Journal of

d5%

and Applications

Low Power Electronics

Article

Dynamic SIMD Parallel Execution on GPU from High-Level
Dataflow Synthesis *

Aurelien Bloch *

check for
updates

Citation: Bloch, A.; Casale-Brunet, S.;
Mattavelli, M. Dynamic SIMD
Parallel Execution on GPU from
High-Level Dataflow Synthesis. J.
Low Power Electron. Appl. 2022, 12, 40.
https://doi.org/10.3390/
jlpeal2030040

Academic Editors: Sanghamitra Roy

and Andrea Acquaviva

Received: 10 March 2022
Accepted: 11 July 2022
Published: 17 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Simone Casale-Brunet

and Marco Mattavelli

EPFL SCI-STI-MM, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
simone.casalebrunet@epfl.ch (S.C.-B.); marco.mattavelli@epfl.ch (M.M.)

* Correspondence: aurelien.bloch@epfl.ch

t This paper is an extended version of our paper published in 14th IEEE MCSoC 2021.

Abstract:
CPU/GPU processing platforms comprise a highly complex endeavor that demands considerable

Developing and fine-tuning software programs for heterogeneous hardware such as

time and effort of software engineers and requires evaluating various fundamental components
and features of both the design and of the platform to maximize the overall performance. The
dataflow programming approach has proven to be an appropriate methodology for reaching such a
difficult and complex goal for the intrinsic portability and the possibility of easily decomposing a
network of actors on different processing units of the heterogeneous hardware. Nonetheless, such
a design method might not be enough on its own to achieve the desired performance goals, and
supporting tools are useful to be able to efficiently explore the design space so as to optimize the
desired performance objectives. This article presents a methodology composed of several stages for
enhancing the performance of dataflow software developed in RVC-CAL and generating low-level
implementations to be executed on GPU/CPU heterogeneous hardware platforms. The stages are
composed of a method for the efficient scheduling of parallel CUDA partitions, an optimization of the
performance of the data transmission tasks across computing kernels, and the exploitation of dynamic
programming for introducing SIMD-capable graphics processing unit systems. The methodology is
validated on both the quantitative and qualitative side by means of dataflow software application
examples running on platforms according to various different mapping configurations.

Keywords: heterogeneous systems; GPU programming; source-to-source compiler; parallel
computing; SIMD; RVC-CAL; dynamic dataflow programs

1. Introduction

Heterogeneous computing systems are becoming increasingly popular in industry
and academia, thanks in part to the fact that transistor shrinkage has slowed down. Trends
such as the scale-out of data centers are starting to reach technical limitations. Here, in
fact, energy consumption becomes a severe issue and is now a serious subject of study
and optimization. Thus, the ever-increasing need for more powerful computing systems
drives the development of more diverse specialized platform designs, which include
processing architectures (e.g., CPU arrays, GPUs, FPGAs) that are able to be more efficient
at performing specialized computing operations. This trend is also driven by the industry,
in which major semiconductor companies (e.g., Nvidia, Intel) are releasing more advanced
heterogeneous hardware that complies with increasingly stringent energy policies [1].
GPUs offer the ability to achieve massive, yet energy-efficient parallelism. However,
exploiting this type of parallelism requires that the code be carefully structured to address
the limitations of the SIMT execution model. Several methods have been developed in
the literature, to avoid the situation in which adapting the code to specific platforms
results in being an operation that has to be performed fully manually. For example, a
hybrid scheduling approach, which the authors call inspector—executor, applied to the

J. Low Power Electron. Appl. 2022, 12, 40. https:/ /doi.org/10.3390/jlpeal2030040

https:/ /www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12030040
https://doi.org/10.3390/jlpea12030040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0003-3893-5103
https://orcid.org/0000-0001-7840-1398
https://orcid.org/0000-0002-7742-0332
https://doi.org/10.3390/jlpea12030040
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12030040?type=check_update&version=2

J. Low Power Electron. Appl. 2022, 12, 40 20of 18

problem of six tree traversal algorithms is illustrated in [2]. The GPU partially executes
a task and sends execution information to the CPU, then the CPU uses this information
to perform the scheduling. These techniques have been effectively applied in problems
such as community detection in weighted networks [3] and in the multi-product dynamic
lot sizing problem [4]. All these works, however, start with implementations specifically
targeted for hybrid CPU/GPU platforms. An increasingly used methodology is to employ
high-level dataflow programming languages that are not dependent on the target platform.
This type of high-level programming enables portable development approaches that are
architecture-independent and can be efficiently leveraged to analyze and explore the design
space. In fact, dataflow application software inherently reveals the intrinsic parallelism
available in the data being processed by the algorithms. This is done in a systematic fashion
by exploring the design configuration of the actors’ networks—such as the mapping
of computational kernel to the processing element or the allocation of communication
buffers. It is then possible to identify which high-performance design points simultaneously
satisfy the design constraints [5-7]. The exploration of the design space is effectively
achieved without the necessity to test every design point on the hardware system; instead,
it relies on a simulation and performance estimation model. These simulation models
typically use profiling measures obtained from a sample set of (partial) executions of the
application obtained on the platform. In other words, this method greatly reduces the
effort of exploring configuration points, as not all configuration points are tested on the
real platform, but only at the simulated level. Such an approach significantly facilitates
and speeds up portability to different heterogeneous platforms and, by using specific
algorithms, allows obtaining results close to optimum [5]. When using high-level and
platform-independent dataflow design techniques and targeting CPU/GPU platforms,
the main challenge is that the computational nodes of the dataflow networks (also called
actors) are formed with distinct sequential functions that do not strictly correspond to
the Single-Instruction-Multiple-Data (SIMD) nature of the typical architecture of GPUs.
The appropriate use of resources is a prerequisite of the exploitation of a SIMD-type
parallelization, which then results in a dramatic improvement in the performance of the
entire application.

