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Abstract: An N-bit priority resolver having N inputs and N outputs functions as polling hardware in
an embedded system, enabling access to a resource when multiple devices initiate access requests at
its inputs which may be located on-chip or off-chip. Subsystems such as data buses, comparators,
fixed- and floating-point arithmetic units, interconnection network routers, etc., utilize the priority
resolver function. In the literature, there are many transistor-level designs for the priority resolver
based on dynamic CMOS logic, some of which are modular and others are not. This article presents a
novel gate-level modular design of priority resolvers that can accommodate any number of inputs and
outputs. Based on our modular design architecture, small-size priority resolvers can be conveniently
combined to form medium- or large-size priority resolvers along with extra logic. The proposed
modular design approach helps to reduce the coding complexity compared to the conventional direct
design approach and facilitates scalability. We discuss the gate-level implementation of 4-, 8-, 16-,
32-, 64-, and 128-bit priority resolvers based on the direct and modular approaches and provide a
performance comparison between these based on the design metrics. According to the modular
approach, different sizes of priority resolver modules were used to implement larger-size priority
resolvers. For example, a 4-bit priority resolver module was used to implement 8-, 16-, 32-, 64-, and
128-bit priority resolvers in a modular fashion. We used a 28 nm CMOS standard digital cell library
and Synopsys EDA tools to synthesize the priority resolvers. The estimated design metrics show that
the modular approach tends to facilitate increasing reductions in delay and power-delay product
(PDP) compared to the direct approach, especially as the size of the priority resolver increases. For
example, a 32-bit modular priority resolver utilizing 16-bit priority resolver modules had a 39.4%
reduced delay and a 23.1% reduced PDP compared to a directly implemented 32-bit priority resolver,
and a 128-bit modular priority resolver utilizing 16-bit priority resolver modules had a 71.8% reduced
delay and a 61.4% reduced PDP compared to a directly implemented 128-bit priority resolver.

Keywords: priority resolver; embedded systems; digital circuits; logic design; ASIC; high-speed; low
power; CMOS

1. Introduction

Subsystems such as data buses [1], comparators [2], fixed- and floating-point arith-
metic units [3], interconnection network routers [4], incrementers/decrementers [5], and
sequential address encoders of content addressable memory [6] typically rely on the priority
resolver function. An N-bit priority resolver having N inputs and N outputs is commonly
called an N-bit priority encoder [7,8] in the literature. Nevertheless, we shall use the term
‘priority resolver’ in this paper to refer to such a priority encoder and to distinguish it
from a conventional priority encoder that has 2N inputs and N outputs. This is because
no encoding is performed in an N-bit priority resolver. An N-bit priority resolver, when
implemented in hardware, functions as a polling unit that enables access to a single resource
when requests from multiple devices are received at its inputs, whether located on-chip or
off-chip.

In the existing literature, several full-custom (i.e., transistor-level) designs for the
priority resolver have been presented [5,8–18]. Many of these designs [5,8–15,18] are
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modular, meaning that small-size priority resolver modules are combined with any extra
logic to form medium-/large-size priority resolvers, and some of the designs [16,17] are
non-modular meaning they are not suitable for cascading and only serve as stand-alone
priority resolvers. Some of the priority resolver designs [10,12] address a specific number
of primary inputs (N = 64). A large majority of the priority encoder designs have been
implemented in or make use of domino CMOS logic [5,9–14], while some priority encoder
designs make use of dynamic CMOS logic [8,16–18]. Ref. [15] makes use of static CMOS
logic and pass-transistor logic while Refs. [12,14] makes use of static CMOS and domino
CMOS logic.

