
systems

Article

How Perspectives of a System Change Based on Exposure to
Positive or Negative Evidence

Philippe J. Giabbanelli 1,* and Andrew A. Tawfik 2

����������
�������

Citation: Giabbanelli, P.J.; Tawfik,

A.A. How Perspectives of a System

Change Based on Exposure to

Positive or Negative Evidence.

Systems 2021, 9, 23. https://doi.org/

10.3390/systems9020023

Academic Editor: Vladimír Bureš

Received: 15 March 2021

Accepted: 1 April 2021

Published: 5 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA
2 Department of Instructional Design and Technology, University of Memphis, Memphis, TN 38152, USA;

aatawfik@memphis.edu
* Correspondence: giabbapj@miamioh.edu

Abstract: The system that shapes a problem can be represented using a map, in which relevant
constructs are listed as nodes, and salient interrelationships are provided as directed edges which
track the direction of causation. Such representations are particularly useful to address complex
problems which are multi-factorial and may involve structures such as loops, in contrast with simple
problems which may have a clear root cause and a short chain of causes-and-effects. Although
students are often evaluated based on either simple problems or simplified situations (e.g., true/false,
multiple choice), they need systems thinking skills to eventually deal with complex, open-ended
problems in their professional lives. A starting point is thus to construct a representation of the
problem space, such as a causal map, and then to identify and contrast solutions by navigating
this map. The initial step of abstracting a system into a map is challenging for students: unlike
seasoned experts, they lack a detailed understanding of the application domain, and hence struggle
in capturing its key concepts and interrelationships. Case libraries can remedy this disadvantage,
as they can transfer the knowledge of experts to novices. However, the content of the cases can
impact the perspectives of students. For example, their understanding of a system (as reflected in a
map) may differ when they are exposed to case studies depicting successful or failed interventions
in a system. Previous studies have abundantly documented that cases can support students, using
a variety of metrics such as test scores. In the present study, we examine the ways in which the
representation of a system (captured as a causal map) changes as a function of exposure to certain
types of evidence. Our experiments across three cohorts at two institutions show that providing
students with cases tends to broaden their coverage of the problem space, but the knowledge afforded
by the cases is integrated in the students’ maps differently depending on the type of case, as well as
the cohort of students.

Keywords: causal maps; case library; mental models; problem-based learning; systems representation

1. Introduction

Decisions that are in appearance simple, such as whether we eat an expensive walnut
salad or an affordable apple pie, have antecedents (is the person trying to lose or gain
weight? are there allergies? is the cost a concern?) and consequents (is there then a
budget left for other items on the menu? should we exercise to make up for the calories?).
As individuals, we are accustomed to forming such decisions by navigating a multiplicity
of interacting systems in our minds. However, by making such decisions only in our
mind, we may not be aware of our biases or inconsistencies. An implicit approach to
decision-making also lacks transparency, and challenges the comparison or evaluation of
decisions among individuals. Consequently, an elicitation process serves to externalize the
mental models or ‘perspectives’ held internally by individuals. There are many possible
processes to externalize models, depending on the aim of the study or the familiarity of
facilitators with certain methods [1]. Such processes may thus result in: (i) textual artefacts,
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for example as a narrative that necessarily finds a linear arrangement of the elements
of the system [2,3]; (ii) rich pictures, which provide a freeform tool building on a rich
iconography [4]; or (iii) maps [5], in which the elements of the system are abstracted in
the form of labelled or illustrated nodes, and their interrelations are captured through
edges. Mapping approaches can also be subdivided into numerous alternatives (Figure 1),
including causal loop diagrams [6], Novakian concept maps [7], or causal maps (also
known as cognitive maps) [8,9]. In this paper, we focus on the representation of a system in
the form of causal maps, which consist of labelled nodes and directed edges representing
either a positive causation (i.e., an increase in the source causes an increase in the target) or
a negative causation (i.e., an increase in the source causes a decrease in the target).

Figure 1. Three different mapping approaches: Novakian concept maps are usually acyclic graphs,
specifying relationships using labels to form sentences (a); Causal Loop Diagrams are a precursor
to the System Dynamics model, and include temporal aspects such as delays (b); Causal maps only
include the type of causation, and thus temporality is not represented (c).

