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Abstract: This paper describes an approach to blend several qualitative and quantitative methods
to establish the boundaries of complex systems in terms of uncontrollable, non-numeric variables.
Decision makers increasingly encounter layered, multidimensional, interconnected issues that contain
unknown unknowns, vast uncertainties, and ill-defined lines of demarcation between the beginning
and the end of the problem. The inexactness of boundaries in a systems problem is a result of not
knowing important variables, existence of uncontrollable variables, and near-uncountable significant
interactions among the variables. Furthermore, complexities and systems challenges arise from
unexpected emergent behavior(s) that are often the primary concerns of systems engineers. The
ability to investigate uncontrollable variables and their interactions with the system of interest
is a critical step for bounding the system problem and defining the solution space. Thus, this
paper focuses on developing a means for systematically examining these variables. By incorporating
scenario-based computer simulations, scenario discretization, and customized designs of experiments,
the authors offer systems engineers and scientists an approach for defining a viable solution space of
a complex problem by developing constraint equations from uncontrollable, non-numeric variables.

Keywords: scenario methodologies; computer simulation; design of experiments; mixed methods

1. Introduction
1.1. Challenges for Bounding the Engineering Problem

In systems engineering, optimization, or other closely related fields, bounding the
system of interest or problem is the first step for defining and understanding the solution
space. If the boundary is unknown, then the system is insufficiently defined, thereby
constituting an ill-defined engineering problem. Consequently, resultant solutions are
either incorrect, illogical, possibly contain unintended consequences, or suffer from some
or all these traits [1]. To bound a system or problem means to understand the limitations,
objectives, variables, and important quantities that are relevant to the problem and potential
solution(s). While these necessary conditions for solving a system problem are readily
apparent, inadequate problem definition is a common reason for failure in engineered or
complex systems [2] and leads to ineffective or negligible system solutions [3].

Characteristics of systems engineering problems reside in three engineering elements:
specifications, variables, and knowledge about the problem [4]. The most difficult of
these elements are variables that the engineer does not or cannot control. Therefore,
efforts to understand how uncontrollable variables may affect the system solution is a
primary concern and an area of continued study. This paper offers a method to establish
boundaries of a systems problem in terms of uncontrollable variables. This approach can
aid practitioners define the solution space and derive credible solutions.

1.2. An Overview of System Boundaries and Constraints

A boundary separates a system of interest from the environment [5]. The system of
interest is the complete entity which is the focus of the problem [6]. However, operational
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factors that directly influence or interact with the system must also be considered. We
further specify that the system of interest is complex as defined by its multidisciplinary
nature and non-linearity as the result of emergent behaviors from many interactions among
components or system variables [6]. The system boundary defines what features belong
to the system, as well as variables that must be in the calculus for developing a system
solution. All else is the environment as depicted in Figure 1. Once drawn, the boundary
outlines the system of interest and its area of concern, scopes the problem, establishes
interface conditions, and most importantly, highlights the solutions space [7]. This final
concept for the system of interest and the surrounding boundary are where the work in
this paper is most applicable.
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Figure 1. System of interest and factors for consideration.

After establishing the system domain, constraints further reduce possible solutions. A
constraint is a restriction, limit, or regulation imposed on a product, project, or process. [8].
Constraints and boundaries are related where a constraint necessarily imposes a boundary.
In turn, boundaries are the rules that facilitate, constrain and\or limit the interface between
two components.

For illustrative purposes only, we present an optimization problem that is solved
through linear programming. The problem is defined in terms of a set of linear constraint
equations that outline the feasible region or solution space [9]. Additionally, the objective
function is a linear equation and represents the value to be optimized. The goal of the
linear program is to find the values for the decision variables such that all constraints are
met, and the objective function is maximized or minimized [9].

Figure 2 is a simple, bounded, two-variable linear program with two constraints
and a non-negativity requirement. The set of constraint equations can be represented
in several ways. A graphical representation is possible but can become difficult as the
number of constraints increases, and nearly impossible when a large number of decision
variables are involved [9]. The same constraint equations may be represented as a matrix,
where a solution exists if the constraints are sufficient to describe the feasible region. Yet,
improperly formulating the constraint equations, such as reversing the inequality sign in
the first constraint results in an unbounded problem with infinite solutions. Additionally,
an underdetermined matrix will have no solution or infinite solutions because there are
insufficient equations to constrain the problem.
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Figure 2. Several ways to represent constraints that define the feasible region in a linear programming problem.

The concepts from this mathematical programming example are relevant to systems
engineering problems which are often characterized by numerous decision variables and
constraints [2]. This paper offers a means to mathematically formulate uncontrollable,
non-numeric variables in quantitative terms. During this effort, the engineer is charged
with balancing the need to sufficiently bound the problem, while keeping the set of possible
solutions as large as possible. The results of this study can augment the development of
mathematical expressions that help define the total solution space. However, this work
does not claim to develop the total set of constraint equations.

2. Summary of Techniques to Aid Defining System Boundaries

Often, when developing approaches to difficult problems, it is necessary to combine
different methods [10,11]. This paper suggests combining several ideas, including gener-
alized morphological analysis, scenario-based computer simulations, and experimental
designs. The following sections provide an overview of these methods, describes an ap-
proach to discretize the scenario space, and presents customized design of experiments for
computer simulations.

2.1. Generalized Morphological Analysis

Since the 1960s, a library of methods has been developed to frame extremely difficult
problems in a manner that enables the interested parties to formulate measurable, alterna-
tive solutions. Interestingly, the characteristics in many of these challenging problems are
commonly seen in complex systems problems, which involve but are not limited to numer-
ous variables, many unknowns, and non-numeric factors. In operations research terms,
these types of problems have unbounded feasible regions and are thereby unsolvable [12].

