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Abstract: Science education in the United States should shift to incorporate innovative technologies
and curricula that prepare students in the competencies needed for success in science, technology, en-
gineering, and math (STEM) careers. Here we employ a qualitative case study analysis to investigate
the system variables that supported or impeded one such reform effort aimed at improving elemen-
tary students’ science learning. We found that, while some program design features contributed to
the success of the program (i.e., a strong multi-institutional partnership and a focus on teacher train-
ing and instructional supports), other features posed barriers to the long-term system-level change
needed for reform (i.e., low levels of social capital activation, low prioritization of science learning,
and frequent turnover of key personnel). In light of these findings, we discuss broader implications
for building the capacity to overcome system barriers. In this way, an in-depth examination of the
context-specific barriers to reform in this educational system can inform efforts for future reform and
innovation design.

Keywords: data literacy; elementary education; agent-based simulations; StarLogo Nova; science
curriculum; complex systems learning; usability cube; student engagement

1. Introduction

“What works, for whom, and under what conditions” has been a mantra in educational
research in order to address the issue of enacting high-quality and successful educational
reform [1–3]. The need for this approach has never been truer in science, technology,
engineering, and mathematical (STEM) education, where continued workforce shortages
and the underrepresentation of women and minorities in STEM occupations in the United
States necessitate effective, long-lasting, and extensive science education reform [4,5].
Young learners are too often overlooked in such reform efforts [6], yet it is important to
begin integrated and impactful STEM education as early as possible in order to spark
learners’ interest and better prepare and train them in the competencies required for future
success. Data literacy skills and model-based learning are two essential components to
STEM education that have gained some traction at the elementary level [7,8], but overall,
these components are lacking in any substantive way in elementary science curricula [9,10].
One reason for this absence is that teachers need significant support in enacting effective
instruction in early science education [3,11]. In addition, systemic barriers challenge the
widespread usability of reforms [12,13]. In this study, we examine the case of a model-based
inquiry program developed to address these issues, and we use a system-level approach to
understand the successes and challenges that influenced the reform effort. We interviewed
key players involved in the multi-institutional, districtwide program to uncover the specific
supports and hindrances affecting the extent to which the program was taken up by the
school district [14]. In conducting this research, our focus extends beyond classroom
impact and incorporates the school system as the primary unit of analysis. In this way,
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we intend to contribute to the corpus of research that aims to identify the practices and
features needed for sustainability (i.e., existing beyond the time the researcher is in the
classroom) and scalability (i.e., spreading beyond participating teachers and schools) of
important early science education reforms. Additionally, we intend to demonstrate the
investigatory resources that can be used to understand the system-level variables impacting
the success of a reform effort, which in turn will help us tailor future reform efforts to local
conditions. We were guided by the following research questions: What were the program
features that either supported or hindered the sustainable, districtwide implementation of
a model-based inquiry curriculum for elementary students? What were the affordances to
students who participated in the program?

1.1. Data Literacy Skills and Model-Based Learning as Important Components of Early
STEM Education

Students enter the STEM pipeline in elementary school, yet this early developmental
point is often overlooked as an opportunity to counteract the low recruitment and low
diversity trends that are evident in the STEM workforce [4–6]. This oversight occurs even
though research has highlighted the importance of elementary-level education as one of
many critical points in influencing an individual’s commitment to pursuing occupations
in STEM [15]. In fact, early exposure to high-quality instruction in math and science can
stimulate interest in and instill favorable attitudes toward STEM learning that later become
key predictors of retention [15,16].

The Next Generation Science Standards (NGSS) in the United States are STEM edu-
cation guidelines crafted to promote workforce readiness. They emphasize integrating
engineering, technology, and real-world science at every grade level of science educa-
tion [17]. Developing data literacy skills and engaging in model-based learning are two
important components highlighted within the NGSS, and both skill sets are featured in the
Science and Engineering Practices of the NGSS in, for example, a focus on Analyzing and
Interpreting Data and Developing and Using Models [18].

Data literacy involves being able to understand, create, analyze, and communicate
data as information, as well as to question and problematize the ways data are created and
used [19]. A number of data literacy skills are essential to introduce to young learners [9].
These include, but are not limited to, understanding the nature and purpose of data through
sampling and measurement, noticing trends and patterns within and across datasets, and
making inferences based on evidence [9].

Model-based learning refers to the understanding gained from the ability to create,
manipulate, and communicate models; to the extent that model-based learning involves
being able to collect and use data, it overlaps with the skills needed for data literacy [20]. As
an instructional strategy, model-based learning offers a compelling alternative to traditional
pedagogy, as well as an opportunity for elementary students to use and engage with
sense-making tools that are pervasive in modern science [21]. Instead of memorizing
abstract principles learned from texts and formulaic activities, models help students see the
integration of STEM concepts that are often taught as standalone ideas. The use of dynamic,
agent-based modeling platforms in particular, such as StarLogo Nova, makes complex
concepts accessible and inviting to comparatively young students; such platforms also
allow learners to work directly with the model by adjusting key parameters and underlying
assumptions embedded within it [22]. In addition, these tools can offer unique affordances
and support to students as they learn to reason with data [9]. It is, therefore, clear that
efforts to immerse elementary students in both data literacy and modeling practices are
likely important for strengthening the STEM pipeline and piquing the interest of diverse
learners.

While a multitude of small-scale research studies at the classroom level have success-
fully engaged learners in integrative STEM education, this fragmented approach has yet to
result in the more widespread diffusion of such educational innovations [23]. Thus, neither
data literacy nor model-based learning is covered in any substantial or sustainable way in
elementary science curricula, especially in under-resourced urban schools [9,10,24]. Indeed,
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examples for achieving the ambitious goal of the successful teaching and learning of the
NGSS on any large scale are both rare and immensely challenging to implement [25]. There
is a clear need to focus educational research and innovation efforts at the system-level in
order to develop the effective and long-standing adoption of curricula that can support
data literacy skills and model-based learning for all young learners [26].

1.2. System-Level Considerations for Establishing Elementary Science Reform

There are several known challenges to enacting broad-scale science reform. One chal-
lenge involves negotiating the tension between the need for the widespread adoption of
innovative curricula, while also considering the needs of diverse populations and differing
local policy contexts across classrooms and schools [1,12,25]. For this reason, systemic
reform efforts aimed at the district level, where policy decisions and educational resources
within the certain geographic and/or demographic regions are managed, are well suited
for addressing these opposing needs [27]. Indeed, research supports the notion that local
personnel, such as administrators and teachers, are crucial in determining the capacity for
reform [28].

A second challenge to broad-scale reform in elementary-level science education is
that reform efforts often clash with school culture in, for example, the low priority (in
terms of time and resources) placed on elementary science due to the high-pressure ac-
countability measures associated with math and language arts [12,13]. Furthermore, it is
well known that the demands of innovative science reforms, especially those that involve
the use of technological tools in support of model-based learning, are especially high for
elementary teachers [12,29]. Teachers need high-quality professional development (PD)
in order to become more knowledgable in the science content, more familiar with the
technology, and more comfortable in the inquiry-based pedagogical approaches needed to
successfully implement the curricula [3,11,12,30]. Beyond PD, it is also crucial to continue
to support teachers’ learning while they are enacting integrated STEM curricula in their
classrooms [24]. Finally, research has also highlighted the importance of fostering teachers’
social capital, or the capacities that teachers develop through social networks, as critical to
the success of reform efforts [13,31].

