(
smadz
smadz

)
= − dWma

dtWma
= −d ln Wma

dt
(30)
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The change in sign results from the fact that one passes from a variation of speed, dz
dt ,

to a variation of volume calculated with the height dz taken in the opposite direction of the
speed. In the same way, we also have:

d fw

dz
=

d
dz

sw

sma

dz
dt

=
sw

sma

d
dz

sw

sw

dz
dt

= − W
Wma

d ln W
dt

= − dW
Wmadt

(31)

d f ew

dz
=

d(swdz)
dz st dt

= −d ln W
dt

sw

st
= −d ln W

dt
W

ρwV
= − dW

ρwVdt
(32)

Note that the relations (34) to (36) participate in the definition of local extensive
variables (at depth z); we have in fact:

The indeterminacy having been lifted, it is allowed to relate these 3 equations to each
other, which gives:

d fw

dz
/

d fma

dz
=

dW
dt

/
dWma

dt
=

(
1 +

dWmi/dt
dWma/dt

)
(33)

d f ew

dz
/

d fw

dz
=

Wma

ρwV
= θwma (34)

and we can rewrite the continuity equation in this form:

dW
dt

= −ρwV
d f ew

dz
= −Wma

d fw

dz
= −Wma

d fma

dz

(
1 +

dWmi/dt
dWma/dt

)
(35)

Other relationships between fluxes and water contents are given in Appendix B.

3.3.4. Spatial Variation of the Product fmaWma

We saw that fma is a molecular flux of the aqueous phase macro, and Wma is the water
content of this phase at depth z, given by Equation (24). The problem is the constant C that
makes reference to the solid phase. By taking the correct expression for the solid phase, we
can then consider fma as the speed of each molecule and fmaWma as the concentration of
momentum whose derivative with respect to time is a force.

Consider the molecular expression of the product: fmaWma, in accordance with Equa-
tions (24)–(27) and (31) of the physical definition of the two variables and their derivatives
with respect to z:

fmaWma =
dz
dt

ρwsma

C
=

ρwsmadz
ρs ss

dz
dz dt

= −ρwδVma
δms
dz dt

= − ρwdVma

αzmszma dt
= −ρwdVma

αzdt
= −dWma

αzdt
(36)

where C is the constant of the material (C = ρs ss) defined by Equations (22) and (23),
δVma the element of volume equal to δVma = smadz, δms = ρs ssdz, the mass of the solid
phase concomitant, and mszma the mass of the solid phase at the level of the section at z
associated with the volume variation dVma =

d(sma)
αz

; αz = C/mszma ≡ L−1.
We give for αz the following physical definition:

ρwsmadz
Cdt

= −ρwδVma
δms
dz dt

= −ρwdVma

αzmsdt
= −ρwdVma

αzdt
= −dWma

αzdt
(37)

where δms is the solid mass element corresponding to δVma and such that:

δms

dz
= αzmsma (38)

msma being the element (mass) of the solid phase associated with dVma and such that:

dVma

msma
= dVma (39)
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Comparing Equations (39) and (40), we deduce that:

αz fmaWma =
d fma

dz
Wma = −

dWma

dt
(40)

thus,

αz fma =
d fma

dz
(41)

Since fma =
dz
dt , we also have:

fma
dWma

dz
=

dz
dt

dWma

dz
=

dWma

dt
(42)

and from (44), the general equation:

αzWma fma =
d fma

dz
Wma = −

dWma

dt
= − fma

dWma

dz
(43)

The consequence of Equation (47) is that:

d ln fma

dz
= −d ln Wma

dz
= αz and

d ln(Wma fma)

dz
= 0 (44)

3.3.5. Flux Variables at Depth z

Just as we have defined the extensive variables at depth z
(
V; W; Wma; Wmi

)
, we must

also define the associated types of fluxes at depth z:
(1) The global or Eulerian flux ( f ew): the flux of water crossing the entire horizontal

section (st), of the sample, without distinction of the surface actually crossed by this section:

f ew =
mw

ρw

dnw

stdt
=

dVw

stdt
=

sw

st

dz
dt

=
st

st

dlw
dt

=
dlw
dt

(45)

where mw is the molecular mass of water and nw is the number of water molecules in the
elementary water volume dVw = swdz, which is in the elementary soil volume dVt = stdz.
This defines the elementary high of water (dlw) such that stdlw = dVw = swdz. It follows
that dz

dt is the rate of transfer of water molecules through the surface (st), while dlw/dt is
the rate of drainage of the height of water in the volume element (dV = stdz).