Defining a problem space from which a solution can be derived requires a systematic
approach. From 1930 through the 1960s, Swiss-American astrophysicist and astronomer,
Dr. Fritz Zwicky [13], introduced generalized morphological analysis (GMA) as a new
design methodology [14]. Morphological analysis is an approach for structuring nonlin-
ear, difficult to quantify problems that contain many uncertainties and unknowns. The
core of GMA is to identify the set of relationships among the elements of the problem
set. Each combination of relationships is a configuration, and a potential alternative or
solution for the problem. After its introduction, it became clear that GMA was a flexible
approach that had many applications, including futures studies, policy development, and
engineering [15,16].

Zwicky [13] had first applied GMA to generate designs for an improved telescope.
Regardless of subject, Zwicky’s approach was to enumerate all possible ways to explain a
phenomenon and then list all options to gather information about it. When all possibilities
are presented, only then would a reasonable course of action be selected. His legacy has led
to morphological boxes that systems engineers have used to generate alternatives during a
system’s conceptual design [17]. For instance, an engineer would list all functions that a
system must perform in the columns of a worksheet. Under each function would be an
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itemization of possible components that actually perform the function. A single selection
from each column would be one alternative or course of action. A simplified example for
an information system is in Table 1. The information system has three main functions:
enter information, process information, and display information. Each column has possible
physical components to perform that function. The group of shaded boxes in Table 1 is one
instantiation of a computer system to which information is entered via a keyboard, uses a
centralized processor, and displays information through a monitor.

Table 1. Example of a morphological box for an information system.

Enter Information Process Information Display Information

Keyboard Centralized Processor Printer
External Drive Distributed Processor Monitor

Microphone Speakers
External Drive

The combinatorial problem is clear. There are 3 × 2 × 4 = 25 alternatives in just this
simple example. As the number of possible components increases, the alternatives grow
exponentially. There is similarity with a design of experiments which specifically arranges
the combination of each value within the column, such that the mathematical structure
of the results support statistical analysis. Later in the paper, we discuss an approach for
efficiently exploring the set of scenarios or solution space through customized design of
experiments.

Efficiency for exploring possible scenarios is important. At the core of GMA are
judgement and subject matter expertise to identify the parameters or dimensionality
of the problem. Each combination of parameter values creates a scenario. Depending
on the complexity of the problem, the required diversity of participants who create the
scenarios, and the differing opinions of important factors to the problem can result in near-
uncountable situations. For instance, drafting environmental policy requires numerous
stakeholders, sources, and research disciplines including sociology, economics, and law [18].
It is not too difficult to imagine the dimensional challenges of this problem [19].

2.2. Scenario-Based Computer Simulations

The large number of possible scenarios drives the use of computer simulations [19,20].
Primarily used to collect quantitative data for analysis, computer simulations are important
for understanding nonlinear problems. As computational power increases and technology
improves, the rise in computer-aided approaches for problem solving also increases and
has in fact become the method of first resort [21]. The following examples show how
computer models have been instrumental for exploring and developing solutions for a
multitude of issues, to include social, engineering, and military domains.

Non-military applications of computer-aided scenarios have become commonplace.
To address the issue of eutrophication, a team of scientists and policy makers held a series
of workshops to identify possible forestry policies [18]. The team implemented a problem
structuring approach that used Quasta a computer software (http://www.quasta.nl/) for
cognitive mapping and other computer tools for environmental management and planning.
The study applied Quasta to analyze cognitive maps of an environmental policy problem
and identify critical scenario factors that influenced decision making.

More recently, scientists are developing options for more efficient energy storage.
Girouard, Pollman, and Hernandez [22] used an industrial process modeling and sim-
ulation package, to model and examine a building-scale cryogenic system based on the
Linde-Hampson cycle. In this work, the team modeled a Liquid Air Energy Storage (LAES)
system and created new situations based on a small set of factors: supply requirements
and design parameters.

These examples describe how computer algorithms are valuable in structuring the
problem set by identifying critical parameters to potential solutions. Additionally, these

http://www.quasta.nl/
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previous examples include controllable features of the system of interest, as in the LAES
example. The forestry example highlights factors not in the engineer’s control such as
existing policies, regulations, or even the physical location of solution implementation.

Even with computer simulation, the sheer number of future scenarios makes it im-
practical to investigate each possibility [19]. Therefore, we employ efficient designs of
experiments (DOE) for computer simulations, which enables researchers to examine a
much smaller subset of the scenarios to develop a global solution. However, the benefits of
using DOE cannot be fully realized unless the scenario factor values have an acceptable,
ordered hierarchy.

2.3. Scenarios and Discretization of the Scenario Space

Scenario methodologies are qualitative methods that aim to reduce uncertainties by
positing what “may be” as actual occurrences and studying the outcomes [23–25]. An
understanding of a scenario provides context for discretizing and ordering the scenario
factors, thereby enabling the use of DOE.

2.3.1. Generating Scenarios

Scenario development demands that participants be highly competent about the
topic being investigated, knowledge of current strategies, in-depth understanding of the
workforce and processes, as well as potential antagonists [26]. We propose to describe the
scenario in terms of the nature of a wargame [27].

The conditions of a scenario are either controllable by humans, such as technolo-
gies and organizational structures, or uncontrollable, such as the weather, terrain, and
temperature of the operational landscape. To illustrate the ideas presented in this paper,
we specifically list uncontrollable, non-numeric scenario factors for military studies. For
instance, knowledgeable participants about military maneuver would specify different
terrain types.