Causal maps have been an extensive subject of research for several decades among
many fields of applications, with examples including socio-ecological systems [10–12] or
health [13–15]. The creation of a causal map is either a precursor to the development of
a simulation model in which scenarios can be tested and quantitatively evaluated (e.g.,
a Fuzzy Cognitive Map), or the final representation for the mental models of various
stakeholders. In this paper, we examine how mental models of a system are shaped by
the evidence that individuals are exposed to; hence, we collect causal maps as proxies to
tracking changes in the representation of a system. Our study is motivated by a practical
problem in the application domain of educational technology, which strongly shapes our
data collection protocol and the applicability of our findings. The application domain is
briefly described here; readers interested in this domain are referred to seminal works
by [16–18] or our previous works [19,20] for complementary overviews of the field.

Once they become professionals, students will have to choose one out of many deci-
sions in complex open-ended problems. From a systems perspective, they will consider
multiple viable reasoning paths through a system. In order to prepare them for this future
challenge, Problem-Based Learning (PBL) exposes students to scenarios that admit multiple
solutions (known as ‘ill-structured problems’). Unlike scenarios with a few valid answers
(e.g., true/false, multiple choice questions), students can produce very different answers
that can be equally admissible. Hence, the expectation is that students can construct an
accurate problem space [21–23], that is, a representation of the system in which the problem
is situated. For example, the decision on an intervention to reduce obesity would start
by representing the complex system of obesity, including eating and physical activity as
well as psychological or social constructs; then, this system can be explored to propose
and evaluate solutions by accounting for alternatives, expected results, and potential unin-
tended consequences [14,24]. As such, a problem space not only depicts the major concepts
(variables) that have a role in the cause(s) or the solution of the problem, but also provides
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an underlying explanation for the problem through the causal relationships among the
variables. For example, in medical education, a problem space should “include[s] all the
causal mechanisms that account for the patient’s signs and symptoms” ([22], p. 26). For stu-
dents, the construction of a problem space is also useful, as it provides an opportunity to
practice scientific problem-solving processes and integrate their knowledge learned into
a conceptual knowledge framework. Working on an understanding and representation
of a system is also not only of benefit to solve one immediate problem; it also provides a
schema that may be used to solve similar problems in the future [17,25].

An important element in problem-based learning is how learners are able to construct
the problem space. Learners must be able to not only identify the concepts that are germane
to the problem but also the causal mechanisms for the ways in which the variables impact
each other [16,26,27]. The literature suggests that experts’ mental models are more systems
level [28,29], whereas novices tend to be more segmented and loosely connected [30]. From
an educational perspective, Jonassen notes that “there is good reason to believe that there
is a dynamic and reciprocal relationship between internal mental models and the external
models that students construct” ([23], p. 311). There are multiple ways to represent this
relationship. An approach often used in the literature includes concept mapping [31], which
allows learners to depict how they connect ideas. That is, how learners list variables and
cluster them based on their relationships or other shared characteristics. Causal mapping
is similar, but specifically allows the learners to visualize multiple cause–effect patterns
and their impact in a linear fashion. In doing so, it uniquely allows learners to engage
in decision-making and pattern recognition as they visualize various pathways during
problem-solving [32]. In contrast to more text-based assessments (e.g., argumentation),
the visualization afforded by mapping also allows learners to focus on specific segments
during their causal reasoning, which is beneficial from a cognitive load perspective [33].
Concept maps can also be used alongside text-based approaches, for example, to give
automated feedback to students using the CohViz system [34,35].

According to the theory of Case-Based Reasoning (CBR), students solve problems
based on their prior experience. However, this presents a challenge for problem-solving
instructional strategies, as novices have limited experience to solve ill-structured problems.
This experience can be provided by a digital case library, which consists of narratives
describing the ways in which practitioners have solved problems [36,37]. In order to
support problem-based learning, instructors can thus give students access to a case library,
or equip students with software (e.g., recommender systems) to identify a relevant case [38].
As this library will shape one’s view of a system, it is essential that students properly
interpret the case to transfer its lessons to their own problem. In particular, cases found
within digital libraries can depict successes or failures, which are handled differently in
episodic memories [39]. Failure represents a situation where the expectations do not meet
the goal requirement. While failure may seem negative, it can incite students to search for
explanations; it can thus help to set the groundwork for future reasoning.