Most of the transistor-level designs of priority resolvers are based on the domino
CMOS implementation style and correspond to active-high or active-low binary logic.
Based on active-high logic, a priority resolver functions such that during the pre-charge
phase of the clock, all the priority resolver outputs become binary 0. During the evaluation
phase of the clock, the priority resolver output that corresponds to the input assuming the
highest priority among the high inputs (i.e., set to binary 1) alone becomes binary 1, and
the rest of the priority resolver outputs retain the value of binary 0. Based on active-low
logic, a priority resolver functions such that during the pre-charge phase of the clock, all the
priority resolver outputs become 1. During the evaluation phase of the clock, the priority
resolver output that corresponds to the input assuming the highest priority among the low
inputs (i.e., set to binary 0) alone becomes 0, and the rest of the priority resolver outputs
retain the value of 1. Compared to active-high logic, which pre-charges all the priority
resolver’s outputs to 0, in the case of active-low logic, all the priority resolver’s outputs are
pre-charged to 1. This implies that the switching activity and the power dissipation tend to
be higher for active-low logic compared to active-high logic [18]. Hence, active-high logic
is preferable, and we used it for this work.

In a full-custom priority resolver design, the critical path is usually traversed through
many NMOS or PMOS transistors depending upon its size. To reduce the (critical path)
delay, transistor sizing may have to be performed. Transistor sizing may also have to
be performed to ensure that the outputs of the priority resolvers can drive the required
load(s). In general, compared to a full-custom (i.e., manual transistor-level) ASIC-style
implementation, which requires substantial effort in terms of both design and characteriza-
tion, a semi-custom (i.e., automated gate-level) ASIC-style implementation is preferable.
This is because, in the case of a semi-custom design, a circuit/system can be described in
a hardware description language (HDL) or a high-level language and then converted to
HDL, which can be synthesized utilizing pre-characterized gates belonging to a standard
cell library using a synthesis tool. Moreover, a semi-custom design method automates the
synthesis for speed/area/power depending upon the optimization goal specified. On the
contrary, the optimization for speed/area/power has to be performed manually in the case
of a full-custom design, which might involve several design iterations. Further, a gate-level
design of modular priority resolvers would be versatile, being suited for implementation
in ASIC and FPGA design environments. Furthermore, an HDL description of a priority
resolver could be made available as a soft intellectual property core that can be easily used
off the shelf for integration into a sub-system or system design. Given these, in contrast
to the existing work on priority resolvers which rely on a full-custom design approach,
we focus on a semi-custom design approach in this paper. In this context, this article
presents a novel gate-level modular priority resolver design strategy wherein small-size
priority resolver modules can be combined with extra logic to efficiently realize medium-
or large-size priority resolvers of any size.

In the rest of this article, Section 2 first describes the direct design approach for an
N-bit priority resolver, and then the proposed modular design approach at the gate level.
Section 3 discusses the physical realization of priority resolvers ranging from 4 bits up to
128 bits, implemented using both direct and modular design approaches, and gives their
design metrics. Specifically, according to the proposed modular design approach, 4-bit
priority resolver modules were used to implement 8-, 16-, 32-, 64-, and 128-bit priority



J. Low Power Electron. Appl. 2024, 14, 25 3 of 12

resolvers; 8-bit priority resolver modules were used to implement 16-, 32-, 64-, and 128-bit
priority resolvers; 16-bit priority resolver modules were used to implement 32-, 64-, and
128-bit priority resolvers; 32-bit priority resolver modules were used to implement 64- and
128-bit priority resolvers; and 64-bit priority resolver modules were used to implement
128-bit priority resolvers. Finally, Section 4 draws some conclusions from this research and
highlights the potential scope for further work.

2. Priority Resolvers—Direct and Modular Design Approaches

In this section, we shall first discuss the direct design approach followed by the
proposed modular design approach to realize N-bit priority resolvers.