2.3.2. Ranking the Non-Numeric Values of Scenario Factors

Non-numeric, unordered values greatly diminish the advantage of applying efficient
DOE, i.e., the value combinations would be arbitrary and have no real meaning for se-
lecting an appropriate subset of combinations that will mathematically support a global
optimum [28]. At times, subject matter experts (SME) assign a rank order based on direct
elicitation, which simply places each factor value on a line from 1 to 100. However, direct
elicitation is replete with flaws for capturing the actual order of importance [29]. We select
two techniques because of their applicability to different study conditions: (1) Analytic
Hierarchical Process and (2) Failure Mode, Effects, and Criticality Analysis.

The Analytical Hierarchy Process (AHP) develops a hierarchy for a set of elements [30].
The first step identifies the values that the non-numeric factor can assume. The second
step calls on the expertise of the participants to assign an AHP score for each pairwise
comparison of values within each factor [31]. Each paired comparison between two
values results in exactly one of several conclusions from Table 2, which is adapted from
Taderhoost’s original work [31].

Expert participants determine the conclusion for each pairwise comparison of values.
For instance, a score of “5” in comparing B with D means that B is “Strongly Important”
over D. Reciprocally, a comparison of D with B results in a score of “1/5” with an inverse
meaning to a score of “5.” The complete set of pairwise comparisons is designated as
matrix A.

A consistency check of the resultant pairwise comparison matrix is important to
validate the prioritization. Consistency refers to the experts’ logical assignment of the
scores, i.e., if Mountain is preferred over Desert and Jungle is preferred over Mountain,
then Jungle should be preferred over Desert. Eigenvector computations determine the
consistency of matrix A [30,32]. The consistency ratio is calculated from the maximum
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Eigen value (λmax) of matrix A, and the random index (RI) obtained from Saaty’s [30] tables.
If λmax/RI is lower than 0.10, then the resulting rankings are reasonable [30].

Table 2. AHP scores for pairwise comparison of importance, adapted from Taderhoost [31].

Score for AHP Comparative Importance

1 Equally Important
2 Equally to Moderately Important
3 Moderately Important
4 Moderately to Strongly Important
5 Strongly Important
6 Strongly to Very Strongly Important
7 Very Strongly Important
8 Very Strongly to Extremely Important
9 Extremely Important

We discuss the AHP with an example that considers a scenario to test a new, indi-
vidually carried radio system. SME develop a comparison matrix, A (bordered, shaded
area), for values that the scenario factor, operational terrain, can assume (Table 3). Eigen
value computations is left to the reader [32]. The computed consistency ratio from matrix
A in this example is <0.10 and is therefore logically consistent [30]. The sum score of each
column determines how to rank each factor value as shown in the last row of Table 3. The
final rankings (high is best or most important) suggest that urban is the most important
terrain type to test an individually carried radio system.

Table 3. Example comparison matrix for a scenario’s operational terrain.

Column Compared with Row Desert Mountain Jungle Urban
Desert 1 7 5 9
Mountain 1/7 1 1/3 4
Jungle 1/5 3 1 7
Urban 1/9 1/4 1/7 1
Summed Scores 1.45 11.25 6.48 21.00
Final Ranking (High is Best) 1 3 2 4

AHP is useful for rank ordering a relatively small number (<10) of non-numeric factor
values. However, pairwise comparisons of more than nine elements are impractical. The
following section is an approach for comparing more than 10 elements.

Failure mode, effects, and criticality analysis (FMECA) is a second approach to rank
order non-numeric factor values based on their criticality to stressing the system. This
approach is adapted from system reliability analysis. FMECA is a design technique to study
how subsystem failures may affect the rest of the system [33]. Determining the criticality of
any specific subsystem failure consists of three scores: severity, frequency, and detection
probability. Severity is the seriousness of the failure’s impact on the system. Frequency is
how often the failure occurs, regardless of manner. Detection probability is the likelihood
that the failure will be detected before it has catastrophic effects on the system. For the
purposes of this work, the detection score is not applicable and is therefore shaded in gray.
Each element of an FMECA score ranges from 1–10 (Table 4). A failure’s criticality score is
the product of all three scores. In this paper, only Severity and Frequency are multiplied.
We submit that the criticality score of a factor value for achieving the goals of a study is a
credible means to rank order values.
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Table 4. FMECA scoring levels.

Severity Score Frequency Score Detection Score
Minor 1 Minor 1 Very High 1–2
Low 2–3 Low 2–3 High 3–4
Moderate 4–6 Moderate 4–6 Moderate 5–6
High 7–8 High 7–8 Low 7–8
Very High 9–10 Very High 9–10 Very Low 9

Absolute Certainty of #
Detections 10

We again consider the factor values of the operational terrain: desert, mountain,
jungle, or urban. The expert participants review the objectives for testing an individually
carried radio and score the factor’s value on the ability to stress the radio. For instance,
the experts may consider that “urban terrain” has a highly negative impact (stress) on the
radio transmission, thereby assigning a score of 8 for severity. If the concept of operations
for the radio indicates that the radio will routinely be used in an urban environment, then
the experts may rate frequency a 10. Therefore, the criticality score for urban is 8 × 10 = 80.
Criticality scores for the remaining terrain values may result in the rankings shown in
Table 5.

Table 5. Criticality scores of terrain values for testing the individually carried radio.