While many studies have explored the degree to which learning outcomes differ in
various scaffolding approaches, these studies are often performed within a single case or
post-hoc learning outcomes (e.g., post-test scores, final argumentation scores). However,
theories and studies describe how problem-solving is an iterative process, as students
refine their understanding of the system. As such, there is a need for studies which explore
how views of a system change as a function of exposure to certain forms of evidence. In this
paper, our objective is to quantify the ways in which exposure to success or failure cases
will change a student’s representation of a system. Our contributions are twofold:

1. We examine two representations of a system (before/after exposure to a case) using
causal maps, which allows us to precisely track the structural evolution of a system
instead of relying on test scores.

2. We repeat our experiments three times, at two different institutions, thus gathering
diverse student profiles to support the generalizability of the findings.
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We started this paper by explaining the elicitation of knowledge as a causal map and
how these causal maps can be analysed, as well as their relation to case-based reasoning.
The remainder of this paper is organized as follows. In the Materials and Methods section,
we detail how our data was collected, prepared, and analyzed through network algorithms.
Next, we present our results, consisting of the key structural differences before and after
exposure to failure/success cases in each of our three cohorts. Lastly, we contextualize our
results and conclude with suggestions for further research on the representation of systems
in the face of changing or conflicting evidence.

2. Materials and Methods

Our overall approach is summarized in Figure 2 and detailed in the next subsection.
Given the complexity of the data pre-processing, we provide it as a separate schema
(Figure 3).

Figure 2. Workflow of our study, from data collection to analysis. Each step is detailed in this section.

2.1. Data Collection

Our data consists of causal maps, which are represented as graphs consisting of
labelled nodes and directed, weighted edges. Each causal map was produced by a student.
We collected causal maps over three semesters at two different American institutions.
Northern Illinois University is a nationally-ranked public Midwestern university, in which
the data collection took place through a fourth-year elective on Network Science. Furman
University is a nationally-ranked private liberal arts college in the Southeast, where the
data collection similarly took place during a third-year elective on Artificial Intelligence.
At both institutions, the students first learned how to structure knowledge into causal
maps [5], and then they were given the same baseline description of a hypothetical town
(‘Pleasantville’) in which they had to advise the mayor on an open-ended dilemma (see
Supplementary Material S1). In our study, the ill-structured problem required students
to either accept a retailer, which would transform the city’s park into warehouses but
bring jobs and tax revenues, or to decline the retailer and preserve the park but struggle
with expenses such as teachers’ salaries. The students also had to consider the impact of
pollution, the available natural resources, and other variables. The students then produced
a causal map with the assistance of software (Python in the fourth year course or Actionable
Systems in the third year course).

After the students completed their base map without scaffolding, they were introduced
to success or failure cases which were relevant to the problem to solve, and were asked to
revise their causal maps. The instructions for the failure case are provided in Supplementary
Material S2, while the success case is given as Supplementary Material S3. For example,
the successful case helped the students manage the effects of rapid population growth,
while the failure cases depicted the negative effects of urbanization on the environment.
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2.2. Data Cleaning/Pre-Processing

Our overall data cleaning process is shown in Figure 3. We converted the students’
submissions into one file format (CSV) for analysis. As each file encodes one causal map,
we ensured that the files were consistently formatted to describe a network as a list of edges.
That is, each line lists the starting node, end node, and type of the causal edge (−1 for causal
decrease and 1 for causal increase). This process of ensuring that the maps were properly
entered in the file was semi-automatized by using ActionableSystems [40] to detect the
presence of formatting errors (e.g., missing header line, extra spaces) and then solving them
manually. A common problem was the presence of typos (e.g., “Parks -> Environmental
well-being”, “Parks ->Enviornmental well-being”), which would mislead the analysis into
counting two distinct factors, “Environmental well-being” and “Enviornmental well-being”.
Such typos were identified via ActionableSystems, as they result in a map that is visibly
disconnected; they were then fixed manually.