There are several novelties introduced by this work. The first is the definition of a
new methodology to exploit the intra-kernel parallelization available using parallel CUDA
constructs for the execution of actions of dataflow actors. The second is the extension
of both the design space exploration model defined by the authors of this work and the
extension of the open-source toolbox capable of synthesizing low-level code for heteroge-
neous CPU and GPU platforms. To this end, the methodology already defined in [8] was
significantly extended allowing automatically synthesizing a C++/CUDA parallel version
for every actors’ actions, all taking full advantage of SIMD parallelization techniques. All
the innovative contributions of this article can be summarized as follows:

* The definition of a new FIFO communication channel to improve the communication
performance between two computing elements even on different hardware (i.e., GPU
and CPU). This was made possible by exploiting the architecture and programming
APIs available with the new GPU implementations;

* A new methodology for GPU partitioning of actors synthesized with the CUDA
formalism. This new methodology completely removes the need to use a CPU kernel
(actively waiting) to control the execution of GPU-mapped actors;

¢ The dynamic programming model of actors in a dataflow program is leveraged to
exploit intra-kernel parallelization and take full advantage of the SIMD architecture
of GPUs;

* A low-level code-synthesizing methodology to leverage dynamic actor reprogram-
ming, where internal actions are implemented leveraging SIMD parallelization.

The article is structured as follows: In Section 2 a summary of the dataflow computa-

tional model is illustrated. The main components, their properties, and the main advantages
of this computational model are defined. In addition, an overview of the dataflow pro-

J. Low Power Electron. Appl. 2022, 12, 40 30f 18

gramming language used in this paper, in this case RVC-CAL, is given. Subsequently,
the state-of-the-art of techniques implementing and optimizing dataflow applications in
parallel CPU and GPU architectures is discussed in Section 3. The main contributions of
this work are illustrated in Section 4 and supported by the experimental results of Section 5.
Here, the approach is validated by making use of two case studies that differ in computa-
tional complexity and the nature of parallelization. An FIR filter and a JPEG decoder are
used: both designs are implemented using RVC-CAL as the programming language. The
results focus on demonstrating how the SIMD optimizations proposed in this work are
very effective. Section 6 concludes the paper and provides future research directions.

2. Dataflow Model of Computations

A dataflow program is a network of computational kernels, also referred to as actors.
These actors can only communicate with each other by exchanging data through point-
to-point transmission vectors, called buffers. Buffers depict the routes along which the
tokens (data emitted) can flow. Tokens, which are atomic units of data, are placed and
removed from the buffers according to the computational rules of individual actors, called
firing rules.

The work presented in this paper addresses the Dynamic Dataflow (DDF) class of
dataflow programs. In fact, this is the most expressive computation class defining the
execution of a dataflow program. This class allows defining a dynamic token consump-
tion/production rate, so that it is not predefined, but depends on the value of the network
state and/or on the value carried by the tokens. As a consequence, dataflow networks of
the DDF type are not analyzable at compile time [9].

Over the past decade, a large number of different programming languages have
emerged with the aim of modeling the semantics of dataflow programs [10]. Impera-
tive programming languages were augmented by including parallel directives (e.g., Java,
Python, C/C++), and actual native dataflow languages were newly specified (e.g., Esterel,
Ptolemy). Considering these variegated language extension environments, RVC-CAL [11]
can be considered the only fully formally standardized programming language following
the dataflow model, which is capable of modeling DDF networks. An RVC-CAL actor is
defined as a collection of atomic methods, known as actions, together with a collection of
encapsulated state variables for which access and modification are prohibited from neigh-
boring actors in the same network. When an actor is running, a single action is selected at
a time each time. That is, each actor cannot execute several actions at the same time, but
only one. The selection of the action to execute can be done considering the input value of
the tokens and/or the value of the internal variables of the actor. The synthesis from this
high-level programming language to low-level code for heterogeneous platforms can be
done using many open-source compilers, such as Open RVC-CAL Compiler (ORCC) [12,13],
Tycho [14], StreamBlocks [15], and Caltoopia [16].

As an example, Figure 1 shows an RVC-CAL dataflow program. Figure 1a depicts
the graphical representation of the program, where the blue boxes are the actors, while the
directed arcs represent the buffers. Specifically, this network consists of five actors (i.e.,
Merger, PingPong, CopyTokensB, CopyTokensA, and Prod) and five buffers. Figure 1b shows
the RVC-CAL implementation of the Producer actor: this is composed of a single action
that produces a token for each execution (firing), during which it increments the internal
variable counter each time. A guard condition prevents the action from being followed more
than four times. In the PingPong actor code shown in Figure 1d, the schedule construct is
used to define an internal finite state machine (FSM), which defines how the execution of
action pp1 must be alternated with the execution of action pp2.

J. Low Power Electron. Appl. 2022, 12, 40

40f18

CopyTokenA CopyTokenB

Prod PingPong
out
(a) Illustration of the RVC-CAL dataflow network example.
actor Prod () ==> int OQOut:
int cnt := O0;
produce: action ==> QOut:[cnt]
guard cnt < 4
do <c¢cnt := cnt + 1; end
end

(b) Source code of the Prod.cal actor

actor CopyToken (String cpName) int In ==> int Out:
copy: action In:[token] ==> Out:[token] end
end

(c) Source code of the CopyToken.cal actor

actor PingPong () int In ==> int Out:

ping: action In:[token] ==> QOut:[token]
do println("Ping:" + token); end

pong: action In:[token] ==> Out:[-token]
do println("Pong:" + token); end

schedule fsm s_ping:
s_ping(ping) --> s_pong;
s_pong (pong) --> s_ping;
end

end

(d) Source code of the PingPong.cal actor

Figure 1. Cont.

J. Low Power Electron. Appl. 2022, 12, 40 50f 18

actor Merger () int Inl, int In2 ==>

int cnt := 0;

merge: action Inl:[tokenl], In2:[token2] ==>

do

println("Merger (" + cnt + "):" + tokenl + ";" + token2);
cnt := cnt + 1;

end

end

(e) Source code of the Merger.cal actor

Figure 1. Example illustrating the main properties of the RVC-CAL program and how it is structured.
This example contains five actors (i.e., Prod, CopyTokenA, CopyTokenB, PingPong, and Merger).