Operational Terrain Severity Frequency Criticality Score Rank

Desert 4 5 20 1
Mountain 7 6 42 2
Jungle 8 6 48 3
Urban 8 10 80 4

Rank ordering the factor values enables the use of DOE. After discretizing the factor
values with either AHP or FMECA, expert participants may treat the factor as numeric
and frame the problem space into unique combinations of the factor values. It is possible
to rank order a magnitude more factor values with FMECA than AHP. Consequently, the
number of future scenarios also increases, and the role of an efficient DOE becomes clear.

2.3.3. Identifying an Efficient Set of Scenario Designs

The diversity of scenarios that can be imagined range from those that the social sciences
community would create, as well as scenarios formulated by the math and engineering
sciences. This combinatorial issue is the same challenge for many experimenters [18]. In
recent decades, there has been great advances in improving DOE to efficiently examine
complex problems. Efficiency in DOE refers to minimizing the design points (scenarios)
to explore while gaining the most information [34]. Foremost in these new experimental
designs are nearly orthogonal Latin hypercubes (NOLH).

As Hernandez, Lucas, and Carlyle [35] explain, when using lattice sampling [36], a
DOE with k factors and n values for each factor, results in a Latin hypercube that is n
x k in size. The factor values in the lattice are 1 to n and basically act as ordered ranks.
The number of possible scenarios is (n!)k−1. However, the new methods for constructing
experimental designs can specify a much smaller subset of design points that will gain the
most information from the problem space. For instance, Cioppa and Lucas [28] show that
an NOLH design can efficiently examine seven factors, each assuming 17 different values.

Consider three (3) critical scenario factors: terrain, friendly organizational makeup,
and enemy rules of engagement. Notionally, the scenarios are being developed to test a
new motorized vehicle. Table 6 is an NOLH design to examine three factors, each able to
assume eight different values [35]. Each row is a design combination for a new scenario.
In viewing the DOE structure, we can see the relationship with Zwicky’s morphological
box [13,14,17]. Experimenters replace the rank shown in the design with the appropriate
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factor value to complete the design matrix for the simulation runs. For instance, if k1 is
Terrain, subject matter experts may rank the factor values from most passable, rank #1,
to least passable, rank #8. The assigned ranks could be: 1 = Open, 2 = Oasis, 3 = Desert,
4 = Steppe, 5 = Tundra, 6 = Forest, 7 = Hill, and 8 = Swamp. Thus, creating a scenario
within a “Swamp” will likely stress the motorized vehicle the most.

Table 6. An efficient 3 × 8 experimental design [35].

Scenario
Scenario Factors (k from 1 to 3)

k1 k2 k3

Scenario 1 1 2 1
Scenario 2 6 7 3
Scenario 3 2 5 6
Scenario 4 4 8 4
Scenario 5 3 6 7
Scenario 6 8 4 5
Scenario 7 7 3 2
Scenario 8 5 1 8

3. Deriving Metamodels from Scenario-Based Computer Experimentation

The series of techniques that have been discussed may be employed to develop math-
ematical equations for the uncontrollable variables, which can then be used to assist in
defining the solution space of a complex systems problem. The construction of these
scenarios and the ensuing computer runs provide data that supports statistical analyses to
determine the variables or factors with the most impact on a measure of interest. Impor-
tantly, the DOE are highly effective in identifying critical interactions among the factors.
These interactions track the emergent behaviors that the system exhibits and to which
systems engineers pay particular attention in developing solutions. Furthermore, experi-
mentation provides an ability to identify scenario conditions that maximize or minimize a
measure of interest [37].

Implementing the DOE-enhanced scenarios in a computer simulation results in meta-
models for the solution space of the problem [38]. The metamodel is a mathematical
expression for the response surface of the solution space created from the variables. In
computer simulations, a mathematical expression from the results of a simulation is a
metamodel since the simulation is already a model or abstract of real things [38]. Figure 3
illustrates the response surface for a measure of interest, f(X), that is affected by two
variables, X1 and X2.
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Each measure of interest in the problem has a metamodel. Ergo, there is an equation
based on significant variables (controllable and uncontrollable) for each measure. The
equations would take a similar form to Equation (1), where M1 is the measure of interest
and the significant variables are x and k. The coefficients (β) are estimates for the degree
that the variables x, k, and the interaction, xk, influences the behavior of M1. We note that
the resultant equation from an experimental design is a linear equation and can be shown
to have an optimal solution [39].

M1 = β̂0 + β̂1x−2/3 + β̂2k−1/3 + β̂3(xk)−2/3 (1)

The objective function could be an aggregate of the mathematical transformation
of each measure of interest, along with any other considerations in the problem. Each
metamodel derived from experimentation would be one constraint equation. These con-
straint equations would be added to previous constraints about the problem, along with
the objective function. The idea is to bound the problem such that the feasible region is
formed as the example in Figure 2. The overall result is a set of linear constraint equations,
which optimization techniques would aim to solve [3,12,15].

As a point of emphasis, discretizing the scenario factors in the manner shown in this
paper provides an advantage for defining the solution space. A linear program (LP) is an
optimization routine that consists only of continuous variables and linear equations. LPs
are proven to have an optimal solution [12].

Transforming the non-linear nature of the theoretical response surface can be of
concern. Mayhap the set of linear equations have not accurately captured the feasible
region. Long and continued studies in LP provide assurance that a solution from LP
approximation of the solution space is credible and has utility beyond a singular answer.
As Bazaraa et al. [12] explain, linear programming is one of the most extensively used
mathematical models to solve a wide array of problems. In many instances, LP is applied
to non-linear problems through a sequence of piece-wise linear equations. It is an essential
tool for many complex problems [12,40].