Given this context, it is important to understand the system variables within a school
district that work to either support or impede the enactment of reforms in various set-
tings [1,24,32]. Studying a range of cases and how the capacity for reform changes over
time and place can inform the success of future efforts [28,33]. In other words, establishing
a research base that clarifies challenges in implementing reform across a range of contexts
can equip others involved in science education reform with an understanding of how
similar innovations could be adapted in their district, thereby addressing the need to
generate more knowledge about “what works, for whom, and under what conditions?” [3].
This type of conceptual approach, known as design-based implementation research (DBIR),
includes the following elements: (1) the formation of partnerships among stakeholders
focused on implementing innovative curricula that address the persistent problems of
practice; (2) the iteration in the design and implementation of such curriculum that in-
tegrates diverse perspectives; (3) a goal of understanding the mechanisms affecting the
successful enactment of the curriculum; (4) a concern with promoting sustainable change
at the system level [33].

Similar to DBIR, the conceptual framework of improvement science also focuses on
enacting successful educational reform at scale while underscoring the importance of
clarifying the local conditions that produce or hinder improvement [1,34]. The key guiding
principles of this framework that pertain to this study include: (1) making a reform effort
user-centered, which involves engaging all players involved (e.g., researchers, teachers,
administrators) as a network of collaborators from the start of implementation, and (2) a
focus on understanding the processes at work within the school system that are in need of
improvement [1]. Attending to these principles informs how we can better organize our
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educational systems in order to more-consistently improve STEM education for all young
learners.

1.3. Model-Based Inquiry Reform through the Usability Cube Framework

In this study we employed the DBIR and aspects of the improvement science frame-
works to address the need to bring widespread innovative and effective STEM education
to elementary students [23]. In accordance with the principles of the two frameworks, this
program enlisted a working partnership between a school system, curriculum developers,
and education researchers with the goal of co-developing sustainable action plans and
curricular units to promote students’ understanding of data literacy topics and model-
based learning. We conducted a system-level analysis to examine this case, where the
participation and engagement of all fourth- and fifth-grade students and teachers in an
urban school district were targeted for reform.

One overarching aim of the program was to explore how this integrated STEM curric-
ular approach advanced elementary students’ understanding of the epistemic practices of
scientists through its emphasis on model-based inquiry and data literacy [35,36]. In this
study, we focus on understanding the system processes by which this program was either
supported or hindered in terms of achieving broad-scale, lasting adoption by the school
district. Importantly, this sustainable districtwide adoption is contingent upon teachers’
successful implementation of the program in their individual classrooms. We define the
school system as representative of each of the key players in this particular reform effort.
The key players in this context include (1) the local ecology center (curriculum developers),
(2) the research institute (model/technology developers), (3) the school district (district
and building administrators), (4) the teachers and, most importantly, (5) the students.

In order to help clarify approaches in fostering, sustaining, and scaling important,
technology-rich reform efforts, such as this one, we employed a usability cube framework
as a tool to evaluate its design features and overall characteristics [14]. Similar to DBIR
and improvement science, this framework is focused on investigating the conditions under
which reform efforts are able to succeed in particular contexts. The usability cube was
developed specifically to investigate the workings of school systems engaging in inquiry
learning with technology (such as with model-based inquiry) and, therefore, we found it
useful as a tool for evaluation in this study [14]. The usability cube consists of a theoretical
three-dimensional space that includes capability, school culture and policy/management
(Figure 1). Capability refers to the degree that the users of the innovation have, or are
supported in attaining, the conceptual and practical knowledge to implement a reform [12].
Gaps relating to the capability dimension can be reduced through lowering the barriers to
enactment in the classroom (e.g., in providing high-quality PD to teachers). School culture
refers to the degree that a reform effort is consistent with school norms, expectations,
and routines [12]. The policy/management dimension of the usability cube refers to the
degree that the policies of the district and the management systems that enact those policies
contribute to the success of the reform [12].

These three dimensions should be attended to in order to understand the usability
of innovations [14]. Each dimension can be plotted on a separate axis, and “an innova-
tion can be placed in this space, where the ‘distance’ between the innovation and the
origin represents the gap that exists between the capacity required to successfully use
the innovation and the current capacity of the district” [14]. In other words, an innova-
tion has achieved maximum usability—and thus can be considered a successful reform
effort—when system-level players can work to “close the gaps” that might exist. Given
this system-level framing, we explore the following research questions with this case study:
What were the program design features that either supported (i.e., closed usability gaps) or
hindered (i.e., widened usability gaps) the sustainable district-wide implementation of a
model-based inquiry curriculum for elementary students? What were the affordances to
students who participated in the program?
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2. Methodology

This is a case study that takes an early stage, or exploratory, noncomparative quali-
tative approach to addressing the research questions, where we examine approaches to
problems in education to inform the basis for the design and development of new learn-
ing interventions [37]. We focused our investigation on elucidating the program design
features that either supported or hindered the sustainable districtwide implementation of
a model-based inquiry curriculum alongside evidence that points to student affordances
due to program participation. This study was part of a larger research program, conducted
from 2017 to 2020, that aimed to develop curriculum and instruction activities to support
learning about complex systems with elementary school students (Institutional Review
Board approved protocol #831918).

2.1. Context

As part of a collaborative venture with a large research institute in the Northeast
and a small ecology center located in the Midwest, the partner entities worked to bring
curriculum grounded in model-based inquiry, innovative technology integration, and data
literacy topics to all elementary students (4th and 5th graders) in a large, urban midwestern
school district. The research institute and the ecology center collaborated to develop six
model-based inquiry modules (one introductory module, two modules for the fourth grade,
and three for the fifth grade) linked to the science standards mandated by the district as
well as the NGSS. Topics of these modules include a general introduction to complex
systems and how they can be modeled to simulate real events (such as the spread of an
infection), how to examine survivorship patterns and the relationships of various organisms
in particular ecosystems, and how to model ways to mitigate or control the amount of
pollution in the environment (see Appendix A for links to the full curriculum lesson plans).
The curriculum was built around the use of the StarLogo Nova simulation platform, which
is a graphical programming software that enables students to learn simulated behaviors of
individual agents and to observe emergent properties of a system as agents interact with
each other and the environment [38,39]. StarLogo Nova affords students the opportunity
to run multiple simulation experiments to collect and analyze data and thus represents
a dynamic, visual learning technology featuring system aspects and interactions that
would not be available through typical learning modes (e.g., static images and text-based
descriptions) [22].

