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Abstract: In this article, we consider a variety of different mechanisms through which crises such as
COVID-19 can propagate from the micro-economic behaviour of individual agents through to an
economy’s aggregate dynamics and subsequently spill over into the global economy. Our central
theme is one of changes in the behaviour of heterogeneous agents, agents who differ in terms of
some measure of size, wealth, connectivity, or behaviour, in different parts of an economy. These
are illustrated through a variety of case studies, from individuals and households with budgetary
constraints, to financial markets, to companies composed of thousands of small projects, to companies
that implement single multi-billion dollar projects. In each case, we emphasise the role of data or
theoretical models and place them in the context of measuring their inter-connectivity and emergent
dynamics. Some of these are simple models that need to be ‘dressed’ in socio-economic data to be
used for policy-making, and we give an example of how to do this with housing markets, while
others are more similar to archaeological evidence; they provide hints about the bigger picture but
have yet to be unified with other results. The result is only an outline of what is possible but it
shows that we are drawing closer to an integrated set of concepts, principles, and models. In the final
section, we emphasise the potential as well as the limitations and what the future of these methods
hold for economics.

Keywords: complexity economics; economic crisis; COVID-19; agent-based model; information
theory; global value chains; megaprojects; housing markets; economic networks

1. Introduction
1.1. The Economics of Heterogeneity and Interconnections

Crises that disturb the economic status quo have a ripple effect that can reverberate
through markets and economies around the world. The effect a crisis has on any individual
entity depends on the characteristics of the entity and the nature of its connections with
the rest of the economy, and this is one of the areas that complexity economics (CE) has
been able to contribute to [1]. CE has its origins at the Santa Fe Institute in the mid-1980s
when economists, computer scientists, and physicists came together to foster an interdis-
ciplinary approach to addressing economic problems. Since then, a number of groups
and institutions have sprung up around the world such as Oxford University’s Institute
for New Economic Thinking (INET) headed by J-D Farmer, Harvard’s Atlas of Economic
Complexity (AEC1 [2]), and MIT’s Observatory of Economic Complexity (OEC2), these
having developed through the work of Hausmann, Hidalgo and colleagues [3,4]. Recently,
some central banks, such as the Bank of England [5] and the Canadian Central Bank [6],
have begun to explore CE methods, such as agent-based models (ABMs), for policy-making
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and in their approaches to modelling market dynamics. This is an approach that has been
growing in its sophistication and accuracy with a paper by Poledna and colleagues [7]
having recently won 1st prize in the Complexity and Macroeconomics Competition held by
Rebuilding Macroeconomics for producing an ABM that is comparable in forecasting ability
to traditional DSGE (Dynamic Stochastic General Equilibrium) models.

CE has sometimes been critiqued for not being a single theory or a unified approach
to economics [8]. This is in part because in practice it is an ecology of ideas, analogies,
and methods combined with large amounts of domain-specific data that are used to address
particular problems, freely borrowing from other fields in order to do so. However, this
also belies a technical consistency in the approach CE adopts. In particular it focuses on the
formal strengths of models that have often been validated in other fields and then applies
the appropriate economic framework around the analysis, thus allowing models to develop
independently of both economic ideology and the other fields that inspired the initial
analogies. For example, ‘spin models’ [9,10], binary state models that represent agents
as, for example, buyers and sellers, have been used extensively as simple models by CE
theorists to develop their intuition for the micro-economic agent-to-agent interactions that
result in the emergence of nonlinear macro-economic dynamics. The phase transitions we
see in spin models then help frame our thinking of the non-linearities of complex market
behaviour such as the two-phase dynamics discovered by Plerou et al. [11]. This has also
been used extensively in the work of Brock and Durlauf [12] and Aoki [13], for example, in
understanding the interactions between agents and the emergence of multiple equilibrium.

These models first appeared in the field of physics which remains a significant source
of inspiration for CE [14,15], as does the mathematics of network theory [10,16] and
evolution [17,18], ideas that have been brought together in work on evolutionary game
theory on networks in order to understand the emergence of cooperation [19] and spreading
dynamics over networks [20]. On the topic of evolution in economics, Brian Arthur, who
coined the termed ‘complexity economics’, has written [21]: ... because complexity economics
looks at how structures form or solutions come to be ‘selected’, it connects robustly with the
dynamics of evolutionary economics. Evolutionary economics also explicitly accounts for the
path dependencies of outcomes and the heterogeneity of agents, as Volmir writes in his
review [22] of Nelson et al’s book [23]:

... technological trajectories are a cumulative process of searching for “new ways
to do things”, providing the reader with a framework to explain emerging be-
haviors such as lock-ins, ‘anti-commons’ problems... Since the 1960s, innovations
began to be viewed as multi-interactive phenomenon, which entails a cumulative
process between different agents and institutions, a fact ignored by standard
economics... Once the cumulative process is understood, it is impossible to deny
that there are differences in the ability of distinct firms to accumulate knowledge.

This combination of heterogeneity, path dependency, interactivity, and innovation are
all hallmarks of the ‘world view’ of CE.

With these concepts in mind, theory and empirical study in economics have been
moving into an era of networks and heterogeneous agents, and along with this progression
comes a growing awareness of the systemic risks of a highly connected society. Take, for
example, the network of international trade relations that have been a lynch pin of modern
trade development recently reviewed by Carrère et al. [24]. In this domain, a central model
has been the gravity model of trade [25], and in its simplest form is conceptualised similarly
to that of gravity in physics. In physics, the attractive forces F between two objects of
masses M1 and M2 is proportional to the product of their masses divided by the square of
the radial distance r2 between them:

F = G
M1M2

r2 (1)

where G is the universal gravitational constant. The gravity model of international trade has
a very similar form where the trade flow Ti,j between two economies with gross domestic
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products of Pi and Pj and the geographical, political, social, or some other measure of
separation is represented by Di,j, is expressed by the relation

Ti,j = C
PiPj

Di,j
(2)

where C is a constant of trade. See Anderson [26] for the theoretical foundations and
extensions. This formulation, first framed in 1954 [25], lends itself naturally to a network
analysis in which each Ti,j = Tj,i is the symmetrical weighted link in a network connecting
nodes of size Pi and Pj. For a fixed distance, as the sizes of the economies grow the flow
of trade between them increases, but if the distances between these same economies were
increased the trade flows would decrease in inverse proportion. The analysis of these
networks has been further extended to the micro-economic level through the work of
Bergstrand [27], for example, providing a much more granular conceptualisation of trade
in which the gravity model is a reduced form of a more sophisticated partial equilibrium
model of trade.

The network model of trade is more general than the gravity model though. For ex-
ample, Rauch has studied the social networks of trade [28] and the relationships between
networks and markets [29]. In a similar study, Chaney [30] looked at the network structure
of trade where firms can only export into markets in which they have contact and acquire
new contacts both at random as well as through their network of existing contacts, thereby
introducing an element of randomness to network formation. The specific varieties of
what is traded over these networks have also been considered in some detail, with Dalin
et al. [31] looking at the trade in ‘virtual water’, the amount of water needed to produce
food, and the global trade in arms studied by Arkerman and Seim [32]. Alongside this
appreciation of the role of network topology and flows of trade is a further appreciation
of the heterogeneity of the nodes themselves, i.e., the highly varied characteristics of the
countries, companies, and individuals that are the linked agents.

The recent growth of research in this area has been stimulated, at least in part, by the
growth in international trade and the use of Free Trade Agreements between a large number
of economies and consequently a need to better understand how this has shifted regional
economies. This is because although there had been no global free trade agreements since
1994 [33], whereas the number of regional or bilateral trade agreements between countries
(e.g., NAFTA, EU, and APEC) grew from 50 in 1990 to more than 280 in 2017 [34]. This
has led to a deeper interest in systemic risks such as the fragility of supply chains [35],
the interaction between trade networks, trade wars, and firm value [36], as well as trade
related climate change [37]. However, this has been in parallel with an enormous growth in
the study of ‘complex systems’ through the lens of network analysis, a field in which recent
research began with Watts and Strogatz in 1998 [38] and Barabási et al. in 1999 [39], and it
has played a core role in many fields over the last twenty years. This has particularly been
the case in economic research where the formal methods of network science have been used
by non-economists, often but not always physicists, to study the abstract properties of trade
networks [40–42]. While the recent connection between physics models and economic data
has not always been a harmonious one, it has been productive in certain fields of economics
with several articles by prominent researchers on both sides of the debate having voiced
strong opinions on the success or otherwise of these methods [43–45].

These debates have been had at the macro-economic level as well as at the market
and micro-economic levels, all of which has been a part of a steady revolution in economic
thinking over the last 30 years. Some of the earliest work using simulations or a ‘complex
systems’ approach [46] includes the work of Brian Arthur and colleagues on the simulation
of financial markets [47] and other models of collective economic behaviour [48] where
traditional assumptions, such as equilibrium or rational choice, are relaxed in order to
study the evolutionary dynamics of markets and under what circumstances an equilibrium
state might naturally come about with these assumptions relaxed [49]. Other models,
such as bifurcation models in which a form of dynamic equilibrium is presumed, are
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suited to partial equilibrium analysis in the sense that it is the non-equilibrium transition
between alternative stable states that is most interesting, see Rosser Jr.’s review of economic
Catastrophe Theory for example [50].

Within the context of complexity economics, this article reviews several recent research
directions at multiple different levels of analysis as well as some of the work that we have
carried out in recent years. This includes our work on applied network theory [20,51–54],
bifurcations and systemic risks [55–60], agent-based modelling of economic markets [61–64],
the theoretical limits of ‘rationality’ and strategic choice [20,65–69], and how information
theory can be used to understand the dynamics of these systems [70–77]. The purpose then
is to place this research in the context of the work being carried out in other groups around
the world. We hope that further developments of these areas will ultimately lead to larger
models that can be used to better understand the macro-economic response of an economy
to global shocks during a crisis such as COVID-19 or the Global Financial Crisis (GFC).
In the following subsections, we introduce the central themes of this work that are the basis
of the sections in the main body of this article.