Figure 3. Our data cleaning process started with a participant file (top) and proceeded until we were
done cleaning its content.

As participants constructed their revised maps, rather than having them provide a
discrete numeric value, they were asked to simply provide a nominal label (e.g., ‘very
strong’) to describe the relations between the concepts. After the general data cleaning,
we shifted to transforming the nominal values intuitively chosen by the participating
students to numeric values (Table 1). These values are only used in the subsequent analysis
to identify whether an edge is negative or positive.

Table 1. Conversions between nominal and numeric data.

Positive Relation Negative Relation

Very Strong (‘VS’) = 1 Very Strong (‘VS’) = −1
Strong (‘S’) = 0.8 Strong (‘S’) = −0.8

Medium (‘M’) = 0.6 Medium (‘M’) = −0.6
Low (‘L’) = 0.4 Low (‘L’) = −0.4

Very Low (‘VL’) = 0.2 Very Low (‘VL’) = −0.2

2.3. Data Analysis

When analysing the changes between the two maps, there are several metrics which
denote a more complex understanding of the problem. For example, the presence of
chains typically denotes a less complex map, while the presence of cycles shows a stronger
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understanding of the relationships between various concepts [41]. A participant’s coverage
of the problem space can be determined by the number of nodes and edges, as well as the
length of their map’s diameter. Maps containing more nodes and edges have a broader
scope, which may show that the participant is examining the problem in a larger context,
but could also be a result of the participant going on a tangential train of thought [42,43].
The complexity of a concept map can be analysed by finding the number of cycles and
chains, as well as by looking at their lengths [41].

The metrics chosen in this study to contrast the base map with the success or failure
maps were selected based on their relation to the complexity of the map and the coverage
of the problem space. As discussed by Frerichs et al. [44], the metrics cover the breadth,
depth, and structural complexity of conceptualizations of the problem space. Note that our
objective is to characterize the structure of the maps rather than to aggregate or compare
the content of the maps, which would require us to either solve linguistic variability (i.e.,
the possibility that students use different terms to cover the same concept) or constraint
students into using a bank of concepts [45] instead of letting students express concepts
as they see fit (i.e., using an open-ended approach [46]). We used each metric for the
following reasons:

• Number of nodes and number of edges, which represent the number of concepts and
causal relationships, respectively. These simple and common measures [42] serves to
evaluate whether a map covers more of the problem space.

• Average and maximum number of edges per node, also known as the ‘degree’, which
measure the connectivity. Higher numbers are more important, as they indicate that
students often see them as part of the problem space, exhaustively considering the
causal impact of their factors.

• Diameter, which measures the furthest away that two concepts can be (i.e., the length
of the longest shortest path). A very large diameter is a risk of going on a tangent
(as students may go beyond the boundaries of the problem space), whereas a very
small diameter may be indicative of an early map, in which most concepts are tightly
packed around a focal point. A medium diameter is thus most desirable.

• Total number and average lengths of cycles. Cycles or ‘feedback loops’ are essential
structures in complex problems [47]. In contrast with the simple notion of a ‘root
cause’ that would need to be solved for the solution to straightforwardly permeate
to a whole system, a cycle recognizes that an intervention will eventually affect us
back [48], possibly in unintended ways. As cycles are often present in systems, but are
harder to capture in maps due to cognitive limitations [49], seeing cycles in maps is
associated with demonstrating a better understanding of the problem. We characterize
cycles both in numbers (the more, the better) and in their average length (the longer,
the better).

• Total number, longest length, and average length of chains. Chains or ‘paths’ indicate chains
of reasoning. They reveal how students combine concepts into a logical sequence,
thus giving an insight into how students associate terms and causal reasoning [27,50].
We characterized chains in their amount, and maximum and average length. Lower
numbers are associated with more refined maps.