When some variables in an LP are discrete or integer, the optimization routine is a
mixed integer program (MIP). A MIP is a subset of LP and also proven to have an optimal
solution but is restrictive in the solution because of the requirement to have some variables
assume only integer values. When the problem has only integer variables, it is an integer
program (IP) and comes with its inherent restrictions. Still more restrictive are binary
integer programs (BIP) where the variables may take only the values of zero or one. For
a BIP, the solution space is much smaller than an LP [40]. In short, as restrictions on the
variables increase, the solution space decreases.

To be considered in a mathematical equation, non-numeric scenario factors are trans-
formed into binary variables, thus considerably shrinking the LP solution space. For
instance, consider “Desert” as a value for the operational terrain factor. To mathematically
include it in the scenario, a “dummy variable” is used to designate if the factor value is
present, i.e., “Desert” would assume a value of one and all other dummy variables for
the factor would be assigned a value of zero [41]. On the other hand, discretizing the
operational terrain factor values in rank order results in an IP or MIP, which is a larger
feasible region than one from a BIP [40]. Avoiding a BIP supports the need to bound the
problem while keeping the solution space as large as possible.

4. Steps for Defining Boundaries

The series of methods from the previous section outlines a systematic process to define
the critical, uncontrollable, non-numeric variables in a complex system [10,11]. Establishing
the important factors of the problem and expressing them within a set of linear equations
moves toward a completely defined solution space.
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4.1. Boundary Development for a Complex Systems Problem

The sequence of activities in Figure 4 for defining the boundaries of a complex system
of interest is a notional approach that a practitioner can take. The authors recognize that
some steps such as developing measures consist of many well-known methods. It is not the
authors’ intent to dictate how each step in Figure 4 is accomplished. After gaining an in-
depth understanding of the problem, the scientist or engineer identifies relevant measures
and defines a finite, but not necessarily small set of scenario factors or variables. As this
paper emphasizes, uncontrollable, non-numeric variables are the focus of the techniques
previously described. Next, the values that the variables can assume are established. If a
variable is non-numeric, the authors have introduced a novel use of AHP or FMECA to
discretize the values. To reduce the number of scenarios to explore, the scientist would
employ an efficient experimental design in a computer simulation. Examination of the
problem space for each measure of interest enables analysts to use output data to develop
a linear expression for each measure.

Systems 2021, 9, x FOR PEER REVIEW  10  of  14 
 

 

factor would be assigned a value of zero [41]. On the other hand, discretizing the opera‐

tional terrain factor values in rank order results in an IP or MIP, which is a larger feasible 

region than one from a BIP [40]. Avoiding a BIP supports the need to bound the problem 

while keeping the solution space as large as possible. 

4. Steps for Defining Boundaries 

The series of methods from the previous section outlines a systematic process to de‐

fine the critical, uncontrollable, non‐numeric variables in a complex system [10,11]. Estab‐

lishing the important factors of the problem and expressing them within a set of linear 

equations moves toward a completely defined solution space. 

4.1. Boundary Development for a Complex Systems Problem 

The sequence of activities in Figure 4 for defining the boundaries of a complex system 

of interest is a notional approach that a practitioner can take. The authors recognize that 

some steps such as developing measures consist of many well‐known methods. It is not 

the authors’ intent to dictate how each step in Figure 4 is accomplished. After gaining an 

in‐depth  understanding  of  the  problem,  the  scientist  or  engineer  identifies  relevant 

measures and defines a finite, but not necessarily small set of scenario factors or variables. 

As this paper emphasizes, uncontrollable, non‐numeric variables are the focus of the tech‐

niques previously described. Next,  the values  that  the variables can assume are estab‐

lished. If a variable is non‐numeric, the authors have introduced a novel use of AHP or 

FMECA to discretize the values. To reduce the number of scenarios to explore, the scientist 

would employ an efficient experimental design in a computer simulation. Examination of 

the problem space for each measure of interest enables analysts to use output data to de‐

velop a linear expression for each measure. 

The authors recognize that Step 9, formulating a complete optimization problem, re‐

quires work in understanding all elements of the problem. Constraint equations and the 

objective  function  from Steps 1–8 are examined by  the scientists and analysts  for  their 

utility in the overall problem. The approach that has been discussed focused on the vari‐

ables that are difficult to quantify but are significant in solution development. By devel‐

oping a means to create mathematical expressions from uncontrollable scenario factors, 

the scientist can help define the full problem from which credible solutions may be found. 

 

Figure 4. Capturing the steps to formulate the boundaries of a systems problem. 

   

DRIVERS

2. Define important variables 
(controllable and 

uncontrollable) for the study

9. Formulate a bounded, 
system of equations for 

the problem

5. Create a customized DOE, 
www.nps.edu/web/seed

4. Use AHP or FMECA to
rank order values of non-

numeric variables

7. For each measure, analyze output 
data to develop an expression

6. Setup computer 
simulation to run DOE 

for each measure of 
interest

8. Develop objective
function that includes

all measures

3. Determine possible 
values that the variables 

can assume

1. Develop relevant
measures for the study

Figure 4. Capturing the steps to formulate the boundaries of a systems problem.

The authors recognize that Step 9, formulating a complete optimization problem,
requires work in understanding all elements of the problem. Constraint equations and the
objective function from Steps 1–8 are examined by the scientists and analysts for their utility
in the overall problem. The approach that has been discussed focused on the variables that
are difficult to quantify but are significant in solution development. By developing a means
to create mathematical expressions from uncontrollable scenario factors, the scientist can
help define the full problem from which credible solutions may be found.