1.2. The Household Level: Theory and Simulation

As we write in mid-2021 the pandemic continues to push economies around the
world into lockdowns where social distancing measures are put in place, restricting our
freedom of movement as well as the ability of the economy to function properly. At the
level of households, the first two sections investigate if the financial distress caused by
the pandemic could cause a new period of stress in economic markets such as the one
observed during the GFC. This topic has two parts: the first is a stylised agent-based
simulation without any real-world data, and the second is a more realistic simulation using
real data from the Greater Sydney housing market. The purpose of these case studies is to
illustrate the strengths and weaknesses of the two approaches as well as the relationship
between them.

In Section 2, we implement the modified diffusion model with financial constraints
first proposed by Gallegati et al. [78] in order to model the ‘period of financial distress’
prior to a market decline for markets in general and later used as a model of housing
markets specifically [79]. At the individual agent level such a period might occur when the
agent, such as a firm or a household, is faced with the not yet realised but highly probable
chance of not being able to meet their financial obligations [80]. In the broader sense of a
whole market this can occur because a subgroup of agents have wealth constraints that
limit their ability to buy assets outright and so they need to borrow to buy assets that then,
through the evolution of the market price, become undervalued and as the assets are then
distressed some over-leveraged agents need to sell, pushing prices down even further than
fundamentals suggest is the equilibrium price. The effect of leverage on market stability has
been extensively studied in housing markets [81,82] and agent-based models of financial
markets [83,84] and in the work of Kindleberger [85], periods of financial distress are a
general pattern in many bubbles and their subsequent crashes throughout the last several
centuries. In Kindleberger’s words [85] (p. 11):

Then an event—perhaps a change in government policy, an unexplained failure
of a firm previously thought to have been successful—occurs that leads to a pause
in the increase in asset prices. Soon, some of the investors who had financed most
of their purchases with borrowed money become distress sellers of the real estate
or the stocks because the interest payments on the money borrowed to finance
their purchases are larger than the investment income on the assets. The prices of
these assets decline below their purchase price and now the buyers are ‘under
water’—the amount owed on the money borrowed to finance the purchase of
these assets is larger than their current market value.

In Section 2, we reproduce the model of Gallegati et al. [78] to illustrate this period of
financial distress.
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In Section 3, we move from these theoretical considerations towards the more applied
level of the Australian government’s response to the COVID-19 ‘event’, to use Kindle-
berger’s terminology, and its impact on the housing market. In response to the pandemic,
the government moved to close borders [86] that reduced the influx of temporary residents
(e.g., students and short-term workers), resulting in a decrease in the demand for rental
properties and the corresponding decline of the rental prices [87] which has impacted the
income of property investors. Second, decreasing the cash rate by the Reserve Bank of
Australia [88] has increased the incentive for mortgage borrowing among households that
are otherwise stressed due to COVID-19, which has resulted in an increased demand in
housing and a corresponding increase in prices [89]. Third, the government’s ‘JobKeeper’
and ‘JobSeeker’ payment schemes [90,91] intended to support households’ individual
budgets and to stimulate their consumption activity created an auxiliary source of income
for households, which has arguably altered their budgeting incentives.

These government policy-driven macro-economic factors have combined with the
micro-economic effects of reduced spending for holidays due to travel restrictions and
other changes in household behaviour such as reductions in food wastage (as reported in
other countries during COVID-19 [92]) and so impacting household expenditure, the con-
sequences of which is household savings of $100 billion during 2020 [93].3 This has had
the consequential effect of increasing pressure on the housing market in 2021 as the extra
savings has fuelled further interest in house buying across Australian markets. As the
Australian Bureau of Statistics reported [94]:

Increased housing market activity was driven by an expansive monetary policy
and support through government policies such as Homebuilder and other state
specific initiatives, as well as pent up demand (due to lower activity during the
June quarter [2020] COVID-19 lockdown period). As auctions and open home
inspections picked up in September quarter (with the easing of social distancing
measures), greater demand than there was housing stock on the market saw
property prices rebound

These factors have contributed to an already highly valued Australian housing mar-
ket [62,63] and will likely continue to contribute to wealth and housing inequality into the
future. We emphasise this combination of government policy and micro-economic factors
because we want to illustrate how emergent consequences arise from changes in individual
behaviours during a crisis, something that needs to be explicitly modelled because there
is usually, as in the case of the GFC and COVID-19, no previous macro-economic data on
which to base sound judgement, so estimates of the impact of individual behaviour need to
be used, and how these behaviours drive the macro-economic dynamics that policy-makers
want to manage.

With this Australian-specific perspective in mind, in Section 3 we compare the methods
of Section 2 with those of a model of the Greater Sydney housing market to illustrate the
strengths of a realistic model that uses high-resolution market and socio-economic data
in which household constraints are varied to reflect key aspects of the COVID-19 crisis.
We show that the effect of COVID-19 on Sydney house prices is the opposite to that of a
bubble–crash dynamic; house prices increase significantly in the model and this has been
observed in recent price movements across Sydney and other Australian capital cities,
lending significant credence to the use of agent-based models to simulate out-of-sample
dynamics during a crisis.

1.3. Financial Markets and Systemic Risks

Financial market crises are a common topic of study for researchers outside of main-
stream economics. This is due in part to the extensive amount of data available which
allows financial markets to be analysed very well with the tools of computer science and
physics that were initially developed for studying large stochastic systems with interacting
elements. Some of the earliest work in this area that continues to drive research is in the
study of the so-called stylised facts of financial markets, such as fat tails and clustered
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volatility [95]. One of the earliest debates was over the best model to use for market
fluctuations: cascading turbulence or a truncated Lévy flight [14,15,96,97]. This led to a
long and fruitful series of investigations into the dynamics of the univariate time series of
financial market indices [98–101], with recent contributions from our group in this area as
well [102–105].

At a more granular level, the analysis of markets can be seen as an interaction between
prices that, to at least some extent, contribute to the (co-)movement of other prices, induc-
ing a dynamical asset network that can be studied for its stability properties. This type of
analysis can, for example, extract market sectors from price movements by examining the
largest eigenvalues of the market’s cross-correlation matrix [106] as well as using random
matrix theory to distinguish between random and non-random correlations [107], methods
that were originally motivated by models in physics. As an approach to understanding
crises, such as the Black Monday crash of 1987, and optimal portfolio selection, Onella
and colleagues applied correlation-based network analyses in order to understand market
risks [108–111]. Our group has extended these methods to information theoretical meth-
ods in order to study the nonlinear properties of markets and other types of nonlinear
dynamics [52,55,70,112]. Extending these methods by using information transfers between
equities such as Granger causality [113] or transfer entropy [71,114] results in fundamen-
tally different networks of relationships between equities [70] and consequently different
risk profiles depending on the different measures of relationship used.

In order to study some recent market events that have been particularly turbulent
and have yet to be studied in detail, in Section 4 we use transfer entropy (see, for example,
in [70] and [Chapter 6] in [71]) to infer a temporal flow of information between equities
during the periods covering three market events: the US Federal bail out decision of 2008,
the Flash Crash of May 2010, and the COVID-19 crash of 2020, together with three other
random control dates. For each of these events, we use tick-by-tick financial data that allow
us to study the day before the event, the day of the event, and the day after the event with
three thirty-minute periods used to compute transfer entropy of the Dow Jones Index. This
gives us considerable fine grained insight into the micro-evolution of information flows
through the market and their relationship to overall market dynamics.

1.4. Trade Networks: Internal and External Trade in Value Added

As mentioned in the first section above, trade networks are vital to the economic
development and prosperity of a country’s economy. Since the earlier work on gravity
models, work has developed extensively in understanding the relationship between trade
within a country’s economy and trade between different economies. Developments such as
the Observatory of Economic Complexity [115] (https://oec.world, accessed on 13 October
2021) have taken significant amounts of trade data and converted it into country-specific
trade network analyses that can be drilled down into the sub-market sectors as well as,
in many instances, the distinct economic regions within a country. Research stemming from
this work has established important links between these trade networks and the specifics
of income inequality [116], the environment [117], and employment [118], all issues that
are of central concern to the sustainable growth and development of a country.

These networks have developed much more slowly over time than other networked
aspects of the economy such as financial markets or housing markets, and their disruption
and subsequent recovery might also be expected to be somewhat slower. However, even
short-term shocks to trade networks can have a significant and long-lasting impact on trade
links such as agri-food trade networks [119,120] and other commodities [121,122] that are
heavily traded as physical goods across the globe. These have been studied in detail for
previous crises, for example the role of the inter-bank network of debt during the GFC [123].
In Section 5, we look at the intra- and inter-economic trade data beginning at the industry
sector level to examine patterns in the trade of goods and services between market sectors.
In working to understand the long-term shocks caused by COVID-19, we can use analyses

https://oec.world
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of this type to form a better picture of the complexity and interrelationships of sub-market
trading and its implications of policies.

1.5. Business Sector Analysis

In Section 6, we discuss the impact of global crises on businesses through the lens of
projects and their role as vehicles for economic transformation. At an operational level,
projects are a useful framework within which organisations can plan and control the
delivery of products and services that generate income or otherwise benefit businesses
and their customers [124]. As is the case for other elements of economic development,
the effect that a crisis has on businesses or individual projects depends on their individual
characteristics and the nature of their connections with the rest of the economy. Large
projects and large portfolios of related smaller projects can have an out-sized impact on
economic development and their stalling or failure during a crisis has a consequential
knock-on effect for the rest of the economy. Using data reported during the COVID-19
pandemic, we show how projects are strongly connected with, and have been impacted
by, their respective economies, with a significant number of projects being cancelled
or suspended.

In particular, we look to a class of projects known as ‘megaprojects’ that are commonly
used to deliver very large, complex, and costly outputs such as infrastructure, water,
energy, and mining ventures [125–127]. Their extreme scale is reflective of the functional
complexity of megaprojects which are themselves often initiated to facilitate the productive
efficiency and delivery of many other goods and services. In other words, large, complex
projects are often singular economic exercises around which other economic developments
organise themselves, providing support to downstream development projects in multiple
industrial sectors.