• Percentage of positive causations. Because each causal edge was categorized as either
positive (i.e., an increase in A causes an increase in B) or negative (i.e., an increase in
A causes a decrease in B), we measured the percentage of positive edges. The positive
and negative weights are known as ‘signs’ in the framework of signed graphs, which
has been the subject of recent studies in control and systems theory [51,52]. Some of
the notions above (e.g., cycles) can be extended within the context of signed graphs,
such as characterizing a ‘balanced network’ as having no cycle of which the product of
signs is negative [53,54]. However, these refinements are more applicable to the study
of polarizing phenomena [55] in social networks, in which nodes refer to individuals,
and edges characterize their interactions (e.g., cooperative or antagonistic), than in the
mapping of the problem spaces studied here.
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These metrics were primarily computed using the NetworkX Python library within
a Jupyter notebook. We note that this library offers sufficiently efficient implementations
given the network sizes encountered in this paper, but readers interested in much larger
networks may consider alternative approaches, such as the use of spectral graph theory to
quickly characterize loops [56,57]. Graphs were generated from .csv files into NetworkXDi-
Graphs objects, which were then analysed using a mixture of built-in NetworkX functions
and our own implementations of classic graph algorithms. The implementation of the
algorithms is described in Table 2.

Table 2. Description of each metric and what they measure, along with how they are implemented.

Measure Metric Implementation

Complexity

Average length and number of cycles

Found by using NetworkX’s
simple_cycles function and sorting the

nodes in the cycle before passing it into a
set to remove duplicates.

Average length, longest, and number of
chains

Found by getting all shortest paths
between nodes using NetworkX’s

shortest_simple_paths function and
counting those whose paths contain only

nodes of degree two or higher.

Coverage of Problem Space

Number of nodes and edges Counted the number of nodes and edges
in the graph.

Diameter
Found the longest of the shortest paths

found using NetworkX’s
shortest_simple_paths function.

Type of causations Percentage of positive causations

Found by reading the last column in the
.csv files and checking if the value is

above zero, if so find add to count and
divide the final count by the total number

of rows in the file.

3. Results

The results are summarized in Tables 3 and 4, while the sample distributions for the
number of nodes and edges are shown in Figures 4 and 5; all of the other distributions
are provided as supplementary online material. In the first and third cohort, there is a
noticeable increase in the number of edges added. This displays an increased coverage
of the problem space, hinting that the participants were considering the relationships
between their concepts more heavily than in their initial maps. This increase was especially
pronounced in the success groups for these two cohorts. In the third cohort, this may
have been a result of several outliers, who displayed a significantly larger increase in
their number of edges than the others in their group. This same spike in the number of
edges is likely the cause of the massive increase in cycles for the third cohort, in which
the total number of cycles grew from 68 to 747 cycles after their revision. This increase
stands out, as the first cohort group did not experience an increase in cycles anywhere near
as significant (only 22 to 36 cycles) despite also having significant growth in the number
of edges.
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Table 3. Relative differences of the students’ maps for each group (success, failure), and for all students combined. The first
two cohorts were formed at Northern Illinois University in a fourth-year elective on network science, while the third cohort
originated from Furman University through a third-year course on artificial intelligence.

Difference
Cohort 1 Cohort 2 Cohort 3

Both
Cases
(n = 9)

Success
(n = 6)

Failure
(n = 3)

Both
Cases

(n = 12)

Success
(n = 6)

Failure
(n = 6)

Both
Cases
(n = 7)

Success
(n = 4)

Failure
(n = 3)

Cycles Total + + = + = + ++ ++ -

Average
Length + + = = - = = + =

Elements
Number
of Nodes + = ++ = = = ++ ++ ++

Number
of Edges ++ + ++ = = = ++ ++ +

Connectivity Diameter = = + = = = = + =

Average
Degree = = = = = = = = -

Chains
Total – – – ++ + ++ ++

N/A *
++

Longest – – – ++ ++ ++ ++ ++

Average
Length – – – ++ ++ + ++ ++

+ is a greater than 25% increase from the previous map, ++ is a greater than 50% increase from the previous map. - is a greater than 25%
decrease from the previous map, – is a greater than 50% decrease from the previous map. = is a change of less than a 25% (either increase or
decrease) from the previous map. * None of the four students had chains to start with. In the success group, two of them added chains: one
added one chain (of length 2), and the other added five chains (of length 2 to 3, with 2.2 on average).

Table 4. Absolute measurements in each map for each group of students (success and failure are reported separately).