This implies the equivalence: swdz = stdlw and the different forms of writing of
the Eulerian flux that we obtain by using Equation (28) of equivalences with the ratio of
molecular surfaces:

f ew =
dlw
dt

=
sw

st

dz
dt

= θw
dz
dt

=
W

ρw V
dz
dt

. (46)

(2) The real flux, fw, transfer speed of water molecules through their real surface
of passage (sma), the surface occupied by the macro water molecules, the aqueous phase
external to the primary aggregates:

fw =
mw

ρw

dnw

smadt
=

dVw

smadt
=

st

sma

dlw
dt

=
ρwV
Wma

f ew =
f ew

θma
=

W
Wma

dz
dt

(47)

where the ratio dz
dt represents, as in Equation (29), the speed of movement of water molecules

on the z axis.
(3) The molecular flux ( fma), the real speed of the water molecules of the surface sma,

is the speed (modulus) of the molecules of the macro phase determined by the chemical



Systems 2021, 9, 8 14 of 27

potential of the phase different from fw related to the number of micro and macro water
molecules leaving the surface during the time (dt):

fma =
mw

ρw

dnwma

smadt
=

smadz
smadt

=
dz
dt

(48)

Indeed, the speed dz
dt defined by this Equation (31) is that of the water molecules of

the phase, namely, the speed of agitation of the molecules of the macro phase.
Thus, the Eulerian and real fluxes of the water in the pedostructure are linked to the

speed of agitation of the molecules of the macro aqueous phase through the intermediary of
the molecular flux fma and therefore directly linked to the state variables of thermodynamic
equilibrium of the phase (temperature, chemical potential, entropy etc.)

3.4. Writing of the Physical Process at a z-Section Level of Scale

Having defined the descriptive variables of the organization of the internal envi-
ronment of the pedostructure at depth z, we can now introduce the physical processes
that govern the movement of water (fundamental equation of dynamics) and the regula-
tion of liquid phases by relative to the solid phase (thermodynamic equilibrium) due to
evaporation of surface water.

3.4.1. Application of Newton’s Law

The relation of flux with time, when it comes to a speed of movement, goes through
the fundamental law of mechanics and Newton’s 2nd law, mentioned above (14). These
laws apply to the molecular flux ( fma) which proceeds from the chemical potential gradient
of the macro aqueous phase, the relationship of which is known with the water content of
the phase at depth z:

The upward force Fma, which drives the water molecules, of molecular mass: mw,
present at the sma surface at the coordinate z is equal to:

Fma = mwγma = mw
d fma

dt
= +mw

dµ

dz
(49)

They undergo an acceleration of:

d fma

dt
=

dµva

dz
(50)

The + sign of Equation (49) is negative in the literature but must be corrected as
positive. In fact, the negative sign arises from the fact that the potential, µ, is taken negative
in a standard way, in accordance with current thinking about potentials. However, we
showed [11] that the chemical potential of the thermodynamic phases (µva in this case) is
always positive.

The products: ( fmaWma) and
(

Wma
d fma

dt

)
are, therefore, respectively: the linear mo-

mentum, MLT−1 and the force of inertia, MLT−2, of the nma molecules of mass mw, both
refer to the local structural mass msz = C/αz as we saw above.

Let us derive the linear momentum of molecules of water ( fmaWma) with respect
to time:

d
dt
( fmaWma) = Wma

d fma

dt
+ fma

dWma

dt
(51)

By replacing dWma
dt by its equivalent −Wmad fma

dz given by Equation (34) and d fma
dt by dµma

dz
(50), we obtain:

d
dt
( fmaWma) = Wma

dµma

dz
− fmaWma

d fma

dz
= Wma

(
dµma

dz
− d fma

2

2dz

)
(52)
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We show in Appendix C that(
dµma

dz
− d fma

2

2dz

)
= αt fma (53)

where αt is the constant of dimension t-1 of the time exponential in the relation:

Wma = At=0 exp(αtt) + B (54)

Thus, according to (52), we get the important relationship:

d
dt
( fmaWma) = αt fmaWma (55)

which leads to:

d ln(Wma fma)

dt
=

d ln fma

dt
+

d ln Wma

dt
= αt =

d
dt

ln(Wma − B) (56)

Furthermore, since d( fmaWma)
dz = 0 according to (48), the derivative of (52) with respect

to z is null:

d2( fmaWma)

dzdt
=

dαt

dz
Wma fma + αtWma

d fma

dz
+ αt fma

dWma

dz
= 0, (57)

meaning that αt is constant with depth.