This is most apparent in multi-billion dollar projects such as energy or road projects
that facilitate further development throughout the economy. For example, Olds [128] has
examined urban mega-projects on the Pacific rim (Vancouver, Yokohama, and Shanghai)
and the relationship between local economic development and globalisation. Similarly,
Zekovic et al. [129] has looked at megaprojects in the context of urban planning and
development. Most telling of all though is the enormous amount of infrastructure that is
required to support GDP growth in the coming decades and the role of megaprojects in
this development. In a 2017 article, Söderlund et al. [130] wrote:

One reason for such acceleration in megaprojects can be gleaned from the projec-
tions of infrastructure to meet the world’s ever-increasing needs for economic
growth and improvements. McKinsey (Garemo, Matzinger, & Palter, 2015) esti-
mates that the world needs to spend about US$57 trillion on infrastructure by
2030 to keep up with the expected GDP growth. The Organisation for Economic
Co-operation and Development (OECD) estimates that ‘global infrastructure in-
vestment needs of US$6.3 trillion per year over the period of 2016–2030 to support
growth and development’, which exceeds the figure proposed by McKinsey.

Due to their extreme scale and impact, megaprojects often play a pivotal role in the
shaping of an economy. However, the inverse may also be argued, i.e., where there is
a disruption like that caused by a global shock such as COVID-19 this can precipitate
the cancellation or pausing of megaprojects as their funding bodies reassign previously
budgeted capital to other more pressing needs and the resultant loss or delay of innovation
and value. The net effect is to push back the infrastructure necessary to support the
economic growth of the next decade.

As some countries begin to emerge from the grip of the pandemic, there are moves to
spur economic recovery by initiating large infrastructure projects. Starting (or restarting)
significant numbers of projects over a short period will likely stress delivering organisations
as they seek to rapidly revive projects and recover the work force at the same time as
competing for newly announced infrastructure projects. This restart may create shortages
of raw materials as global supply chains respond to rapidly increasing demand and
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competition as skilled resources, stressing already compromised global value chains such
as those described in Section 5.

1.6. The Structure of the Article

In the sub-sections above, we have given a brief overview of some of the recent
literature as well as a review of the tools that are used in what follows in this article.
The progression of the sections from Section 2 through Section 5 are in approximate order
of increasing degrees of coarse-graining. Section 2 is purely theoretical and every agent is
completely described at the discretion of the modeller, however this level of information
comes at the price of lacking in real-world precision. Section 3 is again a simulation, but it
is populated with realistically calibrated agents and an economic context that is based on
the real world while also being expected to faithfully reproduce empirical observations
of market behaviour. Section 4 has no explicit agents or models of interactions, instead
it empirically examines the interactions between agents that can be inferred using multi-
variate time series from financial markets. Section 5 looks at an even further aggregated
level, starting from data of entire industry sectors and looking at the trade in value added
between sectors within an economy as well as between economies. Although each of these
layers interact with each other to produce multiply layered networks of interactions, we
do not yet integrate them in a unified model; this is left for further development and is
an open research effort in this field. Finally, in Section 6, we discuss the unique aspects of
project economics and their role in development, both during and post an economic crisis.

Each section should be seen as a distinct and relatively independent case study
that illustrates methodologies or principles in action, without going into a great deal of
detail (references are provided to work describing the relevant details). In particular, we
have used the methods described above to illustrate various strengths and weaknesses of
particular ideas from CE applied to the analysis of an economy, usually with an Australian
perspective for concreteness. This is not intended to be a complete analysis of an economy,
for example, we have omitted central banks, commercial banks, and other key institutions
and markets. Nor should these be seen as an integrated approach to modelling an economy
because we have yet to make clear the connections between the different elements we will
describe. Instead, the intention is to illustrate the multiple directions of research that are
being pursued and that are now being drawn together to contribute to a unified “whole of
system” approach to modelling large scale economic phenomena. In the meantime, it is
hoped that this article gives some insight into what is presently being developed and what
the future holds for the field.

2. Periods of Financial Distress in an Agent Based Model

As mentioned in Section 1, in the work of Kindleberger [85] the initial cause of financial
distress can be the action of a few agents that by some means come to believe that they are
in stress or a bubble and that, once they have acted on this belief, the rest of the market
comes to a similar realisation and that many of them may need to sell in order to manage
their financial position. What initiates a market sell-off is a matter of ongoing debate
so to make our ideas concrete in the form of a relevant simulation we follow the work
of Gallegati et al. [78] in order to simulate an endogenous market crises. The purpose
in using this model is that it includes agent level (household) financial constraints as a
primary contributor to an asset market crisis, where the asset might be equities, houses,
or something else. These constraints are related to the costs of buying and selling the asset,
which are implicitly relative to the total household budget, if either the household budget
changes or the transaction costs change for a large enough portion of the market then
a market-wide period of financial distress may result, and it is these shifting household
constraints that we will relate to the COVID-19 crisis in Section 3.
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2.1. The Theoretical Framework

In [78], there is a population of buyers and sellers facing a binary choice problem for a
single risky asset. The simulation runs for a number of steps indexed by t and at each step
an agent i chooses a strategy wi,t ∈ {−1, 1} where −1 represents selling and +1 represents
buying. The asset’s underlying price dynamic is given by

pt = pt−1 + kwt + σzt (3)

Here, the price evolution is a sequence of n + 1 values {p0 . . . pn} with a given p0, zt
is a Weiner process (noise), and σ is the strength of the noise. Excess demand is the average
of all agents’ choices at time t where the mean strategy is wt = 〈wit〉 and therefore kwt is
the k-weighted influence that excess demand has on price (set to k = 0.4 in the original
paper). The expected excess demand at t is assumed to be we

t = wt−1. The utility for each
agent i is given by

Uit = ( p̄t − pt−1)wit + Jwitwe
t + εit (4)

in which p̄t is a single stochastic adaptive learning process for all agents:

p̄t = p̄t−1 − ρ( p̄t − pt) + σ1z1,t (5)

and ρ ∈ [0, 1] controls the adaptation speed. The strength of the agents’ interaction with
one another is controlled by the parameter J, as it is through the Jwitwe

t term that individual
choices are connected to all other choices via a mean market estimate of excess demand.
The agents make their decisions based on the expected benefit of trading using both the
recent observable price changes and the relative excess demand weighted by a herding
factor (see Equation (4)). The decision-making process each agent uses is based on a value
function Vi,t:

Vi,t =

{
Uit if Wi,t−1 > θWi,0

−∞ if Wi,t−1 ≤ θWi,0
(6)

where Wi,t is the wealth of agent i at time t, Wi,0 is the initial wealth of each agent and
θ is some real valued proportion of the initial wealth such that, if the wealth falls below
a threshold value of an agent’s initial wealth then they will not trade. Then, a choice
wit ∈ {−1, 1} is made according to the probability:

P(wit) = P(Vit(wit) > Vit(−wit)) (7)

This trading model follows the social interaction approach of Brock and Durlauf [12].
The full simulation can be summarized as carrying out the following steps for a total
number of T iterations:

1. Compute agent’s decisions wit using Equations (4), 6, and 7,
2. Asset prices are updated using Equation (3),
3. Agents realize profit/losses and update their wealth,
4. Agents compute a new expected price.

For a complete description and background of the algorithm see the original paper [78].

2.2. Simulation Results

By reproducing the original model we are able to achieve similar results to the original
article, and we note the following:

• A bubble characterized by a PFD is produced only when transaction costs are suf-
ficiently high, see Figure 1. In the absence of high transaction costs no crashes are
observed in the simulations.

• High financial costs cause a pattern of crashes in Figure 2). As a hypothesis for
the cause of financial distress, high transaction costs have the drawback of causing
repeatable patterns that are may not be realistic.
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• The evolution of the wealth and the distribution of the agents explain the bubble
(Figure 3). We can see two densities of wealth that correspond to the beginning of the
simulation and right before the crash. It demonstrates that financial distress seems to
be correlated with the occurrence of shocks.

• Changes in the herding factor, J, affect the amplitude of the bubble, making social
interaction an important component of how financial contagion spreads and how the
shock ultimately unfolds into a crisis.

Figure 1. Comparison of multiple values for transaction costs. For c = 0.5 there is a crash at t ≈ 900.
and for c = 0.7 multiple crashes occur. There are no crashes for c < 0.5.

Figure 2. Simulation for c = 0.9 for 2000 time-steps. The crash repeats at steps 300, 800, 1300, and
1800.

While in this model financial distress is caused by the presence of excessive transaction
costs, Gallegati et al. [78] make it clear that the use of transaction costs is only a modelling
tool and many other mechanisms can produce the same result. We consider an alternative
scenario with an external field factor, γ, introduced in the utility function, representing
the market sentiment and we show that, similar to high transaction costs, it too can cause
market shocks more serious than those that might be expected for an equivalent normal
distribution. As the number of equity pairs with statistically significant TE values does
change over a m
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In the presence of market sentiment, the utility function evaluated by the agents be-
comes

Uit = ( p̄t − pt−1)wit + Jwitwe
t + G + εit (8)

where G ∼ N (γ, 0.01), which means that under normal circumstances (γ = 0) the utility
to buy or to sell is not affected, but under exogenous influence the agents have a higher
propensity to either buy or sell. We consider a scenario in which an external event occurs at
timestep t = 300 and as we can see in Figure 4 this causes a steep decline in market prices,
although at a slower rate than the ones caused by financial distress.

Figure 3. The distribution of wealth over the simulation is concentrated into both the initial point
and moment before the crash.

Figure 4. The market sentiment changes to γ = −0.5 at step 300, causing a depression in the market.

2.3. Remarks

Agent-based models are a powerful tool to simulate the interactions between hetero-
geneous agents in complex economic environments and to test hypotheses about emergent
behaviour originating from those interactions. In this model, Gallegati et al. extended their
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earlier work by the inclusion of financial constraints at the individual agent level, which
endogenously induces a strong nonlinear dynamic. Such simulations are an important tool
for calibrating our intuition, in terms of interactions and constraints, for the purposes of
policy-making as they can be used to evaluate alternative scenarios and guide decisions
that can lead to better policies. However, these are only a guide, and what is needed
to extend this work to a more practical understanding of policy-relevant parameters are
agent-based models that can also be used to perform more fine-grained scenario sensitivity
testing using real data tuned to a specific market as we demonstrate in the next section.