3. Related Work

Increasing attention has been paid over the past few years to dataflow programming
in the field of programming multicore and heterogeneous computing platforms [17-22].
As outlined by the various studies that can be found in the literature, one of the most
prominent use cases is the execution of dataflow programs on GPU platforms. In this
direction, refer for example to [17-22]. Specific to dynamic programs and implemented on
GPU platforms using RVC-CAL, the works presented in [23] and in [24] show two different
approaches on how to use OpenCL APlIs to implement, partition, and subsequently execute
RVC-CAL SW programes. In the first case, an OpenCL implementation is generated from the
Intermediate Representation (IR) provided by the Orcc compiler [13], whereas in the second,
the IR of the Distributed Application Layer (DAL) [25]) is used for the final synthesis. In
both works, the first step is to classify each actor that composes the program (in other
words, it is determined whether an actor is static, cyclo-static, or dynamic); then, only the
narrowest Static Dataflow Actors (SDFs) (i.e., those for which execution and scheduling
behavior can be computed during the compile-time design stage) are executed on the GPU
platform, while the dynamic actors [26] are mapped to the available CPU cores. A similar
approach is illustrated in [27], where RVC-CAL dataflow programs are first transformed
into a high-level SYCL [28] representation. SYCL is a cross-platform C++ abstraction layer
that allows source code for heterogeneous processors to be expressed using the OpenCL
APL The approach illustrated in [27] is also based on using the SIMD nature of GPUs to run
multiple consecutive executions of the same action in parallel when there are data available
for its execution.

The main limitations of the available state-of-the-art solutions described above are
mainly due to the fact that only the computational part of the actors (actions firings) is
performed on the GPUs, while the actor scheduling part (action selection) is performed
on the CPUs. This implementation approach has two drawbacks. The first drawback is
that, to the best of the authors’” knowledge, in the presented design, they are scheduling
only the static actors on the GPU; the dynamic actors are executed only on the CPU. The
second drawback is that the CPU is constantly working to schedule the next tasks for the
GPU. The work presented in this paper aims at removing these limitations, thus allowing
having a scheduling choice made directly on the GPU. This solution releases the CPU
from computational tasks and allows it to use its additional computational resources to
execute other parts of the program concurrently with the GPU. In addition, the amount
of information exchanged between the GPU and CPU is largely reduced. Moreover, in
this approach, the mapping of GPU actors can be applied to any type of execution models,
including DPNs, and is not limited to static actors or actor networks. In other words,
this approach makes it possible to map a dataflow DPN network program onto a GPU
platform independently of its dynamic or non-dynamic behavior. Table 1 resumes the main
differences of the main comparable solutions.

J. Low Power Electron. Appl. 2022, 12, 40 60of 18

Table 1. Summary of related papers’ comparison.

This Work [23] [24] [27]

static CPU/GPU CPU/GPU CPU/GPU CPU/GPU
cyclo-static CPU/GPU CPU CPU CPU
dynamic CPU/GPU CPU CPU CPU

4. Design Process and Development

In the following section, it is explained how the methodologies developed in previous
research (considering also the ones designed and implemented by the authors of this paper)
were extended to more efficiently support the systematic partitioning of DPN software
applications. To achieve this goal, the tool set illustrated in Figure 2 was utilized. Starting
from the top, the figure shows the high-level representation of the dataflow program (CAL),
the network setting (XDF), the configuration files that provide partitioning information, and
buffer sizes (BXDEF). These represent the input to the ORCC compiler, which uses the Exelixi
CUDA backend described in [8,29,30] to automatically write the respective CUDA /C++
low-level software. This code must then subsequently be compiled using Nvidia CUDA
Compiler (NVCC) to obtain the program binary. Furthermore, the following section
describes a new design for the FIFO buffers that are utilized for communication between
neighboring actors. Along with this, a novel scheduling strategy for actors executing on
GPUs is presented. Lastly, it is shown how SIMD parallelization methodologies are used to
accelerate the runtime of dataflow actions to improve execution performance.

BXDF
\4 \4 \4 A

Open RVC-CAL Compiler

Exelixi CUDA Backend

A4 A4
A A

NVIDIA CUDA Compiler

¥

Binary

Figure 2. Workflow of the design, optimization, and implementation of a dynamic dataflow applica-
tion using RVC-CAL as the programming language on heterogeneous CPU and GPU platforms.

4.1. GPU/CPU Data Communication

In a previous work of the authors of this paper [8], the data transfer between GPUs and
CPUs was developed by means of a CudaHostFIFO. This specific communication channel
is depicted in Figure 3 with a blue (2). Such a FIFO was particularly created to move data
across the GPU and CPU boundary. The implementation is based on a twin FIFO buffer

J. Low Power Electron. Appl. 2022, 12, 40 7 of 18

that is allocated on each platform using GPU RAM and RAM that is being mirrored using
data copying and synchronization utilizing the CUDA APIs. The primary drawback with
the presented method is the fact that an extensive number of calls to the CUDA runtime
libraries is being made, therefore raising the runtime overhead.

In this article, a novel method for a cross-hardware FIFO buffer was designed by using
the capabilities offered by the new CUDA APIs and architecture capacities summarized in
Figure 3 with a blue (3). With this goal in mind, the memory allocated on the CPU platform
is a pinned memory. This signifies that the operating system does not swap allocations
or transfer them to another physical memory location. These memory allocations are
subsequently registered in the virtual address memory management of the GPU from which
translated pointers are obtained. With this approach, different pointers are dereferenced if
the data are manipulated from the GPU system or the CPU system. The main benefit of this
method is that it removes the necessity of any software API or synchronization calls. In fact,
memory accesses are performed automatically by the hardware platform. It is important to
note that this solution does not change the rest of the computation model or the way FIFO
buffers are used.

CpyToken
A

PingPong

A 4

covplen Tl 5 IERL Ve

Figure 3. Partitioning model and implementation of a program between the GPU and CPU. The
FIFOs used are of three different types: with 1 is indicated the host FIFO, with 2 a host-to-device
FIFO, with 3 a device-to-host FIFO, and with 4 a device FIFO. In this particular example, the program
illustrated in Figure 1 is considered.

4.2. GPU Partitions

In a previous work of the authors of this paper [8], a CPU thread was used exclusively
to schedule all the actors that were mapped to the GPU (i.e., GPU partitions). This entails
running each actor’s kernel intended to be executed on GPUs in parallel and spinning
until they terminate. If any actors made computational advancements, then every actor
is executed again until no actors perform forward processing for a determined elapsed
time. Only from this moment, the GPU partitions are considered to have completed their
execution and the CPU thread is freed. This is an active-wait (spin-wait)-type system,
which is neither energy nor computationally efficient. Its advantages, however, are the ease
of implementation and the possibility to know at any time the complete state of the entire
dataflow network.