3.4.2. Equations of Wma and fma and Their Derivatives

We deduce from the above the equation of Wma depending on t and z:

Wma −Wma f = Wmaz=0 exp(−αzz)−Wma f

=
(

Wma◦ −Wma f

)
exp(αtt) exp(−αzz)

(58)

where B = Wma f and At=0 =
(

Wma◦ −Wma f

)
in Equation (54), Wma f being the macro-

water content of the soil surface at equilibrium with atmosphere, at the end of the ex-
periment, and Wma◦ being the macro-water content at saturation at the beginning of the
experiment with the condition that Wma f ≤Wma ≤Wma◦ .

Thus, we have:

dWma

dz
= Wmaz=0 exp(−αzz) = −αz

(
Wma −Wma f

)
(59)

dWma

dt
= αt

(
Wma◦ −Wma f

)
exp(αtt) exp(−αzz) = αt

(
Wma −Wma f

)
(60)

d2Wma

dzdt
= −αtαz

(
Wma◦ −Wma f

)
exp(αtt) exp(−αzz) =

d2Wma

dtdz
(61)

From (56) we can calculate the derivatives of fma as functions of Wma:

d ln fma

dt
= αt −

dWma

dtWma
= αt − αt

(Wma − B)
Wma

= αt
B

Wma
(62)

and, since d ln Wma
dt = − d fma

dz = −αz fma,

d fma

dz
= αz fma = −

d ln Wma

dt
=

d ln fma

dt
− αt = αt

(
B

Wma
− 1
)

, (63)
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which gives:

fma =
αt

αz

(B−Wma)

Wma
=
−dWma/dt
−dWma/dz

=
dz
dt

(64)

Finally, retaking (62) and using (64), we obtain:

d fma

dt
= αt

B
Wma

fma =
αt

2

αz

B
Wma

(
B−Wma

Wma

)
(65)

3.4.3. Application of the Equilibrium Equations between the Two Pedostructure
Aqueous Phases

The pressure balance between the two aqueous phases which is established simulta-
neously with the migration of macro water to the surface can be seen as follows.

The molecular flux fma of the macro phase is really the molecular speed of the
molecules of this phase when they pass through the section sma under the effect of a
potential gradient, specific for this phase, determined at z by the equation:

dH
dz

=
dhma

dz
− ρwg = ρw

(
dµma

dz
− g
)

(66)

The molecules of the micro phase (of potential µmi) that are found in the clay plasma
of the primary aggregates are themselves subjected to the pressure difference (hma − hmi),
which appears between the two phases as soon as there is a change in macro water content
Wma at z, i.e., as soon as a variation in the flux of molecules of this phase along the z axis
appears (d fma/dz 6= 0).

In this case, (d fma/dz 6= 0), the pressure balance between the two phases expressed
by hma = hmi is broken and must be re-established by a lateral flux of molecules from the
micro phase to the macro phase.

We can then describe the process of water migration in the sample following the
evaporation of water at the surface as follows: the variation of the flux of inter-aggregate
water at depth z, d fma

dz 6= 0, has the effect of a change in water content Wz at this same
depth z, which simultaneously causes a new micro to macro flux totally determined by the
equilibrium pressure equation hma = hmi. This equality was studied above, giving rise to
relations (10) to (12).

Moreover, starting from the equilibrium condition: hmi = hma, we have every moment

µ
eq
mi − µmiSat = µ

eq
ma − µmaSat (67)

which is written, according to the local values of Wmi and Wma:

Emi
Wmi

− Emi
WmiSat

=
Ema

Wma
− Ema

WmaSat
(68)

By setting the constant parameters of the shrinkage curve [6]:

A = (µmaSat − µmiSat) =
Ema

WmaSat
− Emi

WmiSat
and E = Emi + Ema (69)

we get the following equalities:

Wmi

Emi
=

Wma

Ema − AWma
=

W
E− AWma

; (70)

showing that the ratios Wmi
Wma

, W
Wmi

and W
Wma

are all functions of Wma alone. Therefore, we
have:

W =
Wma

(
E− AWma

)(
Ema − AWma

) et Wmi =
EmiWma

Ema − AWma
(71)
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Having the distribution of Wma in space and its variation with time, we automatically
have the values and variations of W and Wmi in any point of the medium.