To support systems modeling learning and inquiry as an instructional strategy, par-
ticipating teachers within this school district participated in extensive PD to deepen their
understanding of science content, to build comfort with the StarLogo Nova modeling
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environment, and to foster pedagogical shifts to facilitate instruction. Addressing these
features through carefully designed PD was important, since it is known that teachers
often exhibit low confidence in teaching science content without formal training and can
also find it difficult to teach new, innovative pedagogical approaches without practical
advice and exposure in how to teach it [40–42]. Thus, the PD cycle for a given cohort of
teachers included two weeklong 30 h workshops—one held in the summer before initial
implementation (introductory workshop), and another the summer afterward (advanced
workshop). Each workshop included a mix of hands-on experience using the StarLogo
Nova modeling tools, structured opportunities for teachers to provide usability feedback
on the curriculum modules, curriculum planning time, and engagement with various
ecology center staff and researchers. The advanced workshop supported teachers in con-
solidating and reflecting on their learning over the preceding year and was complemented
by structured opportunities to plan for the year ahead. In addition, after-school sessions
(totaling 12 h) were interspersed throughout the academic year and provided additional
support for the implementation of each module and to develop advanced modeling and
classroom leadership skills. Finally, in addition to developing all of the training protocols
and processes, described above, the program developer and the program coordinator
(both employed at the ecology center) worked in participating teachers’ classrooms during
the academic year in a variety of capacities. Given that teachers had differing comfort
levels enacting the modules, the scope of the program staff’s involvement ranged from
modeling lessons in order to demonstrate the pedagogical strategies needed (for less con-
fident teachers), to simply being a source of ancillary support during investigations led
by the teacher (for more confident teachers). In short, this PD included aspects such as
(1) modeling effective instruction, (2) offering coaching and expert support, (3) dedicating
time for feedback and reflection on practice and (4) sustained duration of PD participation
during the academic year. These aspects are known to be crucial in engaging teachers in
effective and high-quality PD [43–45].

2.2. Participants

Over the course of the 3-year grant funded program, a total of 37 teachers across
six schools (representing all the elementary schools in the district) were trained in the
model-based inquiry program. Since one goal of this study was to understand the design
features of the program that supported or hindered teachers’ sustained implementation
of the StarLogo Nova curriculum, we interviewed and conducted classroom video ob-
servations of six fifth-grade teachers who volunteered to participate in the study. While
there were no fourth-grade teacher participants in this study, the six fifth-grade teachers
represented a broad range of teaching experience (from approximately 1 to 10 years of
experience). This allowed us to sample various perspectives concerning implementing
model-based inquiry in the classrooms, as teachers with more experience have been found
to be more proficient than novices in accomplishing teaching goals and in enacting high-
quality instruction [46,47]. As for the student population, this district served a diverse
urban community, where 99% of the students attending elementary schools received free
or reduced-price lunch (more demographics are provided in Table 1). Therefore, the so-
ciodemographic composition of this district illustrates that this reform effort was targeted
towards a population of students that is in critical need of improved educational resources
in STEM subjects [1,5,10,24]. In order to better understand the affordances to students
who participated in the program, we observed and video recorded two lessons from the
six classrooms of the teacher participants. In total, there were 114 fifth-grade students
spread out across these six classrooms, and we selected four students from each class,
working in pairs to create a sample population of 24 students (13 females, 11 males) to
analyze their learning experience as they worked with the StarLogo Nova simulations and
collaborated with one another. Of these 24 students, ten identified as White (non-Hispanic),
six as African American (non-Hispanic), three as Hispanic, and five as multiple ethnicities.
These students were selected in conjunction with the classroom teacher for characteristics
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that would enable us to capture high levels of dialogue and interaction during the activity.
In addition, we interviewed the program developer (Rich) and the program coordinator
(Sarah), who both worked at the ecology center. Rich and Sarah provided rich insight
into the system-level relationships between key stakeholders in this investigation (i.e.,
the research institute that developed the models, the participating teachers, and the dis-
trict and building administrators). Names used to identify participants in this study are
pseudonyms.

Table 1. District demographics within each school.

School School Enrollment Black White Hispanic Two or More Races Asian American Indian or
Pacific Islander

School A 537 42.8% 27.7% 18.2% 9.5% 1.3% 0.4%
School B 504 39.5% 31.5% 16.7% 11.5% 0.6% 0.2%
School C 500 36.8% 23.4% 27.4% 11.4% 1% —
School D 515 48.5% 17.3% 22.5% 10.3% 0.8% 0.6%
School E 363 29.2% 55.9% 12.1% 2.8% — —
School F 494 36.8% 30.2% 21.5% 8.1% 3.2% 0.2%

2.3. Data Sources and Analysis

We conducted individual, semi-structured interviews with the six teachers, the pro-
gram developer (Rich), and the program coordinator (Sarah). The eight interviews lasted
between 45 and 60 min each, were recorded and transcribed for analysis, and resulted in
approximately 7 h of interview data. Interview questions for teachers aimed to probe for
the challenges and affordances of enacting model-based inquiry curricula in the classrooms.
For example, teachers were asked questions such as (1) What contextual variables do you
think might be barriers to implementing this project for you, or for other teachers? (2) Do
you feel that students can gain the same knowledge and experiences using paper and
pencil, or other tools, as they do from using the StarLogo Nova models? Why or why
not? The interview questions for Rich and Sarah probed for similar concepts, and also
sought to provide deeper insight into the larger system variables (i.e., variables beyond
the classroom) that supported or impeded their goals for the program. For example, they
were asked questions such as (1) What was the nature of the partnership between the
ecology center, the research institute, and the school district? In retrospect, what could have
improved the partnership and helped sustain the program? (2) What would you describe
as the affordances of bringing model-based inquiry to elementary science teachers? Were
the affordances achieved?

The study questions, framework, and data-collection techniques were constructed
so as to maintain as naturalistic a methodology as possible [48]. The interview data went
through a systematic process of validation. First, we used a modified grounded theory
approach in evaluating this data source, where we searched for evidence of the a priori
categories related to student affordances and the usability cube dimensions (i.e., capability,
school culture, and policy/management) as either positive (i.e., decreased the usability
gap) or negative features of the system (i.e., increased the usability gap) [49]. Using a
constant comparative method of analysis, the first author read the first interview where
information that related to each of those categories was derived, and that information was
then compared to and triangulated with each subsequent interview in order to validate that
a particular finding emerged from multiple sources [49]. We also triangulated the evidence
that emerged across the separate perspectives of the teachers, Rich, and Sarah. Gathering
interview data from both the participant teachers and the program coordinators represented
emic (or within social group) and etic (or outside social group) perspectives, which allowed
for a more holistic picture of the supports and challenges that teachers encountered in
their program participation [50]. The second systematic way we validated the findings
was to work with authors 2 and 4 in order to negotiate and resolve any discrepancies in
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categorization [51]. Third, we used member checking in which we validated the findings
with two of the interviewees that were available, and this helped to ensure accuracy and
validity in our representation of the findings [50].

Where possible, we also corroborated findings that emerged from these interviews
with evidence from video recordings of some students participating in the model-based
inquiry lessons. The twelve pairs of fifth-grade students (two pairs per each teacher
interviewed for this study) who were recorded each engaged in two modeling lessons,
for a total of ~20 h of videos of students engaging in model-based inquiry; this footage is
used as the primary data source in another study (under review) on students’ epistemic
performance in developing data literacy skills. Here we draw on this data source largely to
triangulate themes that emerged from interview data with respect to research question 2:
What were the affordances to students who participated in the program?