4.2. Applying Steps 1 through 5—Boundary Development for a Complex Systems Problem

We illustrate how a subset of the steps in the previous approach may be applied to the
study of a LAES system [22]. The initial LAES work involved expert participants who had
established the study objectives, measures, and variables of interest in the problem. We
begin at Step 4. Among the variables are two non-numeric scenario factors. For designing
a LAES system, engineers must consider the geographical areas for the storage system
and the sophistication of technology in the available infrastructure. The geographical area
limits the type of technology that can be applied. For instance, hydro powered technologies
benefit from areas with elevation changes. The level of sophistication in the infrastructure
can dictate the solutions for a storage system. Additionally, a pipeline infrastructure
benefits gas generation, while geothermal technologies require several layers of conversion
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and transfer from the ground to be used on the expansion side of the LAES system. There
is a need to discretize the scenario space with these two scenario factors.

The values that each factor can assume follow: Geography—Flat Terrain, Rolling Ter-
rain, or High Altitude (Mountainous); Technology—Hydro, Gas Powered, or Geothermal.
We rank the values for the factors using AHP as Taherdoost [31] describes. Table 7 presents
the pairwise matrix for Technology. The total scores for each value level of Technology
show that the rank order from best to worst is Gas, Hydro, and Geothermal. Similarly,
Geography’s rank order is Rolling Terrain, Flat Terrain, and High Altitude from best to
worst, respectively, and where a score of 3 is best.

Table 7. Comparison matrix for technology values in a LAES system design environment.

Column Compared with Row. Hydro Gas Geothermal

Hydro 1 5 1/3
Gas 1/5 1 1/7
Geothermal 3 7 1

Total Column Score 4.20 13.00 1.48
Rank Order (high is best) 2 3 1

Table 8 presents a full factorial experimental design [41] for the possible conditions in
which participants would develop a design solution for a LAES system. An examination
by the expert participants for the feasibility of the scenarios could find that Scenario 5 is not
plausible since Hydro systems are more advantageous in terrain with elevation changes.
However, the participants may still wish to consider such an environment if they would
like to explore using water tower generation technologies. The expert participants may
also identify Scenario 1 as the least desirable situation to develop a LAES system design
and decide to remove the scenario for consideration. Based on their expert judgment,
the panel may include or exclude any scenario. Analyses may also show that there is no
significant interaction between Technology and Geography for this problem. Therefore,
this interaction term would not be in a constraint equation.

Table 8. An experimental design for possible scenarios to design a LAES system.

Scenario
Scenario Factors for LAES System Design

Technology Geography

Scenario 1 Geothermal (1) High Altitude (1)
Scenario 2 Geothermal (1) Flat (2)
Scenario 3 Geothermal (1) Rolling Hills (3)
Scenario 4 Hydro (2) High Altitude (1)
Scenario 5 Hydro (2) Flat (2)
Scenario 6 Hydro (2) Rolling Hills (3)
Scenario 7 Gas (3) High Altitude (1)
Scenario 8 Gas (3) Flat (2)
Scenario 9 Gas (3) Rolling Hills (3)

The next iteration of the LAES study would model the scenario in an appropriate
modeling and simulation environment. Experimentation on the potential design solutions
would enable analysis of the output data and development of appropriate mathematical
equations for the given measures in the problem. Incorporating the new equations into a
larger set of equations would support an optimal set of values for the scenario variables. It
is also possible to isolate a measure and examine the DOE to identify a set of acceptable
designs and critical design parameters to optimize the specific measure [37]. In fact, the
original LAES system study used an experimental design that included air flow rate and
compression pressure as factors to develop design parameters for a LAES system [42,43].
However, those experiments were run in a lab setting that did not consider the scenario
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factors in Table 8. Placing the original LAES experiments in the different scenarios in
Table 8 provides a more robust solution. For Steps 6–9, the LAES study team would create
a database for all variables in the original LAES study and the scenario factors in Table 8 in
an appropriate simulation model. Experimentation results would enable construction of
linear equations that may be used as part of an optimization model.

5. Conclusions

Complex systems problems are often inundated with non-numeric, uncontrollable
variables. Poorly defined solution spaces can result in infinite or no solutions. Conversely,
overly constrained solution spaces may yield few design solutions. Consequently, investi-
gating these types of system variables are a challenge to engineers and analysts. Ultimately,
the idea is to determine how non-numeric, uncontrollable variables fit in the design so-
lution. Focusing on computers and simulation models as the primary tools, the authors
have developed a methodical approach to credibly shape the design space in terms of these
difficult variables.

Using GMA as a basis, this work has outlined a way to study uncontrollable, non-
numeric variables. A prevalent issue for employing GMA is the near uncountable number
of scenarios that could exist in the problem space. To address this combinatorial issue, the
authors advocate using advances in DOE. However, to gain the benefits that DOE offers,
requires a numerical hierarchy for the factor values. Yet, non-numeric factors by definition
do not have a hierarchy. This work presents an approach for discretizing the scenario
factors of the problem space, thereby simplifying scenario generation and reducing the
number of scenarios to be examined. Each value of a non-numeric scenario factor is ranked
in order of importance as defined by the study participants in one of two ways: AHP [30]
or FMECA [33]. For problem spaces with many factors and value levels, advanced and
customized designs of experiments are available [21]. If the number of factors and values
are not large in number, then simpler experimental designs are adequate [41]. The final step
of a scenario-based computer experiment results in mathematical expressions that contain
difficult variables in the problem space and relate them to different measures of interest.
The intent is to use the resultant equations to augment other equations that engineers and
analysts have developed to bound the problem.