The following equations can be verified:

dWmi
dWma

=
Ema

Emi

Emi2(
Ema − AWma

)2 =
Ema

Emi

(
Wmi
Wma

)2
(72)

leading to:

dW
dt

=
dWma

dt

(
1 +

Ema

Emi

(
Wmi
Wma

)2
)

= αt

(
Wma −Wma f

)(
1 +

Ema

Emi

(
Wmi
Wma

)2
)

(73)

and
dW
dz

=
dWma

dz

(
1 +

Ema

Emi

(
Wmi
Wma

)2
)

= −αzWma

(
1 +

Ema

Emi

(
Wmi
Wma

)2
)

(74)

The continuity Equation (39) becomes:

dW
dt

= −ρwV
d f ew

dz
= −Wma

d fw

dz
= −Wma

d fma

dz

(
1 +

Ema

Emi

(
Wmi
Wma

)2
)

(75)

4. Results
4.1. Linear Relationships between Wz, Wt and Time

The characteristic retention curve of the sample h(W) is shown in Figure 5, which also
shows the two curves (h1 and h2) of the continuous reading of tensiometers T1 and T2 as
a function of the total water content (Wt) of the sample. The curves are homothetic: the
total water content of the sample (Wt = (M−Ms)/Ms) corresponds to the values of the
suction pressures h1 and h2 measured by the tensiometers and to the local water contents
W1 and W2 that can be read on the retention curve h(W), characteristic of the sample.

Figure 5. Representation on the same graph of the water retention characteristic curve h(W) ,
measured and modelled, and of the tensiometric reading h1 and h2 according to the total water
content Wt. Modelled curves of h(W), h1(Wt) and h2(Wt) used the same pedostructural parameters
characteristic of the sample: WmaSat, WmiSat, Ema and Emi.

The following relationships are observed:

Wz1 = a1Wt + b1 and Wz2 = a2Wt + b2 (76)
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where ai and bi are constants associated with the depth zi. At a given depth, the local water
content is in constant proportion to the overall water content of the sample. The same
applies to the difference in water content between two depths:

Wz2 −Wz1 = Wt(a2 − a1)− (b2 − b1) (77)

Let us find the relationship between ai and bi. At water saturation W0 of the sample,

Wzsat = aiWtsat + bi and Wtsat = Wzsat = W0 (78)

thus,
bi = W0(1− ai) (79)

and
ai =

Wz −W0

Wt −W0
(80)

For ai to be time independent, whatever z, it is necessary that:

dai
dt

= −dWt

dt
Wz −W0

(Wt −W0)
2 +

dWz

dt
Wt −W0

(Wt −W0)
2 = 0 (81)

dWt

dt
(Wz −W0) =

dWz

dt
(Wt −W0) (82)

or else
d ln(Wt −W0)

dt
=

d ln(Wz −W0)

dt
(83)

The relation between the water content local, WZ, and total, Wt, is such that:

dWz

dt
/dWt

dt
=

(Wz −W0)

Wt −W0
= ai (84)

Wz being defined as the ratio of the areas sw = sma + smi and ss at z: Wz =
(

sma+smi
ss

)
z
.

The 2 graphs in Figure 6 give the values of ai and of dWz
dt at the two positions of

the tensiometers z1 and z2, which gives us, according to (83), dWt
dt = dWz/dt

ai
= −8.56 ×

10−5 min−1 and −8.57 × 10−5 min−1, respectively.

Figure 6. Linear relationships between Wz, Wt and Time. (a) represents the local water content at depths z1 and z2 according
to the global water content of the sample; (b) represents the time dependence of the two local water contents (at depths z1
and z2) and the global water content. The z-area ratio ai can be read on the figure (a): 2.29 for z = z1 and 1.82 for z = z2.
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4.2. Logarithmic Relation between Wz and Wma-Wmaf

We can see in Figure 7 that the relation between Wz and Wma is, for the two cases of z,
a simple logarithmic function such as:

Wz

Wc
= ln

(
Wmaz −Wma f

)
+ C (85)

where C is a dimensionless constant and 1/Wc = αw is a constant parameter of the
exponential of Wz.