3. Trading Houses: An Agent-Based Analysis of Stressed Markets

Our recent work looking at the Australian housing market [62] has shown that from
2016 onwards this market has been in a volatile state in which high housing prices have been
coupled with higher than usual fluctuations in their values, an aspect of the Sydney market
that is not unlike the periods of financial distress covered in Section 2. This behaviour
contrasts with the previous decade (between 2006 and 2016) in which there were periods
of both growth and decline, but the trend has been much less volatile. In this work, we
argued that the current state of high uncertainty has been caused by a combination of two
factors: the households’ trend-following aptitude, i.e., their tendency to ‘market herding’
behaviour [131,132], and their collective propensity to borrow. The former behaviour
is quantified by a parameter that reflects a household’s desire to follow the price trend,
as accounted by the balance of the monthly costs associated with acquiring a house and
the anticipated long-term gains in house value due to market growth. The latter behaviour
is quantified by either the mortgage rate or by the observed statistical relationship between
a household’s income and mortgage. Using a multi-agent model that has realistic data
and dynamics that are known to follow real market prices, we were able to probe the
model for the mechanisms that drive this new behaviour, without changing the underlying
interactions and mechanisms in the model.

It is important to realise that the higher volatility in market prices have been observed
not only in the modelled market, but also in the actual market. Such uncertainty is typically
an indication of a critical transition, when the system approaches a bifurcation point that
separates two (or more) states with relatively stable dynamics such as that studied by
Scheffer et al. [133] or the period of financial distress of Gallegati et al. As the system is
composed of a large number of interacting agents, taking account of all the factors that
influence the evolution of each individual agent—even in the real market—is too difficult a
task, resulting in the behaviour of agents being essentially indistinguishable from a stochas-
tic process. This individual stochasticity is compounded by the stochasticity associated
with the emergent collective behaviour of a large number of agents. Such phenomena have
been observed in other systems [134–136] in which the details of individual interactions
between agents are unknown and possibly not even measurable for practical purposes,
yet their collective behaviour can still be coherent overall and may provide indicators of
the existence of a bifurcation point and the associated systemic risks. Our understanding
of such phenomena in socio-economic systems is generally less clear than in these other
systems and it is an active area of research.

Agent-based modelling provides a tractable computational tool study stochastic social
systems, and housing markets are one of its feasible applications. In these models, we
mimic the actions of real households subjected to market conditions (e.g., mortgage rates,
housing stock, budgeting constraints, etc.). This allows us to not only identify possible
causal relationships between the parameters and the observed market behaviour (e.g.,
price or population distributions [63,64,137]), but also investigate various alternate realities,
i.e., what if scenarios, which otherwise are not available for direct experimentation, unlike
other applied sciences.
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3.1. Simulation Results

There are two elements that are essential specifically for housing markets, affecting
the observed price dynamics: (1) the proportion of income expenditure on non-housing
consumption and (2) deciding whether or not to buy a house and at what price point.

We investigate the effect of COVID-19-related government policy interventions by
exploring alternative financial realities compared to the one people experienced during
the 2016–2019 period, which we refer to as the Baseline model [62]. In particular, we
consider three alternative realities: denoted as the Rate, Income, and Liquidity realities.
In the alternative Rate reality, the mortgage rate is lower by 2 percentage points compared
to the baseline (e.g., from 5.3% to 3.3%). This reflects the reduction of the base rate by the
Reserve Bank of Australia and the corresponding reduction of mortgage rates by banks.
In the alternative Income reality, the proportion of income households pay to non-housing
consumption is reduced by a factor of two, compared to the baseline (i.e., from 60% to
30%). This models the effects of a large portion of households being left without an income
due to work restrictions. In the alternative Liquidity reality, the fraction of accumulated
wealth households pay to non-housing consumption is reduced to nil (from 0.25% in the
baseline model). This is another aspect of household stress when the population reduces
daily spending. Importantly, in these alternative realities, all other parameters of the
Baseline model are held constant, including households’ collective assessment of the market
(quantified by the trend-following aptitude) or various house-related taxes.

The results of the simulations are presented in Figure 5. We see that in each of the
alternative realities the nature of the price dynamics–high volatility and an upward trend—
is similar to the baseline. This is due to the fact that all alternative realities exist within
the same fundamental conditions of the 2016–2019 market, namely, high trend-following
aptitude and high propensity to borrow (see details in the original paper [62]). Yet, in the
Income reality, we observe slightly lower price volatility compared to the other realities,
which reflects higher certainty in the price trend.

We next focus on the differences between the price trends in the alternative realities
and the baseline model in Figure 6 by setting the baseline model’s index equal to zero
so that the relative price trajectories of the other realities is made clear. Here, we see that
changing household spending attitudes with respect to the accumulated wealth (as in the
Liquidity reality), does not affect the price level significantly. In contrast, changing the
spending attitude with respect to income (as in the Income reality) gradually increases the
price level by $40–60 k (thousand Australian dollars) over the course of the simulation.
Furthermore, decreasing the mortgage rate (as in the Rate reality) results in increasing
the price level by $50–70 k. With the baseline price level of $1150 k, the Rate and Income
alternative realities result in an increase of ~5.2% in overall house prices. This result is
consistent with the year on year price increase in Sydney from $1135 k in December 2019 to
$1211 k in December 2020,4 an increase of ~6.7% where the difference might be explained
by the combination of multiple factors during COVID-19.
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Figure 5. Histogram distribution of the prices from an ensemble of 64 simulations, for the alternative
realities and the baseline model. Black line corresponds to the running average of monthly averages
of the actual sales price and is the same in each plot, made available from Securities Industry Research
Centre of Asia-Pacific (SIRCA) on behalf of CoreLogic, Inc. (Sydney, Australia).

Figure 6. Difference between the median house market prices in three alternative realities and the
baseline model.

3.2. Simple versus More Complex Agent-Based Models

We should emphasise that in obtaining these results we did not perform any further
calibration of our earlier published model [62]. This tells us that our agent-based model is
capable of tracking very fine differences in household constraints that are out-of-sample
with respect to the original calibration of the model.
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In adjusting the model to reflect alternative economic realities we are changing the
constraints placed on the agents using the same principles as described in Section 2 but
now these constraints have readily identifiable interpretations in terms of a real market.
In particular, constraints such as ‘budgetary limits’, ‘taxes’, or ‘interest rates’, constraints
that have been proposed in stylised models [56,78], can be tested, calibrated, and validated
against real market data, providing a quantified foundation for informing policy decisions,
rather than models that have earlier been more qualitative in their description of market
features. It is this step from theoretical and simplified models to richer, data informed,
simulations that will make these types of models much more useful in the future.

4. Fluctuations in Equity Markets at Crises Points

An index of a financial market for trading in equities, such as the NASDAQ, the Dow
Jones Industrial Average (DJIA), or the Standard and Poors 500 (S&P500), is often taken as
a broad indicator of a country’s economic health as it can be understood as the ‘market’s
perception’ of the economic performance of the industries in which the equities are traded.
If the market, as measured by an index, is growing strongly then the underlying businesses
are often thought to be growing strongly as well, while a declining index is often taken to
be an indicator of poorly performing businesses and consequently a poorly performing
economy. For example, the S&P500 is a US-based index of the 500 highest capitalised
stocks on the New York Stock Exchange and so it is seen as an indicator of health of the US
economy. By following it one can get a feel for the relative performance of the economy
over time.

However, individual stocks and their contributions to the overall dynamics of an
index have also been studied collectively as indicators of a market in sudden crisis. See,
for example, the use of Pearson cross-correlations between equities studied by Onnela
et al. [108,109] and the use of mutual information by Harré et al. [55] to study the non-
linear dynamics of markets near crises. This is similar in principle to the measurement
of neural dynamics during and epileptic seizures [138–140] or, at the aggregate level of
entire systems, measuring the statistical signatures of tipping points in ecological and
climate time series [141–143]. Other measures have also been used to study market crises
and their potential to measure systemic risks in financial markets, for example transfer
entropy, a measure of the temporal cause-and-effect of price movements, similar in nature
to Granger’s causality [113], has been used to study the Asian market crisis of 1998 [70].
A table of the different measures and their relationships is illustrated in Figure 7, and see the
references just given for a more detailed description of these methods. This is an active area
of research in which new developments are unfolding in multiple areas. In what follows
we will use transfer entropy (TE), a measure of Granger-like causality [144], to examine
inter-price dynamics in equity markets and we will simply refer to the causal relationship
from equity Y to equity X as TY→X . For an introduction to its use in general see the book
An Introduction to Transfer Entropy [71] and for its use in economics see Chapter 6 therein.
Here, we introduce, in order of appearance, the entropy, joint entropy, and conditional
entropy and then use these to define the transfer entropy:

H(X) = − ∑
x∈X

p(x) log(p(x)) (9)

H(X, Y) = − ∑
(x,y)∈(X,Y)

p(x, y) log(p(x, y)) (10)

H(X|Y) = H(X, Y)−H(X) (11)

Now, we can define the Transfer Entropy between two time series {Xt} and {Yt} as
the difference between the entropy of {Xt} conditioned on its lag-1 history {Xt−1}minus
the entropy of {Xt} conditioned on both the lag-1 history {Xt−1} and {Yt−1}:

TY→X = H(Xt|Xt−1))−H(Xt|Xt−1, Yt−1)) (12)
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sometimes the argument to the entropies are made clearer by explicitly stating the dis-
tributions as we do below and see [71] for generalisations to different lags and further
conditional factors for the probability distributions. In plain language, the TE measures the
amount of information that flows from Yt−1 to Xt once the history Xt−1 is accounted for.
We implement this method for financial time series in the next section.

4.1. Analysis Using Transfer Entropy for the DJIA Market Shocks

The DJIA is a price-weighted index of equities for thirty of the most prominent
industrial firms in the United States and as such is seen as a very broad measure of the
manufacturing health of the US economy. Here, we look at this index of companies at
periods covering three market events: the Federal bailout decision of 2008, the flash crash
of 2010 and the COVID-19 crisis of 2020 together with three control dates where there are
no recent events of any significance. For each of these market events, the analysis focuses
on the day before the event, the day of the event, and the day after the event with three
thirty-minute periods (backwards from 11:00, 13:30, and 15:30).

Figure 7. Top line: the log differences in price movements is where the structural analysis of market
movements starts, here Alcoa (x in the lower diagrams) and Boeing (y in the lower diagrams).
Subsequent lines: Multiple methods have been used to calculate the co-movement relationships
between equities using price fluctuations. Originally discussed in [70].