This paper does not attempt to develop system design solutions or manage system
configuration. The ideas of this study are offered only to define the feasible space of
a complex problem. The subject matter experts, stakeholder(s), scientist, and analysts
may determine which of the resulting constraint equations make the most sense for the
problem. Afterward, statistical and optimization methods may be employed to generate
one or more credible solutions. The theoretical foundations of optimization routines are
well-established [9,12,40]. Other techniques from many disciplines to develop a solution
from the design space or solution space, are also plentiful and well-founded. Employing
those techniques is beyond the scope of this paper. It suffices to say that the paper provides
the foundation to develop solutions from a credibly formed problem space.

Author Contributions: Conceptualization, A.H. and A.P.; Methodology, A.H.; Resources, A.H. and
A.P.; Writing—Original Draft Preparation, A.H. and A.P.; Writing—Review and Editing, A.H. and
A.P.; Visualization, A.H. and A.P.; Supervision, A.H.; Project Administration, A.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not available.

Informed Consent Statement: Not available.

Data Availability Statement: This study does not report data.

Conflicts of Interest: The authors have no conflict of interest.



Systems 2021, 9, 89 13 of 14

References
1. Andrew, P.; James, E. Introduction to Systems Engineering; Wiley: New York, NY, USA, 2000.
2. Kossiakoff, A.; Sweet, W.N.; Seymour, S.J.; Biemer, S.M. Systems Engineering Principles and Practice; Wiley: New York, NY,

USA, 2011.
3. Vanderbei, R.J. Linear Programming: Foundations and Extensions, 2nd ed.; Springer: New York, NY, USA, 2001.
4. Summers, J. Reasoning in Engineering Design. In Proceedings of the Volume 5a: 17th International Conference on Design Theory and

Methodology; American Society of Mechanical Engineers: New York, NY, USA, 2005; pp. 329–340.
5. INCOSE. Systems Engineering Handbook, 4th ed.; Wiley: New York, NY, USA, 2015.
6. Wasson, C.S. Systems Engineering Analysis, Design, and Development, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016.
7. Langford, G.O. Engineering Systems Integration: Theory, Metrics, and Methods; CRC Press: Boca Raton, FL, USA, 2012.
8. ANSI/EIA. Processes for Engineering A System; ANSI/EIA 632-2003American National Standards Institute (ANSI)/Electronic

Industries Association (EIA): Philadelphia, PA, USA, 2003.
9. Winston, W.L. Operations Research: Applications and Algorithms; Brooks-Cole: Toronto, ON, Canada, 2004.
10. Mingers, J. Combining IS Research Methods: Towards a Pluralist Methodology. Inf. Syst. Res. 2001, 12, 240–259. [CrossRef]
11. Creswell, J.W.; Creswell, J.D. Research Design, 5th ed.; SAGE Publication Inc.: Los Angeles, CA, USA, 2018.
12. Bazaraa, M.S.; Jarvis, J.J.; Sherali, H.D. Linear Programming and Network Flows, 4th ed.; John Wiley & Sons: New York, NY,

USA, 2004.
13. Zwicky, F. Discovery, Invention, Research—Through the Morphological Approach; The Macmillan Company: Toronto, ON, USA, 1969.
14. Ritchey, T. Fritz Zwicky, ‘Morphologie’ and Policy Analysis. In Proceedings of the 16th EURO Conference on Operational Analysis,

Brussels, Belgium, September 1998. Available online: https://www.researchgate.net/profile/Tom-Ritchey/publication/2677
94873_Fritz_Zwicky_Morphologie_and_Policy_Analysis/links/551aaa400cf2bb754076a92d/Fritz-Zwicky-Morphologie-and-
Policy-Analysis.pdf (accessed on 19 December 2021).

15. Alvarez, A.; Ritchey, T. Application of General Morphological Analysis from Engineering Design to Policy Analysis. Acta Morphol.
Gen. 2015, 4, 1–40.

16. Ritchey, T. Modeling Alternative Futures with General Morphological Analysis. World Futur. Rev. 2011, 3, 83–94. [CrossRef]
17. Buede, D.M. The Engineering Design of Systems, Models and Methods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016.
18. van Kouwen, F.; Dieperink, C.; Schot, P.P.; Wassen, M.J. Computer-Supported Cognitive Mapping for Participatory Problem

Structuring. Environ. Plan. A 2009, 41, 63–81. [CrossRef]
19. Ritchey, T. Problem Structuring Using Computer-Aided Morphological Analysis. J. Oper. Res. Soc. 2006, 57, 792–801. [CrossRef]
20. Badal, M.A. Strategic Management: Methods and Models. Master’s Thesis, DTU, Technical University of Denmark, Lyngbyc,

Denmark, 2006.
21. Lucas, T.W.; Kelton, D.W.; Sanchez, P.J.; Sanchez, S.M.; Anderson, B.L. Changing the Paradigm: Simulation, Now a Method of

First Resort. Naval Res. Logist. 2015, 62, 293–303. [CrossRef]
22. Girouard, C.; Pollman, A.G.; Hernandez, A.S. Modeling and Simulation Informed Conceptual Design, Analysis, and Initial

Component Selection of a Supply-Side Building Scale LAES System for Renewable, Islanded Microgrid Resiliency. In Proceedings
of the 87th Military Operations Society Symposium, Colorado Springs, CO, USA, 17–20 June 2019.