Figure 7. Relationship between Wt, Wz and
(

Wmaz −Wma f

)
. Rivière Lézarde Ponterre (halloysite soil) 60–65 cm. (a) repre-

sents the two local water contents (Wz and Wmaz) relationship at two given depths (b) represents the global water content of
the sample as a function of the local macro water content at a given depth z. The constant Wc in Equation (85) is read on the
left figure is 0.04995 and 0.0500 kg of water/kg of soil.

What is remarkable is that this logarithmic form of Wz (84) exactly represents the
Equation (71) of Wz function of Wmaz:

Wz

Wc
= ln

(
Wmaz −Wma f

)
+ C =

1
Wc

Wma
(
E− AWma

)(
Ema − AWma

) (86)

By differentiating (84) with respect to time and using the relation (60) giving dWma
dt ,

we obtain: (
Wma −Wma f

)
Wc

dWz

dt
=

dWma

dt
= αt

(
Wma −Wma f

)
(87)

We, therefore, have whatever z in the unsaturated zone:

dWz

dt
= αtWc = cte (88)

and according to the relation (73) that exists between dWz
dt and dWma

dt :

Wc =
(

Wma −Wma f

)(
1 +

Ema

Emi

(
Wmi
Wma

)2
)

=
(

Wma −Wma f

)
Rz (89)
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4.3. The Fundamental Relationships between Flux, Water Potential and Water Content at
Macroscopic Scale
4.3.1. Central Role of Wma

Figure 8 shows the experimental result of the relationship between the macro water
content gradients ∆Wma

∆z and the pressure ∆h
∆z of a thin soil layer and the average water

content of this layer.

Figure 8. Measurement result of functions F1 and F2 defined hereafter in the text, which are simple exponentials of Wma: (a)
represents F1 as function of Wma and (b) F2 as function of Wma.

We are in the case of a systemic discretization of the soil medium to apply transfer
equations [9]. The values of Wma1 and Wma2 are calculated from the data of tensiometers
T1 and T2 using the characteristic soil retention curve. They are supposed to represent
the average water contents in the 1 cm thick slices around tensiometers 1 and 2. The
products Wma

∆h
ρw∆z , ∆h

ρw∆z
∆Wma

∆z and ∆ ln Wma
∆z named F1, F2 and F3 are presented as functions

of Wma(1,2), mean of Wma between z1 and z2.
We observe three simple exponentials of Wma, two of which are represented in Figure 8:

F1 ≡Wma
∆H

ρw∆z
= k1 exp(α1Wma); k1 = 3.123 Jm−1 and α1 = −54.04 kg_soil/kg_water (90)

F2 ≡ ∆Wma

ρw∆z
∆H
∆z

= k2 exp(α2Wma); k2= −14.629 Jm−2 and α2 = −107.4 kg_soil/kg_water (91)

F3 ≡ ∆ ln Wma

∆z
= k3 exp(α3Wma); k3= −4.721 m−1 and α3 = −53.61 kg_soil/kg_water (92)

To interpret these results, recall that the basic variables, suction pressure (h), chemical
potential (µma), and molecular flux of the mobile phase ( fma), are linked by the relation:

dh
ρwdz

=
dµma

dz
=

dµmi
dz

=
d fma

dt
(93)

and knowing that
d ln µma = −d ln Wma et Wmaµma = Ema (94)

we then have the following equalities:

Wma
dh

ρwdz
= Wma

dµma

dz
= Wma

d fma

dt
= Ema

d ln µma

dz
= −Ema

d ln Wma

dz
(95)
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Assuming that the discretization is fine enough to maintain at the macroscopic scale
the relationship observed at the molecular scale between extensive and intensive variables,
we should observe, after (89)–(91) and (94): F1 = −EmaF3 and F1F3 = F2

F1F3 = F2 ≡ ∆Wma

∆z
∆h

ρw∆z
= − k1

2

Ema
exp(2α1Wma) (96)

F3 ≡ ∆ ln Wma

∆z
= − k1

Ema
exp(α1Wma) (97)

We can notice the good accordance between the measured values of parameters and
the theoretical relationships between them

k2 = − k1
2

Ema
= k1k3 and α1 = α3 = α2/2 (98)

4.3.2. Pedostructure Water Conductivity kps

Thus, we have all the physical equations determining the space–time relationship of
variation of the three variables describing the dynamics of the medium: the fluxes, water
contents and chemical potentials of the two aqueous phases.