The goal of this work is to make the execution of each GPU-mapped actor autonomous.
In other words, using the same formalism described in [8], it acts as if each CUDA partition
contains only one actor. Every actor is supposed to terminate itself by monitoring the

J. Low Power Electron. Appl. 2022, 12, 40 8 of 18

termination reached by the application software. This indicates that the GPU partitions
could be considered during the entire time the application program is executing as totally
independent. So as to reach this goal, after all the instantiation and initialization phases,
the main program thread waits for all CPU and GPU partitions to stop before terminating
the application. The main mechanism used for this is that each partition (CPU or GPU)
keeps track of the progress made by its actors. If, after a fixed amount of time, no actors
have made any progress (i.e, no actions were fired), the partition terminates.

Regarding in more detail how the new GPU partition design is implemented, the
low-level scheduling generated by the CAL backend (which we call actionSelection) was
implemented as a long-running kernel. Figure 1 presents a simplified example of how this
function of actionSelection was implemented. From Line 25, it can be noticed that the status
array is set every time an action is fired. This array is accessible by every other CUDA actor
and is utilized to notify the other actors, indicating that one of them just performed further
processing. The checkStatus function-call in Line 30 is in charge of verifying the status of
the other actors. If zero actors have produced any work after a certain fixed period of time
(waitPeriod), the actors terminate. The software application is closed after all CPU-side
actors and all GPU-side actors are done executing.

4.3. SIMD Parallelization

Generating efficient low-level SIMD-type code is a prerequisite to fully exploit the
hardware available in modern GPUs. Without this, on Nvidia GPUs for instance and
because a CUDA core is a SIMD architecture composed of 32 threads, a single thread out
of the 32 possible will be utilized, wasting a substantial part of the potential resources. In
order to reach this objective, though, it is mandatory to identify what are the limitations of
the computation model used to program the platform. In the specific case of RVC-CAL,
the intrinsic behavior of an actor is to consume one or more tokens from the input buffers,
execute the computational part defined by the action, modify the internal state, and then,
produce one or more tokens in the output buffers. This approach makes the implementation
not yet ready for SIMD-like parallelization. However, it is possible to improve the actor
execution performance if the order of tokens within the actor communication channels is
preserved and the actor state dependencies of the model execution are respected.

Unlike previous works, where the actionSelection was executed on a single CUDA
thread and the actions were simple function calls, in this work, a new method is used.
The dynamic parallelism that is required to execute the actionSelection function is obtained
by using a second dedicated kernel for the actions. This approach allows obtaining a
SIMD parallel execution using several instances of the same action at the same time.
As an illustrative example of the approach developed in this paper, a summary of the
implementation is shown in Listing 1. Here, an improved implementation of actionSelection
is proposed. It can be seen from Line 23 how, for this particular example, 512 actions are
executed in parallel. Another point worth noticing is how the handling of read and write
addresses in FIFOs is handled within the actionSelection function instead of in the action
implementation itself. This makes possible the actionSelection to be called only once and
sequentially. Moreover, it can be observed that in Line 21, the read address is obtained by
providing as a FIFO sizing parameter the number of tokens that will be used at each call
(in the specific case of the proposed example, this number is 64 tokens for the number of
threads). Proper sizing is particularly important to ensure that memory is aligned so that
a specific amount of data can be accessed in consecutive addresses. It is possible to have
DPN networks in which sequential actors and parallelized actors coexist while maintaining
the sequential semantics of the FIFO buffers. This can be achieved by implementing a token
id and thread id mapping to be used within an action in order to index the read and/or
write addresses.

J. Low Power Electron. Appl. 2022, 12, 40 9of 18

Listing 1. Simplified implementation of a CUDA action selection function for an actor of the idct
design illustrated in Figure 4.

1 |void actionSelection(Idct* actor,

2 |unsigned int* status,

3 |unsigned int index,

4 |unsigned int size) {

5 |unsigned int sTime = clock64();

6 |bool endExecution = false;

7 |do {

8 |status[index] = O0;

9 |bool rl = true;

10 |while (r1) {

11 |r1 = false;

12 |actor->size_IN = actor->Prt_IN->count (0);
13 |actor->size_0UT = actor->Prt_0UT->rooms () ;
14 |bool r2 = true;

15 |while (r2) {

16 |[r2 = false;

17 |if (actor->size_IN >= 512%64 &&

18 |actor->isSchedulableAction()) {

19 |if (actor->size_0UT >= 512*64) {

20 |Ports prts;

21 |prts.IN =actor->Prt_IN->read_address (0,512*64);
22 |prts.0UT =actor ->Prt_0UT->write_address ();
23 | idctNS::action<<< 1, 512 >>>(actor,prts);
24 |r1 = r2 = true;

25 | status [index] = 1;

26 |}

27 |}

28 |}

29 |}

30 |if (checkStatus(status, size) == NULL) {
31 | endExecution = (clock64() - sTime) > waitPeriod;
32 |} else {

33 | sTime = clock64();

34 |}

35 |} while(!endExecution);

36 |}

Source idct Sink ’

out IN ouT In ’

Figure 4. Illustration of the test RVC-CAL IDCT dataflow network.

4.4. Dynamic SIMD Parallelization

In this section, a methodology developed to implement applications by a number of
threads that evolve at runtime is described.

Implementation

The dynamic SIMD parallelization optimization is based on generating a number
of parallel executions of the same action that dynamically evolve over the runtime of

J. Low Power Electron. Appl. 2022, 12, 40 10 of 18

the application, with the objective of maximizing the performance and the GPU resource
utilization. To achieve such an objective, during the code generation phase, each action
with a parallel flag gets assigned a pair of integer {bl, th} with bl being the number of CUDA
thread blocks and th the number of threads per block. From there, everything needs to be
carefully parametrized with this dynamic pair of variables, that is the action CUDA kernel
launch parameter, the pre-allocation of the FIFO buffer token slots for the corresponding
input or output ports, and the test for available space for writing and available tokens to be
read. Finally, the dynamic change needs to be synchronized with the end of the main inner
loop to avoid size mismatches.