23. Chermak, T.J. Scenario Planning in Organizations: How to Create, Use, and Assess Scenarios; Berrett-Koehler Publishers, Inc.:
San Francisco, CA, USA, 2011.

24. Lindren, M.; Bandhold, H. Scenario Planning: The Link between Future and Strategy; Palgrave McMillan: London, UK, 2009.
25. von Reibnitz, U. Scenario Techniques; McGraw-Hill Publishing Co: New York, NY, USA, 1988.
26. Mietzner, D.; Reger, G. Advantages and Disadvantages of Scenario Approaches for Strategic Foresight. Int. J. Technol. Intell. Plan.

2005, 1, 220–239. [CrossRef]
27. Perla, P.P.; Curry, J. The Art of Wargaming: A Guide for Professionals and Hobbyists; U.S. Naval Institute Press: Annapolis, MD,

USA, 2011.
28. Cioppa, T.M.; Lucas, T.W. Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes. Technometrics 2007, 49, 45–55.

[CrossRef]
29. Watson, S.R.; Buede, D.M. Decision Synthesis: The Principles and Practice of Decision Analysis; Cambridge University Press:

Cambridge, UK, 1987.
30. Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw-Hill: London, UK, 1980.
31. Taherdoost, H. Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step Approach. Int. J. Econ. Manag. Syst.

2017, 2, 244–246.
32. Leon, S.J. Linear Algebra with Applications; Prentice Hall: Upper Saddle River, NJ, USA, 2002.
33. Blanchard, B.S.; Fabrycky, W.J. Systems Engineering and Analysis, 5th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2011.
34. Kleijnen, J.P.C.; Sanchez, S.M.; Lucas, T.W.; Cioppa, T.M. A User’s Guide to the Brave New World of Designing Simulation

Experiments, INFORMS. J. Comput. 2005, 18, 263–289.
35. Hernandez, A.S.; Lucas, T.W.; Sanchez, P.J. Selecting random Latin hypercubes dimensions and designs through estimation

of maximum absolute pairwise correlation. In Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany, 9–13
December 2012.

36. Patterson, H.D. The Errors of Lattice Sampling. J. R. Stat. Society Series B Methodol. 1954, 17, 140–149. [CrossRef]

http://doi.org/10.1287/isre.12.3.240.9709
https://www.researchgate.net/profile/Tom-Ritchey/publication/267794873_Fritz_Zwicky_Morphologie_and_Policy_Analysis/links/551aaa400cf2bb754076a92d/Fritz-Zwicky-Morphologie-and-Policy-Analysis.pdf
https://www.researchgate.net/profile/Tom-Ritchey/publication/267794873_Fritz_Zwicky_Morphologie_and_Policy_Analysis/links/551aaa400cf2bb754076a92d/Fritz-Zwicky-Morphologie-and-Policy-Analysis.pdf
https://www.researchgate.net/profile/Tom-Ritchey/publication/267794873_Fritz_Zwicky_Morphologie_and_Policy_Analysis/links/551aaa400cf2bb754076a92d/Fritz-Zwicky-Morphologie-and-Policy-Analysis.pdf
http://doi.org/10.1177/194675671100300105
http://doi.org/10.1068/a4099
http://doi.org/10.1057/palgrave.jors.2602177
http://doi.org/10.1002/nav.21628
http://doi.org/10.1504/IJTIP.2005.006516
http://doi.org/10.1198/004017006000000453
http://doi.org/10.1111/j.2517-6161.1954.tb00156.x


Systems 2021, 9, 89 14 of 14

37. Koehler, J.R.; Owen, A.B. Computer Experiments. In Handbook Statistics; Ghosh, S., Rao, C.R., Eds.; Elsevier Science: New York,
NY, USA, 1996; Volume 14, pp. 261–308.

38. Law, A.M. Simulation Modeling and Analysis, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2015.
39. McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the

Analysis of Output from a Computer Code. Technometrics 1979, 22, 239–245.
40. Wolsey, L.A. Integer Programming; John Wiley& Sons Inc.: New York, NY, USA, 1998.
41. Montgomery, D.C. Design and Analysis of Experiments, 5th ed.; Wiley: New York, NY, USA, 2005.
42. Willis, R.; Pollman, A.G.; Gannon, A.J.; Hernandez, A.S. Modeling a Building Scale Liquid Ari Energy Storage and Expansion

System with ASPEN HYSYS. In Proceedings of the 3rd IEEE International Conference on DC Microgrids (ICDCM), Matsue,
Shimane, Japan, 20–23 May 2019.

43. Howe, T.; Pollman, A.G.; Gannon, A.J. Operating Range for a Combined, Building-scale Liquid Air Energy Storage and Expansion
System: Energy and Exergy Analysis. Entropy 2018, 20, 770. [CrossRef] [PubMed]

http://doi.org/10.3390/e20100770
http://www.ncbi.nlm.nih.gov/pubmed/33265858

	Introduction 
	Challenges for Bounding the Engineering Problem 
	An Overview of System Boundaries and Constraints 

	Summary of Techniques to Aid Defining System Boundaries 
	Generalized Morphological Analysis 
	Scenario-Based Computer Simulations 
	Scenarios and Discretization of the Scenario Space 
	Generating Scenarios 
	Ranking the Non-Numeric Values of Scenario Factors 
	Identifying an Efficient Set of Scenario Designs 


	Deriving Metamodels from Scenario-Based Computer Experimentation 
	Steps for Defining Boundaries 
	Boundary Development for a Complex Systems Problem 
	Applying Steps 1 through 5—Boundary Development for a Complex Systems Problem 

	Conclusions 
	References