Recall the equation of continuity (74) that takes account of the thermodynamic equi-
librium. Using the relation fma =

dz
dt , we can write:

fma
dW
dz

=
dz
dt

dW
dz

=
dW
dt

(99)

so the equation of continuity can be written such as:

dW
dt

=
dWma

dt

(
1 +

Emi

Ema

(
µma

µmi

)2
)

= −Wma
d fw

dz
= fma

dW
dz

= −ρwV
d f ew

dz
(100)

Furthermore, experience has shown that

dW
dt

= αtWc = cte (101)

Wma being an exponential of time and space, we deduce from the fact that Wma
d fw
dz =

− dW
dt = cte (Equations (98) and (99) that d fw

dz and therefore also fw are simple exponentials
with the same coefficients as Wma. Thus, as the soil water conductivity by definition is
written:

kps =
f ew

dh/dz
=

fw

dh/dz
f ew

fw
=

fw

dh/dz
θma, (102)

by multiplying (101) up and down by αzWma = − dWma
dz (47) we get:

kps =
αzWma fw

αzWmadh/dz
θma =

Wma(d fw/dz)
(Wma/dz)(dh/dz)

θma =
−dW/dt

F2
θma (103)

and using Equation (100):

kps =
−αtWc

k2
θma exp(−α2Wma) (104)

The constants: αt, Wc, k2 = − k1
2

Ema
and α2 = 2α1, are all determined by measurement

as we showed above (97).
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5. Discussion

The systemic modeling of the hydrostructural soil water properties by the model
Kamel [9,12] already accounted for the levels of internal organization of the “soil fac-
tory”. It precisely identified the pedostructure as assembly of primary peds containing
two thermodynamically distinct aqueous phases, intra-aggregate (macro) phase and inter-
aggregate (micro) phase. However, this modeling still ignored the lower levels of or-
ganization (molecular and atomic) of the fluid phases of the pedostructure. It retained,
therefore, a semi-empirical character because it is at these two levels of organization that
the variables of temperature, pressure, entropy and chemical potential have their basis of
definition, as our previous study [11] showed. Furthermore, all these variables intervene
in the hydro-thermodynamic equilibria of the soil at higher levels of organization (soil
suction gradient, soil water retention curve, hydric conductivity, etc.). By understanding
the internal organization of the aqueous phases and their roles in the evaporation process,
we were able to relate the variables at each level to each the others in a comprehensive and
orderly manner.

The present study focused on the notions of flux: molecular flux (fma), water flux (fw,
fma and fmi,) and Eulerian flux (few). The fma, flux is said to be molecular because it is equal to
the celerity of the molecules of the phase and, therefore, linked to the chemical potential of
the phase as we have shown it. Application of the Newton’s second law makes it possible
to identify the gradient of the chemical potential of the inter-aggregates aqueous phase
(macro) to the time derivative of its molecular flux, leading to the relation: dµma

dz = d fma
dt ,

which has the dimensions of an acceleration (LT−2). This important relationship could not
be obtained without the acknowledgement of these molecular and atomic organization
levels. This allows us to say that we have solved the Navier–Stokes equation for the
particular case of the water flux in pedostructure during its drying by evaporation at its
upper surface.

Above this molecular level, there are the nested levels of organization that we have
already dealt with exhaustively in hydrostructural pedology [1,2]. The present study has
defined and highlighted the junction point of both worlds by studying the molecular
and non-molecular descriptive variables (intensive and extensive) attached to the z-depth
where each descriptive variable can be considered punctual and continuous.

Finally, the equation of water conductivity (103) is given here theoretically for the first
time from a combination of hydro-thermodynamic variables. It has the same form as the
one we found semi-empirically and published recently in [13]. This result solves one of
the many points of soil science questioned [14] and which was not yet fully resolved by
hydrostructural pedology; in particular, the physical equation of the water conductivity of
unsaturated soils and its measurement [15]. The resolution of this last point confirms the
validity of the “systemic approach” such as it was redefined by the authors [1–3] to face
the “black-box” modelling in soil hydrodynamics and thermodynamics. It also justifies the
new methods of characterization of the water functions of the soil [16–18].