3. Results

Here we present the major themes that emerged from the emic perspectives of the six
participating teachers (the users of the innovation) and the etic perspectives of program
coordinators (the curriculum and PD developers). We also triangulate these findings with
observations from classroom video recordings when possible. We employed a usabil-
ity cube framework as a tool to understand the variables effecting the capacity for the
sustainable implementation of the model-based inquiry program. We found that there
were multiple features built into the program design that decreased gaps within the three
usability cube dimensions and thus promoted the short-term success of the program.
These features were a strong partnership among the program developers and the district
(capability), strong teacher support networks within some schools (school culture), and
districtwide communication about and support for the program (policy and management).
However, other events surrounding the program also served to increase gaps, and these
were consequential enough to have contributed to the lack of widespread and sustained
adoption of this reform effort within the school district. These included a lack of teacher
comfort with the new curriculum (capability), limited peer support and time (school cul-
ture), and high teacher and administrative turnover (policy and management). Despite not
being able to achieve sustainability beyond the 3 years of funding awarded to the program
developers, there were notable positive outcomes associated with student learning (e.g.,
participating in innovative and exciting science learning environments and practicing data
literacy skills).

3.1. Capability

The main factors that emerged to decrease the capability gap, and thus contribute to the
temporary success of the program, were (1) an active working relationship and partnership
among the program developers, research institute and the district, (2) a program curriculum
that was well-aligned with relevant standards, and (3) easy-to-access and well-organized
curricular resources.

In this program, the strong collaborative partnership between the research institution
that developed the technology and the school district that implemented it was facilitated
by the local ecology center, where both Rich and Sarah worked. In articulating the overall
role of the ecology center, Rich said, “So we act as a broker, if you will. We’re essentially
bringing [cutting-edge] technology to a midwestern school district and making some
change in there. The school district benefits, they get access to things that they wouldn’t
otherwise have.” Sarah elaborated on her experience as project coordinator, “[The research
institute] was really terrific to work with. I worked closely with the person who built the
[StarLogo Nova] models and we emailed back and forth, we’d make phone calls. It worked
out really well . . . . So [the research institute] didn’t have anything to do with the district
really. I was really a liaison kind of between all the people. However . . . we had a good
working relationship, and I felt like I had the support of everybody who worked on the
project.”
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In fact, Sarah had over 20 years of teaching experience (including 6 years of elementary-
level teaching experience in the district) before she became project coordinator, and she was
already well-known by many teachers and district administrators. She also served as an ad
hoc member to the district faculty committee tasked with revising the elementary science
curriculum and had been critical in helping teachers articulate a need to “institutionalize”
inquiry-based modeling. Therefore, while the research institute had the expertise to develop
the models themselves, the local ecology center provided feedback on the new models
being developed; this feedback helped the research institute understand user constraints
and conceptualize better ways to use data visualizations to complement the agent-based
representations in their program’s learning context (particularly with regard to younger
students and the limited STEM background of many elementary school teachers). The
ecology center also provided extensive user testing both in the context of the teacher
workshops as well as in game design camps for kids, which the ecology center ran in the
beginning stages of the program. This collaboration between the curriculum developers and
the users to improve the design of the learning environment starting from the earliest stages
of implementation is an essential feature of both DBIR and improvement science [1,33].

It was through this collaboration, and with significant input from district leaders, that
Rich and Sarah were able to work with the research institute to ensure the curriculum
was a good fit with the district needs and interests (e.g., direct links to district-identified
topic areas and the mandated science curriculum standards that teachers were accountable
for) as well as with NGSS standards. In accordance with DBIR and improvement science
approaches, the curriculum modules were then continuously revised based on teacher and
student feedback to ensure that the materials were better calibrated to district, teacher, and
student capacities. Teachers found these links to the district standards to be a valuable
factor in their ability to implement. For example, Teacher 1 stated, “I don’t feel like I have
to stop teaching science because I have to get [the modeling curriculum] in. I really do
think it ties in together.” Teacher 2 confirmed that “I think the connection piece to the
science curriculum with [the district] is really amazing, and I think it would benefit the
students to do this all year round, not just with one standard.” Teacher 3 added that:

It really encompasses all the skills and concepts that [the students are] learning,
and they get to put it to use . . . The visual model, it helps them take the concepts
and the vocabulary words and everything that we’re learning and putting it
to use and seeing how it is actually used in real life . . . This really amped up
[student] knowledge and really I think it checked off all of the markers of the
standards we are teaching right now.

In addition, each of the new modules provided to the teachers included access to the
model environment in StarLogo Nova, as well as extensive curriculum support (including
links to pertinent standards, recommended instructional sequences, possibilities for exten-
sions, embedded assessments, and links to related curriculum resources). The embedded
content and pedagogical supports were comprehensive and easy for the teachers to refer to
during implementation. For example, Teacher 4 stated:

Everything was pretty much laid out for me. And then you have everything
in the Google drive shared with us . . . I don’t have to go searching for things
and piece it all together . . . after the summer [PD] you kind of forget everything.
And once I went back through the binder and then went back through the lesson
plans, it just all comes back and everything is laid out exactly what to do. So that
was really helpful.

Teacher 6 added, “I really think that how you guys laid out the lesson plans, that was
amazing . . . when it’s already built in as lessons, then it’s pretty much there for us [to use].”
Developing these easy-to-access, standard lesson guides was likely key to reducing the
stress and cognitive load that accompanies new and complex tasks [1]. Therefore, the clear
alignment with standards, well-developed lesson plans, and easy-to-navigate resources
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provided teachers with some of the required capability needed to enact the model-based
curriculum in their classrooms.

Despite these efforts to close the capability gap, two factors served to hinder teachers’
capability in using the curriculum. The first concerns the multifaceted STEM competencies
needed to teach model-based inquiry effectively. The second, and related, factor concerns
teachers’ lack of confidence or comfort in implementing the curriculum independently (i.e.,
without the help of Sarah coming into the classrooms to lead the lessons with students).

The STEM competencies needed for optimal instruction within this program required
familiarity with the underlying science concepts being modeled; fluency with data repre-
sentations, technology, and statistics; and classroom leadership skills to facilitate evidence-
based discussions that emerge from small-group discussions. Teachers’ conceptual and
practical knowledge in all of these areas influenced the success of the model-based inquiry
venture. However, according to Rich, a typically trained elementary-level teacher is not
well prepared for the multilevel STEM competencies needed to teach effectively with
models. Most elementary-level teachers go through a very general preparation program
and receive certification without a specific disciplinary focus. This lack of specialization
in STEM areas is compounded as teachers progress through their careers, as they need to
remain current in best practices across a range of subject areas. Rich noted that they were
“asking teachers to change their pedagogy, their comfort with technology, their content
understanding all at once. That’s a lot of change to ask a teacher to do . . . but [this] specific
challenge that I found over the years with elementary teachers, is because they’re not
specialists in [a particular discipline].”