Across each of these periods, trade data for each stock were aggregated into one
minute averages: di

t so that within a 1 min interval [t, t + 1] we simply calculate the average
price within that interval. The result is a time averaged binning of the continuous trade
data over 1 min intervals and we denote this: {di

t} = {di
1, di

2, . . . , di
T}. Subsequently, these

one minute intervals are used to calculate the TE over three 10 min periods within each
thirty minute window. Figure 7 illustrates the method and compares it to other common
methods, but in the notation we have here for two time series of equities {di

t} and {dj
t} the

TE is

Tj→i = H(p(di
t)|p(di

t−1))−H(p(di
t)|p(di

t−1), p(dj
t−1)) (13)

Note that this form is extended using the KSG (Kraskov, Stögbauer, and Grassberger)
algorithm for effectively estimating probability distributions. A full treatment of this
approach is available in An Introduction to Transfer Entropy [71].
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Finally, the statistical significance is evaluated by taking the trades within each interval
and reshuffling them 100 times to establish a surrogate test of the Transfer Entropy with
the temporal relationships randomised. This is used to estimate the probability that the
statistical significance of the obtained Transfer Entropy by reference to the randomised
samples using a 0.05 p-value test for significance.

The following heat maps show the equity pairs with statistically significant values of
TE, as measured by the software package JIDT [145]. Figure 8 shows the result of measuring
the pairwise TE between equities in the DJIA. In each of the four time periods (each having
a 3× 3 matrix of heat-maps, top-left, top-right, bottom-left, bottom right) there are three
days stacked from top to bottom (the day before the event, the day of the event, and the day
after the event) and during each of these days there are three time intervals (11:00, 13:30,
15:30). Each of the 36 heat-maps is a matrix of TE from each of the 30 equities in the DJIA
(rows) to each of the equities in the DJIA (columns). Periods with an increased occurrence
of TE are highlighted with a light blue frame. The colour of each pixel is an indication of
the size of the TE value. Periods with high maximum entropy are highlighted in red.

Figure 8. Heat maps of TE for three 30 min periods on three days around a market event. From top left
to bottom right: The Federal bailout package failure during the Global Financial Crisis, the COVID-19
crash of 2020, the flash crash on the 5 May 2010, and three control dates on which nothing happened.

Looking at the event periods in Figure 8 qualitatively, entropy transmission is compar-
atively lower the day prior to each market crisis for all three cases. However, within those
periods of fewer instances of statistically significant TE, some individual pairs produce
very high values of TE. For the COVID-19 crisis, the total count of statistically significant
values of TE is highest in the late afternoon of the day of the crisis (the ‘event’) although the
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size of the transmissions shows the largest spikes in transmission occur in the morning and
early afternoon intervals. Considering the results in Figure 8 at the three market events,
there are increased incidences of equity pairs with statistically significant levels of TE,
however there are lower values of ’peak’ TE leading to a ‘blue hue’ for those periods of
heightened activity with more active pairs but fewer high values of TE.

Looking at the count of the number of equities with high TE values during a market
event in Figure 9 shows behaviour significantly different from the control sample. In the
period at the end of the day prior to each market event, the occurrence of high values of TE
is reduced and remains lower overall than the control periods. However, within that prior
afternoon before each of the market events, there is a peak of activity when statistically
significant TE values occur more frequently. This can be observed by looking at the
maximum transfer entropy value for a period across the market events in comparison to
the control data, seen in Figure 9.

Figure 9. Heat map of the of indices with maximum transfer entropy and a p-value < 0.05 for all dates.

Looking at the distribution of TE events for equities in these periods in Figure 10,
the profile is similar. Across the day, an estimate of the distribution of counts of statistically
significant TE values (using a Gaussian kernel density estimator) gives a peak count of
transfer entropy events at any one time of twelve with a transfer entropy level of 8 to 9 bits.

However, analysis of individual periods within and around the market events in
Figure 11 provides additional characteristics which distinguish the market events from the
control windows. In particular, for the flash crash of 2010 we see a peak number of equity
pairs with entropy transfer as an event occurs but that peak is skewed to the left indicating
a decrease in the number of equity pairs with higher TE levels.

For each market event there is at least one period where the distribution has an
increase in central tendency. Kurtosis measures used to capture this property have been
found to be useful in these cases.

Note that this increase may not always result in changes in the kurtosis. This is because
kurtosis captures the extent to which the tails of a distribution contain values greater or
lesser than those that might be expected for an equivalent normal distribution. As the
number of equity pairs with statistically significant TE values does change over a market
event, an increase in the central tendency for the distribution is possible without a change
to the tails of the distribution and the attendant change in kurtosis, see Figure 12. However,
a reduction in kurtosis was observed for the population of equities undergoing transfer
entropy relative to the control data (Figure 13).
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Figure 10. Transfer entropy distributions for market events. Distribution of transfer entropy for three
market events and a control sample.

Figure 11. Transfer entropy distributions for market events. Distribution of transfer entropy for the
Flash Crash market event over three 30 min intervals over a three-day period.
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Figure 12. Heat map of the count of equities with transfer entropy with a p-value < 0.05 across
key dates.

Figure 13. Heat map of the Fisher kurtosis from the distribution of equities with transfer entropy
with a p-value < 0.05 across key dates.

4.2. Remarks

There is evidence of features in the transfer entropy activity in measures taken in
and around the market events reviewed. There are similarities that can be shown with
TE measures for the GFC, the May 2010 flash crash, and more recently the COVID-19
crisis. The most fruitful insights have been on an aggregate level rather than looking at
calculations for individual stocks. This is in line with earlier results for the Asian financial
crisis that used the same methods [70], and more generally we might expect changes in
the statistics of time-series near or at a crisis point as shown in other systems [133,143]
due to their very nature being that of a non-stationary event, so although these earlier
studies use univariate time-series it is an interesting observation to see these changes at
the multivariate and interaction level of analysis. It has also been possible to demonstrate
real difference between a control population and the data from significant market events,
immediately before, during, and after those events. The challenge now is to refine the
calculations, gleaning clearer results with new parameters, a move from more qualita-
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tive observations to quantitative analysis and the search for real predictive capability
allowing the understanding of market events through the prism of transfer entropy and
associated ideas.

5. National and International Trade in Value Added

Analysing international trade as a complex network of interactions provides useful
insights into the structure (topology) and dynamics of world trade and has been used to
map out recent changes in trade relations. In an article by Fagiolo et al. [146], network
statistics were used to determine the importance of links within the weighted global trade
network between 1981 and 2000, and it was found that the majority of links were relatively
weak although countries with more intense trade relationships are more clustered together.
In another study by Bhattacharya et al. [40], it was shown that over a 53-year period to
the year 2000 the ‘rich club’ controlling approximately half of the world’s trade has been
shrinking. In a similar vein, Maeng et al. [147] used minimum spanning trees (MSTs5) to
show that international trade networks were dominated by strong links between hubs of
larger economies such as the USA, Germany, and China. Further progress was made by
Barzel and Barabási [148] when they developed a theoretical framework (independent of
its application) that uncovered universal properties of the relationship between network
topology and network dynamics. This was the first self-consistent theory of dynamical per-
turbations in complex systems that could systematically separate out distinct contributions
from the topology and the dynamics. Andrea Aria [149] from the European Central Bank
has also explored how during the Global Financial Crisis the elasticity of goods exports
was vastly different to that of services exports. Within such a large and varied range of new
results there is considerable scope for new developments. In what follows we extend some
of these ideas to networks of ‘Trade-in-Value-Added’, a relatively uncommon measure of
traded value between industries and countries, in order to extract key qualitative features.
For more concrete policy implications of network analysis see for example the work being
carried out at INET [150].

5.1. Value-Added Trade Networks

In what follows, we look at the network topology of country and industry-based
trade using national and international Trade-in-Value-Added (TiVA) tables from 2005 and
2015 made available by the OECD. Nodes in a network can be either countries or industry
sectors, links are between nodes are directed as they can be either originating from or
terminating on a node, and in general they are not symmetric. From this we can formally
represent a network as an asymmetric square matrix where the matrix entry for row i
and column j, Mi,j, represents a transfer of value from node i to node j, where generally
Mi,j 6= Mj,i.

The most common form of trade network analysis is based on Gross Trade (see the
left hand diagram in Figure 14). In these networks, the cost of each good or service,
regardless of whether or not it is a component in the production of another good or service
(i.e., an intermediate input), is its cost of purchase which implicitly includes the cost of
the intermediate goods and services used in its production. These value chains describe
cumulative flows through trade networks but they offer no insights into how much value
intermediate goods and services provide to the final goods and services purchased by
consumers, also called final demand. Final demand plays an important part in the analysis
of the national impact of an economic shock because it is used to calculate a country’s Gross
Domestic Product (GDP), something that cannot be done directly from gross trade data.
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Figure 14. A comparison of gross trade with trade in value-added between countries, a similar
diagram holds for particular market segments as well. Example from the Reserve Bank of Australia
report [151].

To help address this, the OECD reports an alternative measure, the Trade-in-Value-
Added [152], that records how much intermediate value is provided to final (i.e., consumer)
demand for a good or service (see the right hand diagram in Figure 14) by both industry and
country, see Figure 15. The point to note is that summations of links in gross trade networks
will not reflect the true contribution of each market sector or country to GDP (compare the
two totals shown in Figure 14: $210 vs. $110). Furthermore, in the analysis of economic
shocks we need to distinguish between intermediate value production, which is related to
employment and supply, and consumer consumption, which is related to demand, as each
industry sector is made up of both intermediate products and final demand for products,
and these are not symmetrical relationships but they are jointly captured in the TiVA tables.
This is central to understanding the interconnected consequences of an uneven supply and
demand shock like COVID-19. For example, in the article by del Rio-Chanona et al. [150],
they were able to estimate

1. supply-side reductions due to the closure of non-essential industries (which can be
captured in part by the intermediate value added in TiVA tables), and

2. demand-side changes caused by individuals immediate response to the pandemic,
such as reduced demand for goods or services that are likely to place people at risk of
infection (which is captured by final demand in TiVA tables).

Figure 15. The original OECD TiVA table structure available from their website6. The final demand
data in green is used to construct the networks below.