6. Conclusions

A long-standing problem in fundamental physics has been solved and experimentally
confirmed in this article: that of the dynamics of water in unsaturated soil. The exact physi-
cal equation for non-saturated hydric conductivity has been found; this by reconsidering
the equations of Euler and Richards with a new approach, systemic and molecular, of
thermodynamics. The methodology for obtaining parameters of the pedostructure hydric
conductivity curve of soil is also given in the article, valid for all types of soil, swelling or
not. At the same time, we discovered that the link between the two domains of the soil
science: soil hydrodynamics and soil water thermodynamics is provided by Newton′s 2nd
law, which links the acceleration of molecules of the macro aqueous phase to the gradient
of the chemical potential of this phase.
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These results confirm the validity of two recent theories in environmental science
thanks to which they were obtained: the systemic approach which gave birth to hydrostruc-
tural pedology and the systemic and molecular thermodynamics of soil water.
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Appendix A

Appendix A.1. The Richards Equation, an Eulerian Point of View

The Richards equation is the combination of two physical equations of different
conceptual origins:

(a) conservation law of the matter which is expressed mathematically by the Eu-
ler equation

dθw

dt
= −d f ew

dz
, (A1)

where θw is the volume water content of the soil and where f ew is the Eulerian flow,
understood as the volume flow velocity on z (upward positive);

(b) Darcy′s law extended to unsaturated porous media, the classical expression of
which is

f ew = k∆H/∆z (A2)

where ∆H
∆z = ∆h

∆z − ρwg ∆z
∆z is the pressure gradient of the soil water with respect to z, sum of

the water retention pressure gradients and the pressure gravity.
This relationship is called “Darcy′s law extended to unsaturated soils” and its applica-

tion to the Euler equation constitutes the Richards equation used in all soil-water models
of water dynamics in soil:

dθw

dt
= − ∂

∂z
K
(

dH
dz

)
(A3)

The question that arises when one goes from the verified Darcy law for saturated soils
to the extension of the law for unsaturated soils concerns the surface area of the flux at depth
z. We generally take st the total surface of the sample but would it not be sw, the surface
occupied by the water molecules, which decreases with the water content, or else only sma,
the surface corresponding to the inter-aggregate of water, which should be considered?
The systems approach helps answer this question as we will see below. In fact, the variable
θw, which is the ratio of the volume of water to the volume of soil θw = Vw/Vt, is a
non-systemic variable defined according to the notion of REV (Representative Elementary
Volume), which implies that the variable f ew cannot be defined by Equation (8): we do not
know what it is spatially represents. The notions of surfaces occupied by water molecules
and solids at the depth z of the cylinder and of common thickness of the soil layer do not
appear in the concept of REV.

The so-called Richards Equation (A3) is therefore empirical and cannot be related to
fundamental physics. To write it correctly, we must first understand the exact physical
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meaning of the flux variables above, fw et f ew, but also that of the thermodynamic variables
that describe the energy equilibria that are established at the molecular scale between the
molecules of each fluid phase as well as at the global scale between the thermodynamic
phases of the pedostructure. Indeed, these thermodynamic variables, like chemical poten-
tial, temperature and entropy, take on their full physical significance at the molecular scale
as we have shown in [11]. We have to take this level of molecular scale into account to de-
scribe the process of migration of water molecules in the soil (its pedostructure) submitted
to a potential gradient at thermodynamic equilibrium.

Appendix A.2. Euler′s Equation for Conservation of the Mass

As mentioned above, the Richards equation comes from the introduction of Darcy′s
law “extended to unsaturated media” into the Euler continuity equation. We need to study
the terms, including the meaning of flow, to relate it exactly to the speed of molecules and
the thermodynamic variables that were defined at the molecular level in the first part.

Euler′s equation for the conservation of the mass of water moving in the soil is written:

∂ρ

∂t
+∇(ρwv) = 0 (A4)

where ρ is the volume concentration of water in the soil (mass of water in the volume V
of soil: ρ = Mw

V ), t is time and v the Eulerian velocity of the fluid (water) with density ρw
assumed constant. The Eulerian speed can be identified, except for the sign, with a flow
that we will call Eulerian flux and write: f ew (ρw = Mw

Vw
, v = f ew = ± dlw

dt ).
Let us rewrite this Equation (A4) using the systemic variables (W and V = V/ms)

rather than the non-systemic variables (ρ and θ = Vw/V) in order to discern the internal
process variables involved in the migration of water in the sample subjected to evaporation.
Let us first recall the existing relationships between these types of variables, mw and ms
being the mass of water and solids contained in the volume V of soil (pedostructure):