Indeed, this lack of depth in science teaching training appeared to negatively affect
teachers’ confidence and comfort in implementing the lessons. Sarah indicated that she “did
the majority of the teaching . . . especially in the beginning for teachers. They wanted to feel
more comfortable with it and that seemed to be the way to raise their comfort level with the
curriculum and the models.” In fact, 78% of the participating teachers (29 out of 37) never
ended up teaching the curriculum on their own, instead relying on Sarah to implement the
lessons in their classrooms. Evidence of Sarah’s classroom leadership role was supported
by the classroom video recordings where we observed her leading in each of the observed
lessons. Her teaching involved a preamble to the lesson (~20 min) in which she explained
the learning objectives, elicited students’ prior knowledge, and demonstrated the modeling
activity, followed by student pairs working independently with the models (~30 min), and
finally a conclusion with a whole-class discussion to solicit students’ understanding of data
literacy (~5 to 10 min). Teacher 5 noted that she was “really uncomfortable with the idea of
[teaching the lesson herself]” and that even when she got to the point of teaching it herself
that “it wasn’t great because [she] didn’t really know what [she] was doing.” She further
reiterated that this curriculum is not for every elementary-level teacher and that without
a solid “technological background” it would not be navigable. Sarah confirmed Teacher
5′s comment, stating that “one of the greatest fears out of most of the teachers, was even
though they’d had lots of instruction on how to use the models, they just couldn’t make
themselves take that next step to actually teaching the lesson because they were scared
they couldn’t answer the questions.” Despite the discomfort that the majority of teachers
experienced with the modeling aspect of the curriculum, a few teachers (8 of 37) took
greater ownership and exceled in their implementation, but it turns out that a particular
feature of their school culture was apparently key to their success, as we discuss next.

3.2. School Culture

Our findings revealed one crucial factor related to school culture that decreased the
usability gap and thus contributed to the autonomy that teachers needed to enact the
curriculum in their classrooms. Specifically, in two of the schools, six of 37 participating
teachers were placed into in-school teacher teams of three by their school administrators.
Even though these teams were created by the school and not tied specifically to the program,
they allowed space for these teachers to readily collaborate with and support one another
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in implementing their lessons. Sarah noted that “all the [teachers] that were teaching it
on their own, except for a couple . . . was because they all decided to do it all together
and they had each other to support . . . teachers were much more likely to stay with the
curriculum if [peers within their school] were participating.” This is in stark contrast to the
teachers who were not part of in-school teacher teams and who, with the exception of two
cases, always needed sustained, in-class support from Sarah. Teacher 3, who eventually
taught the curriculum on her own and was part of one of the in-school teams, corroborated
this point, commenting that “it’s helpful when it’s . . . your whole team doing it because
then we can really talk about that. I think it would be a lot harder if it was just me on my
team doing it.”

Two factors related to school culture that increased the usability gap were the difficulty
in creating a strong peer network across teachers at different schools and not having enough
time for science in the school day. Rich and Sarah made deliberate efforts to cultivate a peer
network for cohorts, but this venture was largely unsuccessful. For example, they initiated
a peer mentor program with four distinguished teachers from the first cohort of teachers
(i.e., those who participated in year 1 of the grant). These teachers were comfortable in
enacting model-based inquiry in their classrooms and had the “political savvy” needed
for working with building and district administrators. They participated in the summer
workshops for beginning teachers and were available to peers as they began or continued
their work with the curriculum. According to Sarah:

We were hoping that [these four teachers] were going to be the ones that were
going to help this continue once I had to pull out once the grant was over. And
it just never took off . . . we talked with the administration about . . . pay[ing]
these teachers a little bit of a stipend so that they could be ambassadors and
they could go to the other school buildings and help train other teachers who
were interested, but it just never happened. I think that would have made a big
difference too. That could have helped it take off.

In addition, Rich and Sarah tried to bring participating teachers together in other
ways, such as through short (approximately 2 h) meetups dispersed across the school year.
The idea was for teachers to share their teaching experiences and challenges and build
a stronger peer network with their cohort members. However, Sarah noted that regular
school year meet-ups did not really work because “teachers are just swamped . . . trying
to carve out a little bit of time to ask them to do something extra is really hard to do . . .
Some of them didn’t feel like they could give the program their all, even though they really
wanted to.”

Time was also a constraint within the actual school day for teachers. Allocating
adequate time to teaching science was another factor related to school culture that hindered
the success of the program. Science was often assigned to short (~25 min) time slots near
the end of the school day. Teachers needed more time to instruct students in the deeper
learning required for the model-based inquiry lessons. Teacher 6 stated that “time is always
an issue . . . we haven’t really jumped into science too much. They push reading and math
pretty hardcore . . . Most teachers don’t agree with it, but we’re kind of at the mercy of
what we’re told.” Teacher 5 had a similar experience in her school, noting that “it was hard
to fit it in, in the day . . . Because it was either, social studies or science and we have to hit
social studies every day . . . And so then, it’s like well I don’t know where science goes.”
Teacher 2 confirmed that “the scheduling was just difficult because we didn’t really touch
base with scientific things until we did [this curriculum] . . . I think if we had a set schedule
where science was implemented throughout the Fall it would’ve been easier.” The struggle
to fit science in during the school day detracted from teachers’ ability to reliably implement
the curriculum at the depth needed for meaningful learning.

3.3. District-Level Policy and Management

Rich and Sarah invested considerable effort at the district-level to decrease the us-
ability gap by communicating regularly with administrators to gain their support for the
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program. This is known to be a critical step towards helping to ensure sustained, dis-
trictwide implementation of the program [28]. Rich indicated that, overall, district-level
administrators supported the idea of the program, and he said that their support was
facilitated by Sarah’s familiarity with the district. In fact, Sarah noted:

I knew the superintendent really well because he was my principal when I first
started in the district . . . And I had a good relationship with the people who
were in charge of the curriculum as well . . . the head of curriculum, he really
tried to get all of his principals on board with this.

In her words, administrators were overall “accepting of the program.” In the first year
of the project, Rich had “constructive dialogue” with the assistant superintendent, who
demonstrated support by engaging principals and marshalling needed resources. Before
the start of the second year, Rich and Sarah met with all the elementary building principals,
the assistant superintendent, and the district science coordinator and, at that meeting, gave
an overview (~1 h) of the program so that everyone was familiar with it and any concerns
about teacher and student assessment could be addressed. They also sought feedback
from the principals in terms of guiding the program design. In addition, they met with
the district’s Board of Education (~30 min) to inform them about the program and discuss
details regarding teacher training.

Despite these efforts to solicit administrative buy-in, one critical district-level factor
emerged in our findings that likely substantially increased the usability gap: high teacher
and administrator shuffling and turnover in the district. In particular, teacher shuffling
involved frequent grade-level changes imposed on teachers, which contributed to a lack of
cohesiveness in the peer network while also decreasing teachers’ incentive to participate.
In other words, this habit of grade shuffling made it difficult for teachers to support each
other in undertaking complex reform while operating in a continuing state of flux. Of the
37 teachers who had started in the program, 12 (32%) dropped out due to involuntarily
grade-level changes imposed by their principals. Sarah reiterated this concern, saying
that that in one problematic year “we lost all of our fourth-grade teachers and two of
our fifth-grade teachers.” Rich commented that ”the district has an interesting pattern
of constantly cycling the teachers into different grade levels, and so that works against
[sustainable reform] . . . [Teachers] know [they’re] going to be out of this grade in a year or
two anyways, do [they even] invest in [the program]?” Adding to this state of flux, in the
third year of the program seven of 12 school administrative positions (i.e., principals and
assistant principals) were filled either by people in their first year in the role or by people
who had switched to a new school. As a result, most of the new school administrators
were either unfamiliar with the program and its expected role in the district, or they had
different goals in their new position and the model-based inquiry program was not a
part of it. Rich commented that “support varied widely among [these administrators].”
Sarah agreed that stronger support from these administrators would have likely helped
the program become more sustainable. She noted that “administrative support from the
principals, if we could have gotten more buy-in from the principals, that definitely would
have made a difference.”