From the matrix shown in Figure 15, we can see that the OECD tables can be split
into two parts: the internal economic structure of a country, represented by the trade
between industry sectors within each country, and the global trade in value, which we will
capture by aggregating total values traded between countries. In so doing, we can begin to
understand how both local and global value chains are impacted by economic crises.
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5.2. Features of Australia’s Internal Trade Patterns

Looking at the local value chains for Australia, we study the total contribution each
market sector makes to every other market sector by summing the entire row of each
industry (in the TiVA data tables) and in measuring the contribution made to an industry
we sum each industry’s entire column (also see Figure 16 below). This captures the total
consumption of value (final demand) of each market sector and the total production of
value (value added) of each market sector, and so we can plot the relationship between
these two aspects of a market sector by value on a single diagram, as shown in Figure 17.

Figure 16. Australia’s Domestic Industry Sensitivity Matrix, white cells represent low value entries
and brighter green entries represent higher value entries. Diagonals have been set to 1.

In Figure 17, we analyse Australia and compare it with that of the U.S. using data that
were obtained from the OECD’s TiVA database of input–output tables.7 In these plots, the
x-coordinate is the total value of final demand of value in each market sector: it is the sum
of all value contributed from other market sectors that contribute to the final demand of
each individual market sector indicated on the plot. The y-coordinate is a proxy for the
supply side of value each market sector provides to the final demand of the rest of the
economy, calculated by summing the value added by each sector to all other sectors.

In Australia, we observe that the supply and demand is reasonably well balanced:
sectors with low values of total inputs are closely related to sectors with a low value of
total outputs to the rest of the economy. On the other hand, high-valued input sectors also
have high-valued outputs (R2 = 0.6626). In these terms, supply and demand of value in
the national value chain of production are reasonably well balanced and a shock to each
sector is likely to have an equivalent impact on both the supply side and the demand side
of value. The two notable exceptions are education and defence that have a relatively high
supply side of value but a relatively low value of demand side of value.
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Figure 17. Log-Log plots of industry input versus industry output in millions of U.S. dollars for trade
in value added. Top: “from each industry” versus “to each industry” for sector within the Australian
economy. Bottom: “from each industry” versus “to each industry” sector within the U.S. economy
for comparison. The blue-dashed lines are the Log-Log regression (with equations and R2 values
shown) and the red-dashed line is inserted by hand with a gradient = 1.

The U.S. tells a very different story to Australia in terms of its internal economic
structure. There is very little relationship between the demand side of value and the supply
side of value (R2 = 0.0729), and a number of industry sectors such as entertainment,
construction (and other heavy industries), and transport have greater demand of value
than supply of value. On the other hand, real estate, wholesale services, and other service
are more similar between the two economies (once differences in the total size is accounted
for). Of course this is only the internal structure of the economies and the relationship
between industry sectors and their international trading partners, as expressed in the value
of overseas final demand and overseas contributions to internal final demand still need to
be accounted for in order to have a more complete economic picture.

5.3. Predicting the Impacts of Exogenous Shocks

Now that we have a framework for understanding the structure of trade, we want
to analyse how this structure might be impacted by exogenous shocks such as COVID-19.
The dataset is reduced to Australian-only input and output industries using a Domestic
Industry Sensitivity Matrix, see Figure 16. The matrix is a topological representation of the
trade input-output function of each industry which allows quantitative, structural analysis
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of important relationships between industries as well as the impacts of first and second-
order flow-on effects from perturbations in inputs or demand functions. For example, we
can see that Transport, Utilities, and Wholesale Trade contribute value to final demand for
almost every other sector in Australia, and Construction, Defence, and Education receive
value to their final demand from a large part of the Australian economy.

To demonstrate how the sensitivity matrix can be interpreted, we analyse the first-
order demand and supply effects of a 10% reduction in construction output. Tables 1 and 2
summarise the top 3 most-impacted industries from a notional value basis and a relative
basis (as a concentration of impact that industry has relative to trade with all other industries).

As the fall in construction affects the demand for input industries, we can analyse the
subsequent output effects of a fall in construction on industries that rely on construction as
an input.

These are just the first-order supply and demand effects of a temporary perturbation
in the demand and supply for an industry based on the internal trade of the Australian
economy. Longer-term impacts will propagate into second-order effects which can be
analysed using the sensitivity matrix.

Table 1. Summary of demand-side impacts on total industry input.

Demand Impacts

Industry Affected Notional Value
Affected Industry Affected Effect as % of

Industry Total

Other services −2850 Non-Metallic
Minerals −9%

Wholesale Trade −1667 Wood −8%
Non-Metallic

Minerals −1107 Fabricated Metals −6%

Table 2. Summary of supply-side impacts on input industry total.

Supply Impacts

Industry Affected Notional Value
Affected Industry Affected Effect as % of

Industry Total

Real Estate −2337 Real Estate −3%
Other services −533 Wood −2%

Defence −514 Utilities −1%

5.4. Features of Global Trade Patterns

The global patterns of trade between industry sectors and countries is a complex,
multiply layered network of interactions and so to simplify our analysis we only study
the total values of trade between countries. In Figure 18, we show the total trade in value
added between countries for 2005 (left) and 2015 (right) from which we can extract some
qualitative features, noting that the node representing the rest of the world (ROW) has
been held approximately constant so that we can compare relative changes in the other
countries.8 We can clearly see that the USA’s export influence has declined in these 11 years
while China has increased, matching the results of other work, for example, Deguchi
et al. [153] have reported that between 1992 to 2012 the USA decreased in global trade
authority while China has increased and recently surpassed the USA in this respect. We
can also see that the ROW has become a more central element in the network, having a
weaker relationship with the USA but a stronger role to play in trade with other region of
the world. Other features are also evident: Japan and a number of European countries have
decreased in value added trade while Korea has increased. One aspect of the structural
change in trade dynamics has been the emergence of intraregional trade and regional
supply networks, see, for example, Kelly and La Cava [151] and Zhu et al. [154]. This can
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be seen in Figure 18 where the global regions are colour coded and segmentation of the
networks by regions is apparent.

Figure 18. World trade network of value add. (Left) 2005 inputs to countries for final demand from
intermediate products. (Right) 2015 inputs to countries for final demand from intermediate products.
Country nodes are sized to represent relative differences in total exported value with the rest of the
world node (ROW) held approximately constant

5.5. Remarks

The motivation for this analysis has been to explore how a complex network-based
system can represent the characteristics of an interconnected global trade network at the
global, country, and industry levels. By probing network structures at these levels through
matrix sensitivity analysis and changing patterns in global trade, we have a method to
explore the potential demand and supply shocks that propagate through national and
global networks. Further work can extend these methods to incorporate occupations,
geographies, and work activities involved within each industry which would assist govern-
ment policymakers in crisis response, a process that has already begun with the work being
carried out at places such as INET.9 Another consideration not explored in this research is
that of the elasticity of industry supply and demand functions which would impact the
magnitude of exogenous shocks, see, for example, the work of Escaith et al. [155] on the
impact of the global financial crisis on trade networks.

6. Project Economics and the Knock-On Macro-Effects of Their Delay, Cancellation,
or Failure

Central to the economic development of a country is the delivery of innovative
products as well as the infrastructure necessary for economic expansion, such as roads
and power stations. From the view of an organisation though, projects are an important
organisational construct used to plan and control the delivery of a vast array of products
and services [124,156–158]. By definition, a project is a temporary activity undertaken
to create a unique product, service or result [159]. As temporary forms of organising,
they have the potential to generate innovative capacity and strategic flexibility [160].
Quantifying the number and scale of projects under management within a country or
across the world is difficult, but based on a study of three Western European countries
it has been shown that the degree of projectification of an economy relative to the gross
domestic product is in the order of 30% [161]. This provides us with the motivation to better
understand the effects of crises on project development and deployment in the context of
the economic growth of an economy.

Organisations vary in the degree to which they engage in and describe their work
as project focused. Yet, projects are increasingly being employed as a tool of strategic
innovation in all industries: for the delivery or development of their products or services
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for their customers, the transformation of their own structure or culture, or the design and
implementation of their strategies [124]. Broadly speaking, organisations can be separated
into at least two categories: project-based organisations and project-oriented organisations.
Furthermore, some firms offer complex and individualised solutions to their customers
that are contracted before project development starts [124]. Turner and Keegan [162] have
argued that these firms are project-based because of the customised demand of their clients.
On the other hand, some organisations choose to become project-oriented as a matter of
strategic choice [124].

Although there is no formal convention differentiating the types of projects undertaken
by these organisational typologies, there is arguably an intuitive distinction to be made.
If an organisation is project-oriented, the undertaken projects are often numerous and small
in scale (e.g., local, short-term, and lower cost). Project-based organisations, in comparison,
are often found to be involved in the delivery of large-scale investment projects with a
significant degree of complexity. If a project is sufficiently costly (>US$ 1 billion), spans
over several years, and is expected to have a significant societal or economic impact, it is
termed a megaproject.

Project-oriented organisations may have tens to hundreds (or even thousands) of
projects underway for many different clients, internal and external, at any given time. This
large number of concurrent projects presents several portfolio management challenges,
including the identification of, and intervention on projects that go off track during deliv-
ery [60]. In these portfolios, each project, and its expected outcomes, is important enough
in its own right to demand the time and resources needed to sustain it, but it is unlikely
that the delay, cancellation or failure of one or even a few projects will threaten the overall
success or survival of that firm.

The same is not true for project-based organisations, which may have just one or
two very large, long, or complex megaprojects under management at any given time.
Many other partner, supplier, and subcontractor organisations may be engaged in these
megaprojects. Therefore, the delay, cancellation, or failure of any one of these projects
may have a significant impact on the survival of the delivering organisations, and have
a much broader impact on the economies, environment, or even societies for whom they
were being delivered [163]. Flyvbjerg ([125], p. 6) defines megaprojects as being “large-
scale, complex ventures that typically cost US$1 billion or more, take many years to
develop and build, involve multiple public and private stakeholders, are transformational,
and impact millions of people”. Megaprojects are used as the preferred delivery model
for infrastructure, water and energy, mining, enterprise systems, mergers and acquisitions,
space exploration, the development of new aircraft, airports, drug development, national
broadband, and Olympic Games [125–127].