It has to be noted that the maximum amount of thread that a FIFO can access in
parallel is correlated with the size of the FIFO threshold and the number of consumed /pro-
duced tokens per action firing. Indeed, for a FIFO buffer of size “size”, a memory of
size “size + threashold” is allocated. This is done because to achieve efficient execution
performance, the SIMD threads need to access consecutive memory locations. Thus, the
threshold should be at least Nbj 04 * Nbjokens With Nbyy,eq being the maximum number
of SIMD threads an action can be executed with and Nb,,s being the number of tokens
an action produces/consumes to/from this FIFO buffer. When using the static SIMD
mode, this concern is not a relevant issue as the Exelixi CUDA backend generates the
proper size according to the flag set by the developer, but for the dynamic SIMD case,
such a number needs to be sufficiently large to generate memory sizes enabling effective
parallelization opportunities.

Figure 5 shows an example of an internal representation of a FIFO buffer of size
12 tokens (1 — t12) where an action consumes 3 tokens per firing and is executed with
4 SIMD threads (thl — th4) in parallel. In the example, the FIFO buffer needs a threshold of
minimum size 3 x4 = 12.

thlw chW th3w th4
OooOdoOooooooon
(A

Y Y
FIFO size Threshold

Figure 5. Representation of the SIMD parallel read /write of a FIFO buffer.

5. Experimental Evaluation
5.1. Experimental Hardware and Software Platform

The processing platforms used to run the experiments have the following specification:

e System 1: GeForce GTX 1660 SUPER Nvidia GPU coupled with an Intel Skylake
i5-6600. The GPU graphic co-processor is equipped with 6 GB of memory, whereas
the CPU main processing platform is equipped with 16 GBytes of DDR4 RAM.

¢ System 2: GeForce RTX 3080 Ti Nvidia GPU coupled with an AMD Threadripper
3990X. The GPU graphic co-processor is equipped with 12 GB of memory, whereas the
CPU main processing platform is equipped with two 256 GBytes of DDR4 RAM.

They both run CUDA version 11.6.2 used for the graphic software library.

5.2. SIMD Parallelization Capabilities” Evaluation

Two application programs were selected with the objective of evaluating the new
methodology introduced in this work. When a new technology is used to generate exe-
cutable code from a high-level dataflow program, two elements need to be considered. The
first element is to verify that the generated executable code is semantically correct and
equivalent to the dataflow source code. The second element is obviously to measure the
obtained performance increase versus an alternative.

J. Low Power Electron. Appl. 2022, 12, 40 11 of 18

5.2.1. Experiments with an IDCT Application

The parallelization results obtainable by applying the new approach described in
the paper to a computationally intensive actor are described in this section. So as to
isolate the transformation and better evaluate the potential results, the test application is
simply composed by a network of three actors. Two actors provide the necessary input
Source and output Sink data flow, and the central actor contains the implementation of
a compliant idct algorithm version (refer to Figure 4 for an illustration of the dataflow
network). For this simple network, two partitioning configurations were tested. The
first is a CPU-only mapping, employing one thread for each actor and a total of three
threads. A second partitioning is a GPU-only mapping for which the CUDA kernel of the
action that is executed inside the idct actor is executed on a grid of two blocks employing
512 threads per block. Both test configurations were implemented with a buffer of the
same size. The result of the experiment is that the GPU configuration, when compared to
the configuration in which all actors are mapped only on the CPU platform, can complete
the data processing tasks in less than half the time. The detailed results can be seen in
Table 2. Such results demonstrate that if a sufficient throughput of data can be supplied to
the CUDA-implemented actors, the proposed methodology does indeed provide a relevant
performance boost over implementations relying only on multicore CPU processing.

Table 2. Speedup results with statistics for the the RVC-CAL IDCT application using 10 executions.

CPU GPU
Speedup
Min Mean Max Var Min Mean Max Var
System 1 9.23 9.31 9.42 2.90 x 1073 436 4.60 477 1.40 x 1072 2.02
System 2 8.50 12.6 18.0 1.39 x 10! 5.72 5.73 5.74 322 x 107° 2.18

5.2.2. RVC-CAL JPEG Decoder

Figure 6 reports the dataflow network of the JPEG decoder application program
that was chosen for the experiments. The network is composed by six actors. The JPEG
decoder is a well-known application, and the corresponding dataflow source code is
publicly available in the following web repository [31]. In this second experiment, the
idct2d actor parallelized as in the tests described above was used in the dataflow network
implementing the full JPEG decoding algorithm. In this experiment, the application
program is essentially used to validate the semantic correctness of the generated code
for a generic dataflow program. The application is sufficiently complex, and it was not
explicitly designed and optimized for exploring efficient GPU parallelization options. In
terms of performance, Table 3 reports the experimental results in terms of the obtained
performance, respectively when the idct2d actor is sequentially executed on the GPU
(such an implementation is consistent with the methodology previously developed and
reported in [8]) and when all other actors processing tasks are executed on the CPU
partition. The second experiment corresponds to the improved methodology in which
the idct2d actor is executed in parallel on the GPU platform. It can be observed that this
experiment employing the parallel GPU implementation results outperforms by a speedup
of 9.67 or 18.3 the sequential implementation of the first experiment depending on the
hardware system.

display
Byte
SIZE

Figure 6. RVC-CAL JPEG decoder dataflow network: actors and communication FIFO buffers.

J. Low Power Electron. Appl. 2022, 12, 40 12 of 18

Table 3. Frame rate and speedup results for the RVC-CAL JPEG decoder.

Frame Rate (image/s)

Sequential GPU Parallel GPU Speedup
Min Mean Max Var Min Mean Max Var
System 1 0.24 0.24 0.24 7.63 x 1078 2.28 2.28 2.28 4.06 x 1077 9.44
System 2 0.28 0.29 0.29 2.38 x 1077 5.16 519 524 8.17 x 1074 18.20

operand_1 result

5.3. CPU/GPU Data Exchange Performance

This sub-section reports the performance of two application programs employed to
assess the improvements obtained by only changing the inter-partition communication
(CPU/GPU and GPU/CPU) implementations by using the new FIFO implementation
introduced in the previous sections of this work.