Both Sarah and Rich lamented that, in bringing model-based inquiry to elementary
students in the district, the sustainable program they initially envisioned never took off.
Despite their efforts to recruit teachers and foster district-level support, they could not get
every 4th- and 5th-grade teacher in the district to participate, which was their ultimate
goal. Sarah observed, “I felt like we did a really good job working with the students and
the teachers who we had access to, but it was based on their interest and whether they
wanted to participate or not.” The teachers also felt that the work they were doing was
important and should be more widely implemented. For example, Teacher 1 said, “I think
that [this curriculum] is what this generation is going to be doing in the future . . . A lot of
them are going to have to do lessons online in the future . . . so I do think that this helps
prepare our kids for the future better than the curriculum I have now.” Teacher 2 added,
“This program is really cool. I wish you guys could get more funding and more grants and
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expand on this. I think this would be fabulous to do for . . . most of all the grades in some
way, shape, or form.” However, as Rich stated, “Once the funding ended, the program
ended, and while there might be one or two teachers that have carried [the curriculum]
forward . . . in any meaningful form it’s not there . . . There’s nothing in the district that
encouraged [sustainability].”

3.4. Affordances to Students

Notwithstanding the cessation of the program after the 3-year funding cycle, there
were noteworthy affordances to the learning of students who engaged in it. Sarah and
participating teachers were able to create technology-rich, active learning environments for
their students. Sarah commented:

Teachers . . . realized, ‘this is really cool, students are helping each other . . . ’
[so] the students were doing some of the teaching as well. They were working
together . . . And pairs would work together, but then you’d hear somebody over
in the corner asking a question, this kid would yell across to her, ‘Hey, well do
this.’ It was great because the teachers weren’t saying, ‘Shh. Shh. Get quiet.’
They just let them engage.

Teacher 2 also emphasized the active learning benefits of the curriculum. She added:

I really like to see [the students] cooperate with each other, that is something
that, it’s definitely hard in this classroom, especially because there’s a lot of kids
that have difficulty with that. However because they’re very interested in the
StarLogo [Nova] . . . modeling, the manipulation of it all. They share really well
. . . And there were some students who don’t normally do well with partner
work, but they did really well when we did the partner work with the [modeling
curriculum].

The classroom video recordings further supported this finding, in that as soon as
Sarah discussed the learning objectives and demonstrated the activity with the whole class,
students began working in pairs and having lively and epistemically rich conversations
with one another. We observed that 10 out of 12 pairs of students engaged in dialogue
where they collaboratively developed and justified reasonable predictions and/or made
accurate inferences regarding the garden ecosystem they were experimenting with in the
model [35]. For example, Student 2, discussing with their partner how to predict the
number of surviving turquoise plants in their next model run, said, “I think [the] turquoise
[plant is] going to get up to like 220.” Their partner, Student 1, responded, “I think 150,”
and Student 2 countered, “Are you sure? That means it would start dying . . . so wanna
go for 205?” Student 1 nodded, and they both wrote this prediction on their datasheet
(29 October 2018). In this exchange, students actively negotiated a reasonable prediction
(i.e., the epistemic aim) based on evidence.

Furthermore, for elementary students in this district to be able to manipulate the vari-
ables within the modeling curriculum represented an important educational opportunity
that these students would otherwise not have had. This theme was highlighted throughout
all six of the teacher interviews. Teacher 1 remarked that “it gives a chance for the kids
to manipulate it at their own pace. It gets them [an opportunity] to see something they
wouldn’t normally see, like the plants growing. And I think it really reaches out to different
kinds of kids.” Teacher 2 observed that “it’s more than just a picture or a video, it’s a model
they can manipulate as well. And I think that when kids are able to manipulate things it
kind of solidifies it in their brain a little bit more, if they’re able to play and if they’re able
to switch things around.” Teacher 4 echoed this observation, noting that “being able to see
and manipulate that model was pretty priceless.” Teacher 5 said:

Modeling helps with their hands-on approach . . . They see in the instant . . . as
they change something, something happens immediately they have that immedi-
ate reinforcement or negative of changing something and it not working anymore
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. . . and being able to tinker with it . . . being able to see immediately what their
choices have done, what their impact is [helps students learning].

We also observed instances of students in the classroom videos exploring new ques-
tions related to the model on their own, beyond what they were required to investigate
for the class activity. For example, a pair of students who had finished running their
experiments on the garden ecosystem model, where they varied the rainfall but kept the
amount of sunlight constant (at full sun), decided that they wanted to tinker with the model
variables further. They changed the sunlight “to see what [would] happen” in the garden
when they set the rainfall level to 0 (or drought) and the sunlight level to 0 (or full shade).
When they ran the model and observed the outcome one student said, “That’s magical!”
and the other responded, “So [the] yellow [plant] is growing, and red! I didn’t know [the]
red [plant] grew!” The students were surprised to discover conditions that allowed the red
plant to grow well, because in their previous experiments the red plant had not survived
in large numbers compared to other plants in the garden ecosystem (26 October 2018).
Thus, teachers noticed that their students were able to productively collaborate with one
another, actively change variables in the computer model, and then were able to see the
effects of those changes immediately. These affordances were also captured on the video
recordings. Teachers agreed that this model-based inquiry instructional approach was not
only important in promoting student learning, but also represented a new and exciting
learning environment that they had not likely experienced before.

Teachers also confirmed that, beyond being able to manipulate models in real time,
other affordances, such as the opportunity to build on data literacy skills, were unique
to this curriculum. Sarah noted that students “learned about data and how to collect
data and how to use it, how to read it, understand it . . . students don’t really have the
opportunity to [do this].” Teacher 6 confirmed that the students “learned a lot about data
and data collection, and why it’s important . . . I think they even became a little bit more
independent with looking up data.” In addition to those kinds of contextual experiences
(i.e., in understanding how to collect data and where it can come from), students were also
able to practice interpreting various data visualizations. For example, Teacher 1 stated that
“they were really just, naturally, finding patterns amongst their data without realizing it
. . . without even realizing that they’re analyzing data, they are . . . they [also] looked at the
graphs really heavily. They liked looking at [them] and seeing an increase or decrease.”
We noticed this behavior in classroom videos as well, where students would point to the
dynamic graphs on the screen and describe the plant survivorship trends over a particular
growing season. Students made comments about growth patterns “seesawing” (26 October
2018), “skyrocketing” (25 October 2018), and “staying the same” (25 October 2018).