ρ =
mw

V
= ρw

Vw

V
= ρwθ =

mw/ms

V/ms
=

W
V

=
ρwVw

V
(A5)

dρ

dt
=

d
(
W/ V

)
dt

=
ρwdθ

dt
(A6)

since ρw = cte at constant temperature and pressure.
The second term is written such as:

∇(ρwv) = ρw∇v = ρw

(
d f ew

dz
+

d f ew

dy
+

d f ew

dx

)
(A7)

where f ew = v is the Eulerian flow which has the dimensions of a velocity, in LT-1.
Thus, the Euler equation that is known in hydrology is:

dθ

dt
= −d f ew

dz

Appendix B

Appendix B.1. Equations of W, fw and Their Derivatives According to Wma and fma

Consider now the products fwW and f ewρwV; we have, according to the definition of
the derivatives of fluxes (39–41):

d fw

dz
= − 1

Wma

dW
dt

(A8)
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and
d f ew

dz
= − 1

ρwV
dW
dt

(A9)

We then obtain the general equation, similar to the Euler equation written with the
systemic variables:

dW
dt

= −ρwV
d f ew

dz
= −Wma

d fw

dz
(A10)

Moreover, using the relation fma =
dz
dt we can write:

fma
dW
dz

=
dz
dt

dW
dz

=
dW
dt

(A11)

so we have
−Wma

d fw

dz
= fma

dW
dz

=
dW
dt

(A12)

that we can compare to

−Wma
d fma

dz
= fma

dWma

dz
=

dWma

dt
(A13)

By subtracting the two equations term by term, we obtain:

−Wma

(
d fw

dz
− d fma

dz

)
= fma

(
dW
dz
− dWma

dz

)
=

dW
dt
− dWma

dt
(A14)

equivalent to:

−Wma

(
d fw

dz
− d fma

dz

)
= fma

(
dWmi

dz

)
=

dWmi
dt

(A15)

Defining fmi = fw − fma as the virtual speed of molecules of the micro phase at z, we
have the following fundamental relationships:

−Wma
d fmi
dz

= fma
dWmi

dz
=

dWmi
dt

(A16)

We find here the central role of fma and Wma:

fma =
dWmi/dt
dWmi/dz

=
dWma/dt
dWma/dz

=
dW/dt
dW/dz

(A17)

and
Wma = −

dWmi/dt
d fmi/dz

= −dWma/dt
d fma/dz

= − dW/dt
d fw/dz

(A18)

Appendix C

Appendix C.1. Application of Newton’s Law, d( fmaWma)
dt = αt fmaWma Demonstration

Let us try to determine the relation between the two terms dµma
dz and d fma2

2dz of relation
(52). The product fmaWma written with its fundamental variables is equal to − dWma

αzdt from
Equation (40). The derivative with respect to time is, therefore, the second derivative
of Wma:

d( fmaWma)

dt
= −d2Wma

αzdt2
(A19)

From Equations (52) and (A19) we therefore have:

d2Wma

αzdt2 =
d( fmaWma)

dt
= −d fma

dt
Wma −

dWma

dt
fma = −Wma

(
dµma

dz
− d fma

2

2dz

)
(A20)
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Suppose that dWma
dt is an exponential function of time, in its most general form, as will

be verified experimentally:

Wma = At=0 exp(αtt) + B and
d2Wma

dt2
= αt

2 At=0 exp(αtt) = αt
dWma

dt
= αt

2(Wma − B) (A21)

Equation (A20) is then written:

d2Wma

αzdt2 +
dWma

dt
fma = −

d fma

dt
Wma (A22)

which, according to (55) and (50), can be put in the form:

dWma

dt

(
αt

αz
+ fma

)
= −d fma

dt
Wma = −

dµma

dz
Wma (A23)

By dividing all the members of Equation (A23) by Wma and using Equation (34), we
obtain the relation which links together dµma

dz , d fma
dt and d fma

dz :

d fma

dt
=

dµma

dz
= −d ln Wma

dt

(
αt

αz
+ fma

)
=

d fma

dz

(
αt

αz
+ fma

)
(A24)

Using the relation d fma
dz = αz fma (45), (A24) becomes:

d fma

dt
=

dµma

dz
= αt fma +

1
2

d fma
2

dz
(A25)

From where we get
dµma

dz
− 1

2
d fma

2

dz
= αt fma (A26)

which, reported in Equation (A20), gives:

d
dt
( fmaWma) = αtWma fma (A27)
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