5.3.1. RVC-CAL FIR Filter

Figure 7 reports the dataflow network of a simple FIR filter application program. The
network is composed of 13 actors. The corresponding source code is publicly available in
the web repository accessible at this URL [31].

operand_1 result
'operand_2

operand 1 result

operand_1 result

‘ Source

delay 1

delay 2

|

operand_1 result

operand_1 result

add_3 rshift Sink ‘
add_2
delay 3 mul_4 operand_l resuft operand_1 resuit In
operand_1 result operand_2
operand_1 result operand_1 result ‘operand_2

Figure 7. RVC-CAL FIR filter dataflow network: actors and communication FIFO bulffers.

Figure 8, Tables 4 and 5 reports the performance speedup that the new implementation
of the FIFO buffer provides versus the state-of-the-art implementation. Since the objective is
to measure the performance of CPU/GPU data throughput, different configurations/map-
pings of a relatively complex data flow network of actors implementing simple internal
processing are an appropriate validation test. Therefore, for this experiment, the overall
performance of an FIR application was evaluated. The performance of six randomly chosen
mappings (see Table 6) on the two different systems of the FIR network actors for the
CPU or GPU platform are reported. The results were compared to the performance of
the implementation using the previous inter-platform communication mechanism and the
same mapping/partition. It can be observed that, in this case, the improvement of the
processing speed ranges from 1.70 up to 8.91.

J. Low Power Electron. Appl. 2022, 12, 40

13 0f 18

=
o

N W b~ U1 OO N 0 ©

~ 1 o

w

m3

(a) System 1

m3

(b) System 2

m4

m4

m5

m5

m6

Figure 8. Speedup results for the RVC-CAL FIR filter on the two different hardware systems. On
the x-axis, the different mapping configurations and, on the y-axis, the speedup value with the

application implemented using the new FIFO inter-partition methodology.

Table 4. Statistics of the results depicted in Figure 8a using 10 executions.

New FIFO Old FIFO
Min Mean Max Var Min Mean Max Var Speedup
ml 1.36 1.37 1.38 1.00 x 1074 3.56 3.60 3.63 1.23 x 1073 2.63
m2 1.31 1.34 1.35 433 x 10°* 3.40 3.42 3.45 833 x 107* 2.56
m3 1.37 1.38 1.41 5.33 x 1074 4.90 491 492 1.33 x 1074 3.55
m4 5.73 5.76 5.80 1.43 x 1073 51.03 51.27 51.65 1.09 x 1071 8.91
m5 5.99 6.16 6.26 226 x 1072 51.23 51.30 51.37 490 x 1073 8.32
mé6 5.79 5.80 5.82 3.00 x 10~* 28.55 28.63 28.71 6.43 x 1073 494

J. Low Power Electron. Appl. 2022, 12, 40 14 of 18

Table 5. Statistics of the results depicted in Figure 8b using 10 executions.

New FIFO Old FIFO
Speedup
Min Mean Max Var Min Mean Max Var
m1 1.25 1.26 1.27 1.33 x 1074 2.11 2.13 2.17 1.03 x 1073 1.70
m2 1.25 1.28 1.31 933 x 1074 2.65 2.67 2.68 3.00 x 1074 2.09
m3 1.30 1.31 1.32 1.00 x 10~4 3.48 3.52 3.56 1.63 x 1073 2.68
m4 498 5.04 5.17 1.20 x 1072 30.10 30.24 30.42 2.72 x 1072 6.00
m5 5.23 5.26 5.31 1.73 x 1073 30.00 30.20 30.51 7.52 x 1072 5.74
mé 5.15 5.19 5.26 3.70 x 1073 17.16 17.31 17.53 3.72 x 1072 3.34
Table 6. The different mapping settings of the FIR implementation that are used in the results.
CPU GPU
delay_1, delay_2, delay3, mul_1,
m1l Source, Sink mul_2, mul_3, mul_4, add_1,
add_2, add_3, rshift
Source, Sink, delay_1, mul_1,
m?2 mul 2, add_1, add_ 2, rshift delay_2, delay3, mul_3, mul_4, add_2
m3 Source, Sink, mul_1, add_3, rshift delay_1, delay_2, delay3, mul_2,
mul_3, mul_4, add_1, add_2
Source, Sink, delay_1, delay_3, .
m4 mul_1, mul_3, add_1, add 3 delay_2, mul_2, mul_4, add_2, rshift
Source, Sink, delay_1, delay_3, .
mb5 mul_1, mul 3, add_1, add_2 delay_2, mul_2, mul_4, add_3, rshift
mé Source, Sink, delay_1, delay_2, add_1, add_2, add_3, rshift

delay_3, mul_1, mul_2, mul_3, mul_4

5.3.2. RVC-CAL JPEG Decoder

Like the results reported in the previous sub-sections, Figure 9, Tables 7 and 8 reports
reports the speedup obtained by the new FIFO implementation in the case of six random
configurations of the JPEG decoder already introduced in Section 5.2.2. For this software
app, the performance of six arbitrary partitions (see Table 9) on the two different systems
of the actors for the GPU or CPU platform is introduced and analyzed alongside the results
relative to the performance of the implementation employing the prior dataflow GPU/CPU
data communication buffers developed by the authors. It can be observed that, in this test
experiment, the speedup improvement of the overall application program execution is in
the range 2.94- up to 15.01-times faster.

J. Low Power Electron. Appl. 2022, 12, 40

150f18

15

13

11

0o

~N

)]

N

w

N

ml

ml

m2

m2

m3

N B
m4 m5 mo6
(a) System 1
m4 m5 m6

m3

(b) System 2

Figure 9. Speedup results for the RVC-CAL JPEG decoder on the two different hardware systems.
On the x-axis, the different mapping configurations and, on the y-axis, the speedup value with the

application implemented using the new FIFO inter-partition methodology.

Table 7. Statistics of the results depicted in Figure 9a using 10 executions.