As mentioned briefly above regarding student collaboration, teachers also noticed
their students using evidence-based reasoning to make accurate inferences and reason-
able predictions. Teacher 3 stated that students “had to collect evidence and they made
inferences based on that evidence, [for example], which plants represented which color
in the model,” and Teacher 5 noted that her students “were making a lot of inferences”
throughout the lessons. Teacher 4 observed that the modeling helped students to reason
through data, “especially with making predictions . . . running the model multiple times
and then [having] to make the predictions. And then kids would share. And I think that
[getting] input from other kids . . . that definitely helped them [practice this skill].” Video
data corroborated these findings, as described above with 10 of 12 student pairs engaging
in epistemically driven negotiations. As an example of students making accurate inferences,
we observed one student saying that “[the] yellow [plant] must be a succulent because
it doesn’t like that much water” (30 October 2018). In fact, all 12 pairs of students were
observed using the data they collected from the model to make accurate inferences about
plant ecology [35]. Therefore, based on teachers’ perspectives as well as classroom video
data, it is clear that the model-based inquiry program allowed teachers to enact instruction
that promoted data literacy skills with their students.
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Finally, all six teachers mentioned that the engagement level was high across their
students during the lessons, and that the curriculum was able to bring out the best in a wide
range of students. Sarah stated that “students who normally struggle in regular, typical
classroom scenarios, some of them just flourished with the [program] . . . so I think there
are lots of really positive experiences that came out of it for all different levels of students
. . . [when] they ran those models, you could see their interest get sparked.” Teacher 1
elaborated that she “noticed some kids who don’t usually get excited to participate in
science, really wanted to do this project. I have one [student] and it’s really hard to keep
him in class but he gets pretty excited when he sees [Sarah] come in. So I think, really,
the engagement piece is pretty big.” Teacher 6 added that “even kids who normally are
not engaged in lessons, and are working on a lower level, they can make connections to
this . . . I really just think that it can reach many students. Not just a particular group, but
I’ve watched it reach all levels of students in my classroom.” Teacher 5 confirmed that
“[the curriculum] really gets the kids interested and it can reinforce the things that they’re
learning . . . I enjoyed it, my kids really enjoyed it, I think they’re getting a lot out of it.” The
classroom recordings supported these statements, as all 12 pairs demonstrated interest and
curiosity while interacting with the model. For example, students would often celebrate
when they made successful predictions. In one instance a student yelled to their partner,
“Oh, we were so close to turquoise!” and their partner excitedly replied, “We chose 205,
and it came to 209!” Then one of the students called the teacher over, and both proudly
showed their work and explained how close their predictions were to the model output
(25 October 2018).

This program overall was successful in engaging students in inquiry, active learning,
and data literacy skills. However, whether the positive student learning outcomes de-
scribed above led to an increase in student interest in scientific inquiry or complex systems
modeling was not assessed. As Rich put it, “that’s another challenge with [this type of
3-year project], that [we] don’t have the [ability] to really track the long-term change.” And
while he recognized that these short-term affordances to students occurred, he wished that
he and Sarah “had a bigger footprint, where [this program] became the entry point to more
extensive use of [model-based inquiry].”

4. Discussion

In this study we applied a usability cube framework to evaluate the program features
that either supported or hindered the districtwide, sustainable implementation of a model-
based scientific inquiry program. In accordance with a DBIR and improvement science
framework, we addressed a persistent problem of practice (i.e., the need for innovative
elementary science curricula), which was tested and iterated to better incorporate the needs
of the district, teachers, and students, with the goal of clarifying the system processes
affecting the long-term adoption of the program.

4.1. Features that Increased Program Usability

We begin with a discussion of the prominent features that increased the usability of
the program. These features included a strong working partnership among the program
developers, technology developers, and the district, and the availability of high-quality PD
and teacher resources.

The partnership between the local ecology center, the research institute, and the
district was essential in helping build the capacity for curricular innovation [1,33]. In
order for curricular innovations to be successful, it is important that such partnerships are
in place to ensure all the players can work to create shared goals with concrete plans to
achieve them; otherwise, widespread program adoption is most likely to fail [14]. In this
context, Rich and Sarah were successful in collaborating with both the research institute
and the school system to create strong curricular links to local science standards and
district-identified topics (e.g., in the use of local plants in the garden ecosystem model).
This alignment with both local standards and localized, familiar topics within the modeling
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activities provided teachers with an incentive to participate and also fostered personalized
connections to the curricula [23,25]. To integrate local policy and learning context in this
way, the partnership involved frequent iterations of curricular design features based on
administrative, teacher, and student feedback, and such iterations are known to increase
the usability of programs [1,33].

In addition, Rich and Sarah understood that teachers’ gaps in content knowledge
and pedagogical knowledge, as well as some apprehension about teaching with new tech-
nologies, are well-known barriers to elementary teachers’ capacity for implementing new
curricular innovations, such as those involving model-based inquiry learning [11,12,14,29].
To mitigate these barriers and thus increase teachers’ capability for enacting innovation,
Rich and Sarah engaged teachers in high-quality, ongoing PD as well as provided classroom
support and well-organized resources and lesson guides. The objective of this program fea-
ture was to build teacher learning and confidence over time through modeling pedagogical
strategies and developing teachers’ social capital, so that eventually teachers would take up
the curriculum independent of on-site support from the ecology center. Indeed, previous
research has demonstrated that the ability of teachers to form and rely on peer support
networks is potentially integral to the successful implementation of urban STEM education
reform programs [31,52]. Furthermore, strong teacher learning communities have been
linked with the increased likelihood that participants will lead instructional reforms within
their districts [53]. These capacity-building qualities were evident in this study, where only
the teachers who were placed in “teams” (with the exception of two others) developed the
confidence and expertise needed to independently enact the model-based inquiry activities.
Moreover, two of the teachers from these teams ultimately became ambassadors for the
program, who took on facilitator roles in later PD cycles and were slated to help sustain the
program after the funding period ended, although this final phase never came to fruition.
Because the district leaders neglected to recognize these teachers as valued improvement
leaders in STEM education and were unable to remunerate them for working to continue in
the program, the goal of attaining a scalable and sustained model-based inquiry program
in the district was not realized [1].

This study also demonstrated that there were multiple student affordances associated
with the program. Both the teachers and Sarah and Rich agreed that notable strengths in the
program were the ability to (1) bring new technologies and inquiry-based, active-learning
experiences to students, (2) engage students of all levels, and (3) improve data literacy
skills. Engaging students in active learning is known to support diverse learners and can
help ameliorate achievement gaps that often exist between minority and/or low socioe-
conomic status groups and their counterparts, (e.g., [54,55]). The use of computer-based
simulations and modeling is known to increase the emotional engagement of students
in learning science and result in more inclusive teaching practices [56,57]. In addition,
and consistent with other studies employing this StarLogo Nova technology with young
learners, these students were able to demonstrate the data interpretation skills that are
crucial, yet challenging, to begin cultivating effectively at a young age [58–60]. Therefore,
this program provided teachers with high-quality, NGSS-linked science curricula, which
are scarcely available in elementary education; furthermore, it helped to promote critical
aspects of inclusivity and data literacy in their classrooms [61].