Difference

Cohort 1 Cohort 2 Cohort 3

Baseline
Suc-
cess

Group
(n = 6)

After
Expo-

sure to
Suc-
cess
Case

(n = 6)

Baseline
Fail-
ure

Group
(n = 3)

After
Expo-

sure to
Fail-
ure

Case
(n = 3)

Baseline
Suc-
cess

Group
(n = 6)

After
Expo-

sure to
Suc-
cess
Case

(n = 6)

Baseline
Fail-
ure

(n = 6)

After
Expo-

sure to
Fail-
ure

Case
(n = 6)

Baseline
Success
Group
(n = 4)

After
Expo-

sure to
Suc-
cess
Case

(n = 4)

Baseline
Failure
Group
(n = 3)

After
Expo-

sure to
Fail-
ure

Case
(n = 3)

Cycles
Total 22.00 36.00 0.00 0.00 92.00 114.00 75.00 103.00 68.00 747.00 48.00 27.00

Average
Length 10.65 10.65 0.00 0.00 21.07 16.01 21.63 22.13 16.79 21.29 12.65 11.16

Elements

Number
of

Nodes
71.00 86.00 33.00 60.00 96.00 119.00 89.00 109.00 53.00 89.00 49.00 90.00

Number
of

Edges
112.00 153.00 48.00 99.00 166.00 184.00 177.00 206.00 109.00 189.00 80.00 108.00

Connect-
ivity

Diameter 26.00 28.00 11.00 15.00 35.00 35.00 32.00 37.00 19.00 24.00 16.00 15.00

Average
De-
gree

19.05 21.41 8.70 9.73 21.20 19.37 24.16 23.51 16.0 16.21 9.57 6.70

Chains

Total 9.00 1.00 4.00 1.00 7.00 10.0 4.00 10.00 0.00 6.00 4.00 38.00

Longest 7.00 2.00 5.00 2.00 4.00 8.00 5.00 8.00 0.00 5.00 4.00 11.00

Average
Length 6.20 2.00 4.34 2.00 4.00 8.00 4.34 6.5.0 0.00 4.2.0 4.0 6.88
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Figure 4. Exposure to cases resulted in a higher number of nodes across all of the cohorts, as seen in
the difference between the leftmost (baseline) and rightmost (after cases) distributions. However,
the different effects of the success and failure cases depend on the cohort: cohort 2 gained about
as many nodes in either the success or failure cases, while the other cohorts gained most from the
failure case.

Figure 5. Exposure to cases resulted in a higher number of edges across all cohorts, as seen in the
difference between the leftmost (baseline) and rightmost (after cases) distributions. Cohorts 1 and 2
gained most from the failure case, but cohort 3 gained most from the success case.

The number of chains and their length saw similar changes across both the success
and failure group in the first two cohorts. For the first cohort, we noted a decrease in the
number of chains, and their average length shortened significantly after their revisions,
while the second cohort saw a small increase across both groups.

The third cohort, however, saw the introduction of chains in the success group where
there were previously no chains, and the failure group saw a spike in the number of chains
(4 to 38) and their length (4 to 11).

The connectivity of the graphs did not change significantly across each group, with
few exceptions: the failure group in the first cohort and the success group in the third
cohort, which saw a minor increase in diameter; and the failure group of the third cohort,
which had a decrease in the average degree across the graph. This decrease in the average
degree may be linked to the spike in chains, because an increase in chains should lower the
average degree if the only new connections were those chains.
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4. Discussion
4.1. Rationale for the Study and Application Context

When we do not have expertise in an application domain and still need to make
decisions, our understanding of the domain can be improved by being exposed to an
evidence base in the form of case studies (i.e., a ‘case library’). However, the content of
the cases can have an impact on our perspectives, such that our mental model may be
shaped differently depending on whether the case studies depict successful interventions
or failures. Previous studies have abundantly documented that cases can support students,
using a variety of metrics such as test scores. In the present study, we took one step
further in examining the ways in which the perceptions of a system change as a function of
exposure to certain types of evidence. Specifically, our study measured the representation
of knowledge through causal maps before and after exposure to a case. We focused on
causal maps as they have been used repeatedly in the literature on participatory modelling
to elicit mental models with crowds that did not necessarily have prior experience in
systems thinking. We acknowledge that other representations may yield different results,
as mapping techniques capture specific aspects of a student’s knowledge, and hence are
not interchangeable [58].