6.1. Mega-Projects and the Economy

Megaprojects facilitate the implementation of technological and organisational inno-
vations at a scale that is usually inaccessible to most organisations. Edward Merrow in
Flyvbjerg et al. [164] (p. 4) wrote:

... such large sums of money ride on the success of megaprojects that company
balance sheets and even government balance-of-payments accounts can be af-
fected for years by the outcomes. The success of these projects is so important to
their sponsors that firms and even governments can collapse when they fail.

This extreme scale is reflective of the functional complexity of megaprojects which are
themselves often initiated to facilitate the productive efficiency and delivery of many other
goods and services. It could be argued that megaprojects emerged as a managerial concept
to solve the problem of delivering such complex projects where previously existing project
management practices were found to be inadequate. As their inception, much has gone into
developing and disseminating megaproject theory in a cycle that has neo-Shumpeterian
attributes [165,166].
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Megaprojects stand out for another important reason: they are plagued with overly op-
timistic estimates of time, costs, and expected benefits [126,164]. While optimism bias is not
unique to megaprojects, given the scale and import of these projects these underestimations
have greater impact. This is well illustrated by the cities competing to hold the Olympic
Games, which have consistently underestimated and yet these errors have been repeated
every four years [126]. In their working paper, Flyvbjerg and Stewart [127] studied the cost
overruns of the Olympic Games from 1960 to 2012. They found that the Games projects
overran with 100 percent consistency. They explained that other types of megaprojects
experience cost overruns from time to time, but none were found to be this consistent.
Additionally, Flyvbjerg and Stewart [127] reported that the Games cost overruns of well
over 100 percent, was significantly larger than for other types of megaprojects including
infrastructure, construction, information, and communications technology.

Further, the environmental and social effects of megaprojects are commonly found to
have been miscalculated or not taken into account at all, and surface during construction
and operation, potentially destabilising habitats, communities and the projects them-
selves [164]. Adding to systematic underestimation, decision making around megaprojects
is further impacted by deception and delusion, in the form of strategic misrepresentation by
project promoters [164], and exacerbated by misplaced political incentives [126] or political
ambitions [167]. Referring to infrastructure megaprojects, one of the arguments commonly
made by project promoters to commit public funds is that these projects will generate
economic growth in a particular region, country or local area, but these expected regional
benefits repeatedly turn out to be unquantifiable, insignificant or even negative [164].

When faced with an economic downturn, project-based and project-oriented organisa-
tions may be impacted in quite different ways depending on the nature of their projects and
their respective products, services, and customers. In their favour, Aritua et al. [168] argue
that projects are complex adaptive systems, and as such project managers and their project
teams are always reacting to the changing environment around them. On the other hand,
some changes to a project’s environment are so large and disruptive that this more organic
response may not be able to respond adequately to protect the project and its deliverables.

6.2. COVID-19 at the Project Level

Due to their extreme scale and impact, megaprojects may play a significant role in
shaping the (socio-) economic processes of an economy. However, the reverse may also
be argued, i.e., where there is an economic disruption like that caused by the COVID-19
pandemic, this can precipitate the cancellation or pausing of megaprojects as their funding
bodies reassign previously budgeted capital to other more pressing needs with the resultant
loss or delay of innovation and value. Early investigations into the impact of COVID-19
on construction projects in the USA [169,170], UK [171], and New Zealand [172] show that
within months of the declaration of the global pandemic, construction companies were
seeing large numbers of projects cancelled or put on hold. A report from July 2020 shows
that in the United States roads and transportation projects alone, projects to the value of
US$9.6 billion had already been delayed or cancelled. As of July 2021, the US state of
California was reporting 35 cancelled construction projects (US$ 131 million), 580 delayed
projects (US$ 6.03 billion), and a further 224 (US$ 6.7 billion) that have been put on hold due
to COVID-19 [173]. Between September 2019 and 2020, construction sector employment in
the US decreased by 275,000 year on year [174], recovering from peak employment losses
between March and April 2020 of approximately one million workers [175].

This disruption to the project delivery pipeline can be expected to cause several
levels of disruption. At the local, regional, and national levels, there is the short-term
disruption to local spending on raw materials, goods and services to support projects,
and the employment of local labour. In the longer term, the discontinuance of these projects
may have far reaching impact due to the delay or non-delivery of the expected benefits
of the project. This impact could be felt in slowed or limited urban or rural development,
agricultural growth or regional tourism to name a few. In this way, the shorter term
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savings accrued through the cancellation or delay of a large infrastructure project may
be significantly outweighed by the longer term losses mentioned here. Further, there is a
significant disruption to the delivering organisations, where firms that design, plan, and
deliver these projects are faced with a severe disruption or cessation of expected cash flow,
discontinued access to the work site and to the labour needed to complete the work. At the
same time, if the project is expected to be continued in the future, these firms are faced
with several dilemmas on how to continue to make their project financing payments and
leases on critical equipment, and how to retain access to skilled labour when it is not clear
when they will be needed again.

The broad and almost simultaneous geographic impact of the pandemic has created a
unique situation where specialised firms that might ordinarily have moved resources from
one project to another when one was cancelled or delayed may now find themselves with
very few continuing projects to work with. Faced with this project pipeline contraction,
delivering organisations may decide to take protective actions by laying off employees and
other cost reduction tactics. These tactics may serve to preserve the organisation in the
short term, however, when project work eventually recovers they may find it difficult to
recover lost productivity and talent that these temporary reductions caused. The reduction
of the work force itself also has an impact on household incomes for the affected workers,
thereby affecting the national economy’s final demand just as in the case of many other
industries, see Section 5 for a more detailed analysis of the impact that job losses can have
on an economy.

As some countries begin to emerge from the grip of the pandemic, there are moves to
spur economic recovery by initiating large infrastructure projects.10 Just as the almost simul-
taneous contraction of project demand caused delivering organisations to make changes
in staffing and spending en masse, starting (or restarting) significant numbers of very
large projects over a short period will likely stress delivering organisations as they seek to
rapidly revive their projects and recover their work forces while simultaneously competing
for newly announced projects in these infrastructure spending measures. Further, this
restart may cause several other issues, such as the competition for skilled labour resources
who would ordinarily move from project to project as they asynchronously started and
ended may now be sought by many delivering organisations who are restarting projects at
a similar time.

6.3. Remarks

In this section, we have described how the impact of one or more projects being
delayed, cancelled, or failing in organisations that deliver multiple simultaneous projects
to many different customers were comparatively small as they only make up a small part
of a much larger portfolio. In this case, when one project fails, losses are somewhat easier
to accept, and now-surplus human resources may be assigned to other projects in the
portfolio. However, if a large portion of those smaller projects were being delivered to
one of the more heavily impacted sectors, a large portion of the portfolio might need to
be suspended, and may not be reinvigorated when the crisis has passed. In this case, the
an organisation may not be able to afford to support the workforce during this period of
reduced activity, which may result in layoffs and other cost reduction tactics.

The scene is different for megaprojects whose delivering organisations might have just
one or a few megaprojects underway. These megaprojects are already risky prospects, and
due to their long planning horizons and delivery timelines, they are particularly exposed to
extreme events with large negative outcomes i.e., “black swan” events [125] such as COVID-
19 or the 2008 Global Financial Crisis. Despite their devastating effect when they occur,
megaproject (and indeed smaller project) managers generally ignore the possibility of black
swan events in their planning [125]. We discussed above how big a megaproject might be,
and how reliant the delivering organisations and even governments can be on a project’s
success. Given the economic impact on the region as well as the local and global workforce,
it may not be possible to put a megaproject on hold. However, even if the project has the
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funds to proceed, it may be faced with other issues due to social distancing requirements
that affect work site staffing, or the lack of access to expert resources who may not be
able to travel to the site of a project, or shortages of raw materials as global supply chains
respond to rapidly increasing demand, stressing already compromised global value chains
(which we discuss further in Section 5). Even if a megaproject could be stopped altogether
(which is unlikely to be a contractual option [125]), in times of economic downturn the
injection of capital into the economy through local employment and other locally procured
services might provide some stability to augment national level stimulus packages.

7. Conclusions

While all economic crises are idiosyncratic in the details of their cause and effect,
the interactions between heterogeneous agents are integral to understanding the life cycle
of a crisis-instigated market failure. This point is central in both the general development
of ‘complex systems theory’, see, for example, Barzel and Barabási’s work [148] on the
interplay between topology and dynamics for perturbations to networks, as well as specifi-
cally in complexity economics, for example, Arthur’s recent overview [21]. There are two
ancillary arguments captured by the present article in support of this primary claim. First,
the particular way in which agent heterogeneity is expressed is crucial in the precipitation
of market conditions. This is because the topological structure of economic relationships is
significantly influenced by the type and degree of difference displayed by agents. Second,
in the absence of complete information, market interactions with an inter-temporal com-
ponent are significant to the precipitation of a crisis-like event. Unanticipated events that
prompt a sudden increase in agent uncertainty are essentially ‘information shocks’ that
have the potential to prompt a cascade of maladaptive agent responses that are ‘baked in’
through long term contracts and other inter-temporal mechanisms. Agent heterogeneity
and inter-temporal interaction, in other words, inform how destabilising forces unfold in a
market environment.

The article applies these interactionist principles to analyse markets at varying levels
of aggregation. At the most fine-grained level, we have the pure simulations of Section 2,
where, due to the model’s purely theoretical nature, we have complete control over the
states and interactions of the agents, essentially an entire economic reality within which
we can explore every aspect of every agent. In Section 3, we are one step removed from
the purely theoretical by introducing socio-economic data from a the Sydney housing
market while maintaining complete control over the individual agents we populate the
model with and the methods by which they interact with one another while still requiring
that their behaviour reflects observable dynamics. In the section on financial markets,
Section 4, we move even further away from the specifics of the agents, and we infer that
some form of interactions are taking place between individual agents (equity traders) in the
market and that we can measure these interaction and so infer a network from observed
price behaviours. At the most coarse-grained level of Section 5, we look at national and
international trade networks where all notion of individual agents are essentially lost and
all we have available to us are the aggregate values of final demand and value added
between market sectors and countries. In our final section, Section 6, we look at the role of
projects as institutional structures and as mechanisms of economic development, where
the relationship between multi-billion dollar projects and economic progress is writ large
and is often specifically political in the way they embody and make visible the economic
direction and ambitions of a nation.