New FIFO Old FIFO
Speedup
Min Mean Max Var Min Mean Max Var
ml 2.07 2.07 2.07 1.33 x 1074 14.98 15.08 15.15 7.11 x 1072 7.31
m2 1.88 1.89 1.89 533 x 104 10.47 10.58 10.65 8.14 x 102 5.64
m3 5.03 5.10 5.23 1.14 x 1071 73.04 73.70 74.51 5.00 14.26
m4 5.57 5.59 5.62 5.63 x 1073 82.61 82.72 82.81 931 x 102 14.73
mb5 9.57 9.60 9.62 6.70 x 1073 143.39 143.96 144.43 2.50 15.01
mé6 7.70 7.72 7.75 7.23 x 1073 62.96 63.36 63.64 1.14 8.21
Table 8. Statistics of the results depicted in Figure 9b using 10 executions.
New FIFO Old FIFO
Speedup
Min Mean Max Var Min Mean Max Var
ml 1.72 1.72 1.72 430 x 107° 5.44 5.67 5.90 484 x 107! 3.29
m2 1.31 1.31 1.32 252 x 10~4 3.81 3.86 3.94 442 x 1072 2.94

J. Low Power Electron. Appl. 2022, 12, 40 16 of 18

Table 8. Cont.

New FIFO 01d FIFO
Speedup
Min Mean Max Var Min Mean Max Var
m3 456 457 457 244 x 1074 24.93 24.95 24.99 8.83 x 1073 5.46
m4 5.12 5.13 5.14 7.46 x 1074 27.59 28.35 29.35 7.41 5.52
mb5 8.44 8.45 8.46 537 x 10~4 58.56 59.51 61.25 2.03 x 101 7.04
mé 6.93 6.94 6.95 6.13 x 1074 23.62 24.87 25.52 1.06 x 101 3.58

Table 9. The different mapping settings of the JPEG decoder implementation that are used in
the results.

CPU GPU

src, parser, huffman, dequant,

ml idct2d, display dequant
2 sIc, parser, hjuffman, dequant, idet2d
display
m3 src, parsera;:ls?};;nt, idct2d, huffman
m4 src, parser, dequant, display huffman, idct2d
mb5 src, huffman, idct2d, display parser, dequant
mé src, display parser, huffman, dequant,

idct2d

6. Conclusions

In this work, two new design methodologies for the synthesis of dynamic dataflow
programs to be executed on CUDA GPU platforms were introduced. Experimental results
reporting the obtained performance improvements were also provided for the RVC-CAL
dataflow application software.

The article improves and extends state-of-the-art methods in some essential parts of
dataflow program synthesis for heterogeneous CPU/GPU platforms. One innovation is
a new implementation of the buffer and related protocols interconnecting the GPU and
CPU processing platforms. The data exchange in terms of throughput performance was
improved versus state-of-the-art results. A second innovation is a new implementation
of the GPU executable software, which can now execute without any control from the
CPU executable, a feature that removes any processing or control need on the CPU side.
Both design innovations were fully supported by computer-assisted compilations of the
executable on both the GPU and CPU sides and demonstrated for the RVC-CAL dataflow
language. The innovations were obtained by relying on an appropriate implementation
of dynamic parallelism for the intra-kernel parallel execution of actions. Improvements
of the overall performance were obtained by a dynamic grid configuration on the GPU
platform. The semantic correctness of the dataflow model of execution and the correctness
of the systematic compilation for both the CPU and GPU platform of executable code were
verified by synthesizing real-sized application programs.

Further extensions of the work presented here include the investigation of an improved
tool support providing the automatic selection of actors with a high potential for GPU
parallelization. The current implementation requires an explicit selection to be provided by
the designer. Another aspect that deserves further investigation is the development of good
heuristics on how to dynamically choose at runtime the number of parallel threads that
actions can execute to maximize resource utilization and overall application performance.

J. Low Power Electron. Appl. 2022, 12, 40 17 of 18

Author Contributions: Conceptualization, A.B.; methodology, A.B.; software, A.B.; validation, A.B.,
S.C.-B., and M.M.; investigation, A.B.; writing—original draft preparation, A.B.; writing—review and
editing, A.B., S.C.-B., and M.M.; supervision, M.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Platzer, M.; Sargent, J.; Sutter, K. Semiconductors: U.S. Industry, Global Competition, and Federal Policy (R46581); Technical Report;
USA Congressional Research Service: New York, NY, USA, 2020.

2. Liu,J.; Hegde, N.; Kulkarni, M. Hybrid CPU-GPU Scheduling and Execution of Tree Traversals. SIGPLAN Not. 2016, 51, 2.
[CrossRef]

3. Souravlas, S,; Sifaleras, A.; Katsavounis, S. Hybrid CPU-GPU Community Detection in Weighted Networks. IEEE Access 2020,
8, 57527-57551. [CrossRef]

4. Antoniadis, N.; Sifaleras, A. A hybrid CPU-GPU parallelization scheme of variable neighborhood search for inventory optimiza-
tion problems. Electron. Notes Discret. Math. 2017, 58, 47-54. [CrossRef]

5. Michalska, M.; Casale-Brunet, S.; Bezati, E.; Mattavelli, M. High-precision performance estimation for the design space exploration
of dynamic dataflow programs. IEEE Trans. Multi-Scale Comput. Syst. 2017, 4, 127-140. [CrossRef]

6. Savas, S. Hardware/Software Co-Design of Heterogeneous Manycore Architectures. Ph.D. Thesis, Halmstad University Press,
Halmstad, Sweden, 2019.

7. Goens, A.; Khasanov, R.; Castrillon, J.; Hahnel, M.; Smejkal, T.; Hartig, H. Tetris: A multi-application run-time system for
predictable execution of static mappings. In Proceedings of the 20th International Workshop on Software and Compilers for
Embedded Systems, St. Goar, Germany, 12-13 June 2017; pp. 11-20.

8. Bloch, A,; Bezati, E.; Mattavelli, M. Programming Heterogeneous CPU-GPU Systems by High-Level Dataflow Synthesis. In
Proceedings of the 2020 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 20-22 October 2020; pp. 1-6.

9. Bhattacharyya, S.; Deprettere, E.; Theelen, B. Dynamic Dataflow Graphs. In Handbook of Signal Processing Systems; Springer: Cham,
Switzerland, 2013; pp. 905-944.

10. Johnston, W.; Hanna, J.; Millar, R. Advances in dataflow programming languages. ACM Comput. Surv. 2004, 36, 1-34. [CrossRef]

11. 23001-4:2011; Information Technology—MPEG Systems Technologies—Part 4: Codec Configuration Representation. ISO: Geneva,
Switzerland, 2011.