4.2. Main Takeaways from the Analysis

We found that exposure to cases leads to a higher number of nodes, edges, cycles, and a
higher average degree. The diameter is not changed significantly, which provides evidence
of knowledge integration. However, these numbers are increased differently depending on
the case and student cohort (either Northern Illinois University fourth year students for
cohorts 1–2, or Furman University third year students for cohort 3). Similarly, the findings
are nuanced by case and semester for the two key structures consisting of chains and cycles.
As discussed earlier, the presence of cycles is tied to a more complex understanding of
the problem space [41,47,48], and chains typically denote a naïve understanding. In the
first two cohorts, students used the success case to reinforce their own map, thus leading
to a sharp increase in the number of cycles and their average length, while these two
metrics did not noticeably change in the third cohort. The first two cohorts doubled the
number of concept nodes when exposed to a failure case, as they thought of concepts
which were previously unaccounted for, while the number of nodes in the third cohort
increased slightly regardless of the case. Finally, the first two cohorts had noticeably more
positive causal connections when they were exposed to the success case than the failure
case, but this relation reversed in the third cohort.

4.3. Limitations

A potential limitation of this study was the size of the data sets. First, the activity of
representing a system through several maps is time consuming for students; hence, it needs
to be part of the relevant learning outcomes for the course. We thus tied it to courses on
network science (focusing on the structure of knowledge as a map) or artificial intelligence
(echoing the core notion of knowledge representation), which means that we performed data
collection in upper-level electives which generally have small enrolment numbers at the
two institutions considered, in comparison with introductory courses. We addressed this
concern by collecting data for three successive semesters, thus achieving a sample size of
n = 28 for the analysis. Although there is no typical number of participants for studies that
elicit systems in the form of maps, we note that our sample size is comparable to several
other works, with n = 27 [59] or n = 30 [60] participants. The number of participants can
differ widely depending on the objectives of the study: our analysis of maps provided
solely by experts had as few as n = 7 participants [61], while our examination of mental
models in the community involved as many as n = 264 individuals [10]. The specific
data collection protocol also plays an important role in determining whether a study can
scale to many participants. Studies with very few participants can involve long one-on-
one semi-structured interviews which are then transcribed and turned into maps [42],
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whereas studies with many participants consist of self-administered surveys in which
even the choice of names for each factor is limited. The intermediate order of magnitude
of our sample is in line with the intermediate option taken in this study: students can
independently create maps representing their view of the system, without being forced to
choose from limited options.

5. Conclusions

Effective problem solving starts with a systematic process to define the problem space
and articulate the causal relationships among the variables identified. By mapping the
major variables and their causal relationships, the plausible solutions will be more easily
and efficiently identified [16]. In problem-based instruction, these mapping processes also
help students to construct the knowledge acquired into a conceptual framework for that
problem. Therefore, constructing a representation of a system by mapping the problem
spaces using causal reasoning is a critical cognitive process not only to successfully solve
a given problem, but also for the refinement of the students’ conceptual knowledge and
problem-solving skills.

Our study shows that providing students with cases tends to broaden their coverage
of the problem space, as evidenced by an increase in the number of nodes and causal
edges. However, the knowledge afforded by the cases is integrated into the students’
maps differently depending on the type of case (success vs. failure) as well as the cohort
of students.

Future studies could expand the data sets by continuing to recruit cohorts. Further-
more, our findings that some of the structural changes depend on the cohort suggest that
additional factors may underpin the ways in which students process cases. Consequently,
it would be of particular interest for future studies to also collect data about the profile
of the students, and to test for the presence of mediating factors (e.g., using structural
equation models) in the way that maps change when they are exposed to certain cases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/systems9020023/s1: activity statement distributed to all students (S1) followed by exposure
to the failure case (S2) and success case (S3); distributions across cohorts of average degree, highest
degree, and percentage of positive edges (S4); distributions across cohorts of the number of cycles
and average cycle length (S5); distributions across cohorts of the number of chains, average and
highest chain lengths (S6); distributions across cohorts of the diameter (S7).
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