Each of these economic layers has, to one degree or another, an underlying repre-
sentation of heterogeneous economic agents. It is also well established in the economic
literature that agent heterogeneity and inter-temporal exchange under uncertainty can
propagate economic shocks through market networks [176,177]. The intellectual fine-print
here is that these issues have historically been studied as autonomous problems, more
often than not relegated to the realm of pure theory (although the two references provided
here are notable exceptions). In cases where agent heterogeneity is considered within an
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inter-temporal exchange framework, analysis is typically limited by the methodological
constraints of analytical tractability that is often expected in orthodox economics. In the
economic discourse around crises, model tractability is a uniquely pernicious concern,
as the success of an economic model has historically been evaluated in terms of the ex-
istence of a unique stable fixed-point equilibrium [49], or now more commonly, a stable
steady state. Although it is uncertain how the institution of mainstream economics will
shift in a post-COVID world, much of the methodological conventions considered standard
economic practice developed with the belief that economies can be persistently efficient if
the appropriate market mechanisms are in place. There is reason for optimism though. In a
2021 survey of articles on the economics of COVID-19 by Padhan and Prabheesh [178], they
report a large number of studies using conventional economic methods (difference in dif-
ference, GARCH, descriptive statistics, etc.), but they also found methods similar to those
described in this article have also been used, such as Granger causality, correlation-based
minimum spanning trees, and trade network analysis (using artificial neural networks).
This indicates that along with the crisis is coming a greater diversity of approaches to
modelling and empirical analysis, which we would argue bodes well for both traditional
economics and complexity economics.

In our opinion, CE represents an epistemological maturation of economics, in that it
connects the social sciences to a broader corpus of scientific knowledge. This imposes a
sufficiently theoretically agnostic and externally accepted standard of analysis to which the
practice of economics can be measured against and verified by. As many of the method-
ological conventions within CE have been developed, applied, and verified in multiple
non-economic disciplines, CE is also methodologically consistent. The principles associ-
ated with CE methods are mutually supportive and more importantly, do not typically
contradict. As a result, the complexity framework is more data-orientated, tends to be
testable, and is also flexible relative to, for example, the axiomatic structure of general
equilibrium models. We hope and even expect that out of the current crisis will come a
broader acceptance of new economic methods and theories that will have the opportunity
to be developed and refined before the next crisis so that, when it does inevitably arrive,
we will be better prepared with sound policy advice.

Economic Research on a Global Scale

Another very important task that has been carried out during this pandemic is the
curation of data and research into central repositories for the benefit of other researchers.
One such repository of economic data relevant to COVID-19 is the Data Resources for Socio-
economic Research on COVID-19 page maintained by the European University Institute [179].
On this website can be found sections such as Macro-financial systemic impacts and links to
key databases such as the Eurostat database that gathers statistics on the economy related
to COVID-19 [180].

In addition to curating data groups, they have been curating research papers related
to the economics of the pandemic, such as the work of CEPR (Centre for Economic Policy
Research) that has gathered, vetted, and published COVID-19 economic papers since
March 2020 [181]. The variety of subject matter and methodologies covered by the different
research programs across the globe is evident in this extensive library of material and
we briefly discuss four of them here. At the level of an individual’s interaction with the
disease and policy, vaccine policy features prominently. For example, the paper by Turner
et al. [182] studies the race between the emergence of new COVID variants and the roll-out
of vaccines, estimating that

... fully vaccinating 50% of the population would have a larger effect than
simultaneously applying all forms of containment policies in their most extreme
form (closure of workplaces, public transport and schools, restrictions on travel
and gatherings and stay-at-home requirements). For a typical OECD country,
relaxing existing containment policies would be expected to raise GDP by about
4–5%.
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Stimulus packages also feature significantly in the database of articles, for example,
Falcettoni and Nygaard reviewed the literature [183] on stimulus payments in the US in
response, concluding in part that

... the poor and the young, especially those with children, should have received a
larger [economic stimulus] check, which is an allocation that would have allowed
for the same stimulus effect at half the cost of the actual allocation [as delivered
by the US government].

Another key area of research highlighted in these articles is the impact of the pandemic
on stock markets. On this topic, an article by Capelle-Blancard and Desroziers [184] showed
a number of interesting results regarding the extended evolution of market response to the
pandemic and the heterogeneity of its impact across 43 economies (dates in 2020):

1. Stock markets initially ignored the pandemic (until 21 February), before reacted [sic]
strongly to the growing number of infected people (23 February to 20 March), while
volatility surged and concerns about the pandemic arose; following the intervention
of central banks (23 March to 30 April), however, shareholders no longer seemed
troubled by news of the health crisis, and prices rebound all around the world.

2. Country-specific characteristics appear to have had no influence on stock market re-
sponse.

3. Investors were sensitive to the number of COVID-19 cases in neighbouring but mostly
wealthy countries.

4. Credit facilities and government guarantees, lower policy interest rates, and lockdown
measures mitigated the decline in domestic stock prices

A final common theme reported in the CEPR database is the work on the economic
impact of lockdowns. In a paper by Caselli et al. [185], they reported that their is a dual
mechanism in play over the first seven months of the pandemic, one due to state enforced
lockdowns and the other through voluntary social isolation in which people acted of their
own accord to help mitigate the effects of social interaction on the spread of the disease.
Further, they were able to estimate the differences between policies:

We also show that lockdowns can substantially reduce COVID-19 infections,
especially if they are introduced early in a country’s epidemic. Despite involving
short-term economic costs, lockdowns may thus pave the way to a faster recovery
by containing the spread of the virus and reducing voluntary social distancing.
[They were also able to show that the effect] ... entail[s] decreasing marginal
economic costs but increasing marginal benefits in reducing infections.

Results such as these have a clear interaction between government economic policy
and public health, a rich interaction that helps clarify many of the difficult public policy
debates that often pit economic and health factors against one another.

As a final point, we consider the potential for long term economic impacts of extended
health issues that are the result of so-called ‘long COVID’ [186]. There has been a growing
awareness of the long-term negative health outcomes caused by a cluster of medical
conditions such as shortness of breath, muscle aches and pains, and overall tiredness. These
chronic physical manifestations of contracting COVID-19 may result in long-term reduction
in individual financial stability due to the potential for job loss, long-term disability,
and the increased burden of medical costs. This reduction in economic health alongside
the reduction in overall quality of life may be one of the greatest long-term economic and
social pitfalls of chronic COVID-19-related illnesses. It is also important to note another,
less well-studied, impact of long COVID, the long-lasting cognitive deficits that come
from even relatively mild symptoms of the disease. In a recent study by Hampshire
et al. [187], in which 81,337 UK residents carried out a cognitive test and then reported on
their COVID-19 status (asymptomatic and not biologically tested, suspected infected but
not biologically tested, infected and confirmed with biological testing, admitted to hospital
but not ventilated, admitted to hospital and ventilated), they found that nearly 25% of
people who had contracted the disease suffered from at least some form of long COVID.
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While this is concerning enough, they further showed that of those patients that were not
admitted to hospital but were biologically confirmed to have had the disease the cognitive
impact was the equivalent to that of having had a stroke and being admitted to hospital and
ventilated was equivalent to a −7 IQ point impairment. While these are worrying results,
it is slightly less worrying if the disease is confined predominantly to older members of the
population where training, experience, and financial and professional stability may provide
some reduction in the overall impact on quality of life and long-term financial outcomes,
but it is less reassuring for younger people who are more at risk from recent variants of
COVID-19. This risk led US President Joe Biden on June 18 (2021) to urge young people to
be vaccinated to protect them against the new delta variant [188]. The lifetime economic
and total quality of life impact of COVID-19 is not yet well understood, but for younger
people the lifetime loss of earning power and productive ability is much greater than older
patients, a fact that may be the cause of the most long lasting effects of this pandemic.

What we have sought to show with these case studies are some of the main effects and
spillovers of a crisis and that this research is also part of a larger, diverse, and significant
push to understand the global impacts of the COVID-19 pandemic. One of the points we
have particularly emphasised is that, in response to crises such as this, the mainstream view
of ‘economic agents’ needs to be broadened to fully account for the individual’s biological,
psychological, and sociological characteristics that underpin their fundamentally non-
stationary, dynamic nature, and that, as such, economics when it is most needed during a
crisis needs to account for society’s distinctly non-equilibrium nature. This is almost by
definition an ‘out of sample’ task with significant spillover effects: there is no historical
context to readily draw upon and one country’s changing health policy can be another
country’s economic crisis. Once we take these issues seriously and begin to put more
significant resources to the task of understanding the complexity of our socio-economic
systems there is a great deal of room for us to improve our ability to respond to future
economic developments, both in and out of a crisis.
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Notes
1 https://atlas.cid.harvard.edu, accessed on 13 October 2021.
2 https://oec.world/en/resources/about, accessed on 13 October 2021.
3 Also see Australian households and businesses amass $200 billion in savings during COVID-19 pandemic 9 News, 14 January 2021, and

COVID-19 hit many Australians hard, but there were winners in the pandemic economy, ABC, 23 February 2021.
4 “Australia’s house prices soar to record highs over 2020”, https://www.domain.com.au/news/australias-house-prices-soar-to-

record-highs-over-2020-1020487/, accessed on 13 October 2021.
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https://www.domain.com.au/news/australias-house-prices-soar-to-record-highs-over-2020-1020487/
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5 A method for simplifying networks by using the minimum number of maximally weighted edges needed to connect all nodes
without forming loops.

6 https://www.oecd.org/sti/ind/tiva/TiVA2018_Indicators_Guide.pdf, accessed on 13 October 2021.
7 https://www.oecd.org/sti/ind/measuring-trade-in-value-added.htm, accessed on 13 October 2021.
8 China’s and Mexico’s sub-classifications are aggregated (i.e., CNH, CN1, CN2, etc.).
9 See their website: https://covid.econ.cam.ac.uk, accessed on 13 October 2021.

10 https://www.reuters.com/world/us/us-house-approves-715-bln-infrastructure-bill-2021-07-01/, accessed on 13 October 2021.
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