2.1. Direct Design of Priority Resolvers

The direct implementation of an N-bit priority resolver having N inputs and N outputs
is concisely shown in Figure 1, where P1 to PN represent the primary inputs and R1 to RN
represent the primary outputs. Any primary input can be assigned the highest priority and
any primary input can be assigned the lowest priority in a priority resolver. Accordingly,
when the highest priority input is activated, the corresponding primary output would
be activated to enable access for a device. In Figure 1, for example, primary input P1 is
assigned the highest priority, and primary input PN is assigned the lowest priority with
primary inputs P2 up to PN–1 assuming a descending order of priority down from P1. This
implies that if P1 is activated (i.e., set to binary 1), R1 will be high (i.e., it will assume
binary 1), and regardless of the rest of the primary inputs becoming activated or not during
a processing time window, the remainder of the primary outputs will assume a value of 0.
Supposing PN is activated, and if none of the other primary inputs are activated during a
processing time window, the corresponding primary output RN will alone be high and the
other primary outputs will assume a value of 0. Now assuming multiple primary inputs
are activated, for example, if PN–3, PN–2, and PN–1 are activated during a processing time
window, and the rest of the primary inputs P1 to PN–4 and PN remain deactivated during
that time window, then RN–3 will alone be high. The rest of the primary outputs will assume
a value of 0. This example scenario conveys that as the priority is passed down from the
highest priority input down to lower priority inputs (when the highest priority input has
not been activated), for the primary input that assumes the highest priority among the
activated inputs, the corresponding primary output alone will be high. This principle
is used to directly realize an N-bit priority resolver whose logic schematic is shown in
Figure 1. In Figure 1, P1 and R1 are shown connected by a non-inverting buffer which is a
standard for an ASIC-style implementation.

J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW 3 of 12 
 

 

design metrics. Specifically, according to the proposed modular design approach, 4-bit 
priority resolver modules were used to implement 8-, 16-, 32-, 64-, and 128-bit priority 
resolvers; 8-bit priority resolver modules were used to implement 16-, 32-, 64-, and 128-
bit priority resolvers; 16-bit priority resolver modules were used to implement 32-, 64-, 
and 128-bit priority resolvers; 32-bit priority resolver modules were used to implement 
64- and 128-bit priority resolvers; and 64-bit priority resolver modules were used to im-
plement 128-bit priority resolvers. Finally, Section 4 draws some conclusions from this 
research and highlights the potential scope for further work. 

2. Priority Resolvers—Direct and Modular Design Approaches 
In this section, we shall first discuss the direct design approach followed by the pro-

posed modular design approach to realize N-bit priority resolvers.  

2.1. Direct Design of Priority Resolvers 
The direct implementation of an N-bit priority resolver having N inputs and N out-

puts is concisely shown in Figure 1, where P1 to PN represent the primary inputs and R1 to 
RN represent the primary outputs. Any primary input can be assigned the highest priority 
and any primary input can be assigned the lowest priority in a priority resolver. Accord-
ingly, when the highest priority input is activated, the corresponding primary output 
would be activated to enable access for a device. In Figure 1, for example, primary input 
P1 is assigned the highest priority, and primary input PN is assigned the lowest priority 
with primary inputs P2 up to PN–1 assuming a descending order of priority down from P1. 
This implies that if P1 is activated (i.e., set to binary 1), R1 will be high (i.e., it will assume 
binary 1), and regardless of the rest of the primary inputs becoming activated or not dur-
ing a processing time window, the remainder of the primary outputs will assume a value 
of 0. Supposing PN is activated, and if none of the other primary inputs are activated dur-
ing a processing time window, the corresponding primary output RN will alone be high 
and the other primary outputs will assume a value of 0. Now assuming multiple primary 
inputs are activated, for example, if PN–3, PN–2, and PN–1 are activated during a processing 
time window, and the rest of the primary inputs P1 to PN–4 and PN remain deactivated 
during that time window, then RN–3 will alone be high. The rest of the primary outputs 
will assume a value of 0. This example scenario conveys that as the priority is passed down 
from the highest priority input down to lower priority inputs (when the highest priority 
input has not been activated), for the primary input that assumes the highest priority 
among the activated inputs, the corresponding primary output alone will be high. This 
principle is used to directly realize an N-bit priority resolver whose logic schematic is 
shown in Figure 1. In Figure 1, P1 and R1 are shown connected by a non-inverting buffer 
which is a standard for an ASIC-style implementation.  

 
Figure 1. Direct implementation of an N-bit priority resolver. Figure 1. Direct implementation of an N-bit priority resolver.