4.2. Features that Decreased Program Usability

We uncovered several important impediments that increased usability gaps and af-
fected the capacity of the district to scale and sustain the reform. For most teachers, the
challenge of implementing model-based inquiry independently was not easy to overcome,
and this is likely explained by their inability to develop the social capital that was a char-
acteristic feature of the successful teachers. Even though Rich and Sarah tried engaging
teachers in ongoing PD throughout the academic year in order to build on the peer rela-
tionships necessary for success, it was difficult for most teachers to activate their social
networks to support capacity building. One explanation for this discrepancy could involve
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the varying school pressures that hindered teachers’ collaboration, so that teachers at
different schools were more restricted in their ability to engage with peers around the goals
of the program [62]. For example, teachers often did not have the time to attend schoolyear
meetups facilitated by the ecology center. Thus, the less frequent opportunities for those
teachers to interact and share program-related resources and insights was likely an im-
portant limitation [13,63]. Perhaps working more closely with administrators to develop
supportive norms for teachers’ participation in such learning communities—norms that
serve to increase teacher interaction and communication—would have incentivized more
teachers to engage in the peer networking opportunities available to them [13,62,63].

Another prominent barrier to building reform capacity was the insufficient time allo-
cation and prioritization placed on elementary science learning within the district. While
allocating sufficient time for deep learning is a necessary component of successful science
reform [24,64], science historically has, and continues to be, a fringe subject that is largely
sidelined behind math and reading in elementary education (e.g., [13,61,65]). This lack of
prioritization was apparent in this study, with the teachers indicating that the accountability
pressures they faced were greater for other subjects. To help close this usability gap, future
programs aimed at reforming elementary science might consider aligning activities more
explicitly with math and literacy standards and reimagine the reform effort as a means
to contextualize these higher priority subjects into a more integrative STEM education
approach [33,53,61].

A third barrier to program adoption and diffusion was the frequent shuffling and
turnover of administrators and teachers through different schools (administrators) and
grade levels (teachers) within the district. The involuntary attrition of approximately
one third of the teachers from the program represented a significant loss in investments
intended to foster teacher learning and development and to promote the broader adop-
tion of the curriculum [66]. The lack of stability among administrative positions further
diminished the initial effort put forth in establishing the district support needed to sustain
the program. Administrative advocacy plays an important role in setting the stage for
reform [26]. Certainly, coordinating efforts and resources at the various system levels and
adhering to a shared vision becomes increasingly difficult when the roles of key players
tend to shift [12]. Both Sarah and Rich agreed that an increase in support on behalf of
the principals might have helped build capacity; however, as is often the case in large
urban districts, principals, whether or not they were new to their roles, were likely more
concerned with seeing teachers boost standardized test scores than seeing them implement
ambitious science reform [33].

Taken together, we found that the lack of widespread activation of social capital
combined with low value placed on innovative science curricula and continual turnover of
administrators and teachers within the district increased the usability gaps across all three
usability dimensions (capability, culture, and policy/management) to a degree that left the
program unsustainable and unable to reach all of the fourth- and fifth-grade teachers in the
district. This study supports the notion that leadership tasks are distributed throughout the
school system, and thus the capacity for reform is not dictated only by discrete program
features [29]. In other words, the existence of strong multi-institutional partnerships and
high-quality curricula and teacher PD was not enough to sustain the program. Rather it is
the interaction of multiple features at various system levels that must be considered when
developing the capacity for reform.

4.3. Conclusions

The overall goal of this program was to establish a strong, sustainable model-based
inquiry program in the district that would become a regional model and resource for
promoting students’ interest and capacities to pursue careers in STEM fields. It is possible
that the usability gaps that emerged could have been overcome if Rich and Sarah had
more time and funds (beyond the 3-year funding cycle) to build on the district’s capacity
for change, as this condition is a well-known barrier to the success of educational reform
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efforts [1,3,25,33]. And while there is evidence of short-term student gains, an important
limitation to this study is that it is unknown whether the program influenced students’
achievement and interest in STEM in any long-term sense. It could be that ambitious
reform efforts, such as this one, require longer funding cycles to be both well understood
(in terms of student impact) and to become sustainable. Future research pursuits should
incorporate plans for the longitudinal monitoring of student participation outcomes in
such programs in order to better understand whether the intended effects of increased
long-term interest in STEM are realized.

Another limitation of this investigation involves only having interviewed a small
subset of teachers (6 of 37, or 16%) who participated in the program. It is possible that
teachers whose perspectives were not included in this study experienced the usability of
the program in different ways. Additionally, we were unable to interview administrators
in the district and so their unique perspectives were absent from this analysis. In order
to follow DBIR and improvement science approaches towards system-level reform with
greater fidelity, it would be essential to understand their perceived issues in the usability of
the program as well. Additionally, and lastly, with regard to the study limitations, while we
elucidated multiple issues that reformers may need to contend with in doing this important
work, our investigation stops short of working to reduce the usability gaps we uncovered
by tailoring the program features in ways that would allow for sustainable and scalable
implementation within this district.

This study demonstrates some of the investigatory resources (i.e., incorporating the
DBIR and improvement science frameworks to enact change and then evaluating outcomes
using the usability cube framework) that can be used to understand the system variables
that will clarify the important question of “what works, for whom, and under what
conditions?”. Research such as this, which contributes to a better understanding of the
systematic variables affecting reform efforts, is critical to increasing the success of future
efforts and is urgently needed in STEM subjects at the elementary level [1–3,6]. This study
further highlights that accomplishing the type of change need throughout all the system
levels is extremely complex and difficult to achieve, and curricular innovations often do
not last beyond the presence of the innovators, as was the case here [1,12]. As Rich put it,
“I’m not sure that we’re big enough [at the ecology center] to create the kind of change that
the world needs for [this] type of work.” However, it is known that the relative success
of these efforts is deeply contextualized and, given the diversity of educational systems,
there is no single approach that can predictably lead to change [1,12,25]. Therefore, it is
important for innovators to continue engaging in the formidable task of reform in order for
the field as whole to gain insight into and learn from the collective experiences of these
efforts.
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Appendix A

All of the model-based inquiry lessons developed as part of this program are archived
and accessible on the Project GUTS (Growing Up Thinking Scientifically) website. In order
to access the material, you must register for a free account through the Project GUTS
website. The direct links to the six modules developed as part of this study are included
below:

Module 1—Introduction to Modeling and Simulation:
https://teacherswithguts.org/resources/modelbest-module-1-introduction-to-mode-

ling-and-simulation
Module 2—Catching Butterflies:
https://teacherswithguts.org/resources/modelbest-module-2-catching-butterflies
Module 3—Predator/Prey Survival Behaviors:
https://teacherswithguts.org/resources/modelbest-module-3-predator-prey-surviv-

al-behaviors
Module 4—Simple Garden Ecosystem:
https://teacherswithguts.org/resources/modelbest-module-4-simple-garden-ecosy-

stem
Module 5—Water Pollution:
https://teacherswithguts.org/resources/modelbest-module-5-water-pollution
Module 6—Air Pollution:
https://teacherswithguts.org/resources/modelbest-module-6-air-pollution
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