12. Yviquel, H.; Lorence, A.; Jerbi, K.; Cocherel, G.; Sanchez, A.; Raulet, M. Orcc: Multimedia Development Made Easy. In
Proceedings of the 21st ACM International Conference on Multimedia, Barcelona, Spain, 21-25 October 2013; pp. 863-866.

13. Orcc Source Code Repository. Available online: http:/ /github.com/orcc/orce (accessed on 9 March 2022).

14. Cedersjo, G.; Janneck,].W. Tycho: A framework for compiling stream programs. ACM Trans. Embed. Comput. Syst. 2019, 18, 1-25.
[CrossRef]

15. Bezati, E.; Emami, M.; Janneck, J.; Larus,]. StreamBlocks: A compiler for heterogeneous dataflow computing (technical report).
arXiv 2021, arXiv:2107.09333.

16. Siyoum, F; Geilen, M.; Eker, J.; von Platen, C.; Corporaal, H. Automated extraction of scenario sequences from disciplined
dataflow networks. In Proceedings of the 2013 Eleventh ACM/IEEE International Conference on Formal Methods and Models
for Codesign (MEMOCODE 2013), Portland, OR, USA, 18-20 October 2013; pp. 47-56.

17. Boutellier, J.; Nyldnden, T. Design flow for GPU and multicore execution of dynamic dataflow programs. J. Signal Process. Syst.
2017, 89, 469-478. [CrossRef]

18. Abadi, M.; Barham, P; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A
system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2—4 November 2016; pp. 265-283.

19. Sbirlea, A.; Zou, Y.; Budimlic, Z.; Cong, J.; Sarkar, V. Mapping a data-flow programming model onto heterogeneous platforms.
ACM SIGPLAN Not. 2012, 47, 61-70. [CrossRef]

20. Gautier, T.; Lima, J.V,; Maillard, N.; Raffin, B. Xkaapi: A runtime system for data-flow task programming on heterogeneous
architectures. In Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, Cambridge,
MA, USA, 20-24 May 2013; pp. 1299-1308.

21. Schor, L.; Tretter, A.; Scherer, T.; Thiele, L. Exploiting the parallelism of heterogeneous systems using dataflow graphs on top of

OpenCL. In Proceedings of the 11th IEEE Symposium on Embedded Systems for Real-Time Multimedia, Montreal, QC, Canada,
3—4 October 2013; pp. 41-50.

http://doi.org/10.1145/3016078.2851174
http://dx.doi.org/10.1109/ACCESS.2020.2982227
http://dx.doi.org/10.1016/j.endm.2017.03.007
http://dx.doi.org/10.1109/TMSCS.2017.2774294
http://dx.doi.org/10.1145/1013208.1013209
http://github.com/orcc/orcc
http://dx.doi.org/10.1145/3362692
http://dx.doi.org/10.1007/s11265-017-1260-8
http://dx.doi.org/10.1145/2345141.2248428

J. Low Power Electron. Appl. 2022, 12, 40 18 of 18

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

Lin, S.; Liu, Y.; Plishker, W.; Bhattacharyya, S.S. A Design Framework for Mapping Vectorized Synchronous Dataflow Graphs
onto CPU-GPU Platforms. In Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems,
Sankt Goar, Germany, 23-25 May 2016; Association for Computing Machinery: New York, NY, USA, 2011; pp. 20-29. [CrossRef]
Lund, W,; Kanur, S.; Ersfolk, J.; Tsiopoulos, L.; Lilius, J.; Haldin, J.; Falk, U. Execution of dataflow process networks on OpenCL
platforms. In Proceedings of the 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, Turku, Finland, 4-6 March 2015; pp. 618-625.

Boutellier, J.; Nylanden, T. Programming graphics processing units in the RVC-CAL dataflow language. In Proceedings of the
2015 IEEE Workshop on Signal Processing Systems (SiPS), Hangzhou, China, 14-16 October 2015; pp. 1-6.

Schor, L.; Bacivarov, I; Rai, D.; Yang, H.; Kang, S.H.; Thiele, L. Scenario-based design flow for mapping streaming applications
onto on-chip many-core systems. In Proceedings of the 2012 International Conference on Compilers, Architectures and Synthesis
for Embedded Systems, Tempere, Finland, 7-12 October 2012; pp. 71-80.

Lee, E.A.; Messerschmitt, D.G. Synchronous data flow. Proc. IEEE 1987, 75, 1235-1245. [CrossRef]

Rafique, O.; Krebs, F.; Schneider, K. Generating Efficient Parallel Code from the RVC-CAL Dataflow Language. In Proceedings of
the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28-30 August 2019; pp. 182-189.
SYCL. Available online: https://www.khronos.org/sycl/ (accessed on 9 March 2022).

CAL Exelixi Backends Source Code Repository. Available online: https:/ /bitbucket.org/exelixi/exelixi-backends (accessed on 9
March 2022).

Bezati, E.; Casale-Brunet, S.; Mosqueron, R.; Mattavelli, M. An Heterogeneous Compiler of Dataflow Programs for Zynq Platforms.
In Proceedings of the ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton,
UK, 12-17 May 2019; pp. 1537-1541. [CrossRef]

Orcc-Apps Source Code Repository. Available online: https:/ /github.com/orcc/orc-apps (accessed on 9 March 2022).

http://dx.doi.org/10.1145/2906363.2906374
http://dx.doi.org/10.1109/PROC.1987.13876
https://www.khronos.org/sycl/
https://bitbucket.org/exelixi/exelixi-backends
http://dx.doi.org/10.1109/ICASSP.2019.8682525
https://github.com/orcc/orc-apps

	Introduction
	Dataflow Model of Computations
	Related Work
	Design Process and Development
	GPU/CPU Data Communication
	GPU Partitions
	SIMD Parallelization
	Dynamic SIMD Parallelization

	Experimental Evaluation
	Experimental Hardware and Software Platform
	SIMD Parallelization Capabilities' Evaluation
	Experiments with an IDCT Application
	RVC-CAL JPEG Decoder

	CPU/GPU Data Exchange Performance
	RVC-CAL FIR Filter
	RVC-CAL JPEG Decoder

	Conclusions
	References