J. Low Power Electron. Appl. 2024, 14, 25 4 of 12

Assuming N to be 8 in Figure 1, an 8-bit priority resolver can be realized; its truth
table is shown in Table 1. In Table 1, ‘d’ represents the do not care condition which may
represent binary 0 or 1. Table 1 shows that if a primary input is set to 1, and provided that
no higher-order primary input is concurrently set to 1, the primary output corresponding
to that primary input will become 1 and the rest of the primary outputs will assume a value
of 0. For example, if P1 = 1, regardless of the state of the other primary inputs P2 up to P8,
R1 will assume a value of 1, and the rest of the primary outputs R2 up to R8 will assume a
value of 0. To mention another example, if P4 = 1, and provided that P1 up to P3 have a
value of 0, regardless of the state of P5 up to P8 (which signifies the do not care condition),
R4 will assume a value of 1 while R1 up to R3, and R5 up to R8 will assume a value of 0. On
the other hand, if P1 up to P8 have a value of 0, which is indicative of no activated inputs,
R1 up to R8 would assume a value of 0.

Table 1. Truth table of an 8-bit priority resolver. P1 up to P8 represent the primary inputs, and R1 up
to R8 represent the primary outputs.

Primary Inputs Primary Outputs
P1 P2 P3 P4 P5 P6 P7 P8 R1 R2 R3 R4 R5 R6 R7 R8
1 d d d d d d d 1 0 0 0 0 0 0 0
0 1 d d d d d d 0 1 0 0 0 0 0 0
0 0 1 d d d d d 0 0 1 0 0 0 0 0
0 0 0 1 d d d d 0 0 0 1 0 0 0 0
0 0 0 0 1 d d d 0 0 0 0 1 0 0 0
0 0 0 0 0 1 d d 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 d 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

‘d’ represents do not care (i.e., binary 0 or 1) in the table.

The outputs of the 8-bit priority resolver are expressed by Equations (1)–(8), where
the symbol ~ signifies a Boolean complement. In Equations (1)–(8), the primary input
P1 assumes the highest priority, and primary input P8 assumes the lowest priority with
primary inputs P2 to P7 assuming a descending order of priority down from P1.

R1 = P1 (1)

R2 = P2 (~P1) (2)

R3 = P3 (~P2) (~P1) (3)

R4 = P4 (~P3) (~P2) (~P1) (4)

R5 = P5 (~P4) (~P3) (~P2) (~P1) (5)

R6 = P6 (~P5) (~P4) (~P3) (~P2) (~P1) (6)

R7 = P7 (~P6) (~P5) (~P4) (~P3) (~P2) (~P1) (7)

R8 = P8 (~P7) (~P6) (~P5) (~P4) (~P3) (~P2) (~P1) (8)

A functional simulation of an 8-bit priority resolver was performed using Synopsys
VCS by supplying all possible distinct input vectors, i.e., 256 input vectors for verification.
The input vectors were supplied by a test bench at a latency of 2 ns. Figure 2 shows a
screenshot of a portion of the simulation waveforms of the 8-bit priority resolver that
was synthesized using a 28 nm CMOS standard digital cell library [19]. In Figure 2, bus
p[7:0] encompassing inputs p[7] up to p[0] represents the primary input, and bus y[7:0]
encompassing outputs y[7] up to y[0] represents the primary output.
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Figure 2. Screenshot of a portion of simulation waveforms of an 8-bit priority resolver. Input bus
p[7:0] comprises primary inputs p[7] up to p[0], with p[0] assuming the highest priority and p[7]
assuming the lowest priority. Output bus y[7:0] comprises primary outputs y[7] up to y[0]. M1 to M6
are markers pointing to specific time instances in the simulation waveforms.

In the simulation waveform shown in Figure 2, six markers, namely M1 up to M6, are
highlighted, which point to different combinations of primary inputs that are activated (i.e.,
set to 1) during different time instances and the corresponding highest-priority primary
output that is high (i.e., become binary 1). The input and output states captured by the
markers are mentioned below.

• Marker M1: primary inputs p[7], p[6], p[4], p[3], and p[0] are activated; primary
output y[0] alone is high;

• Marker M2: primary inputs p[7], p[6], p[4], p[3], and p[2] are activated; primary
output y[2] alone is high;

• Marker M3: primary inputs p[7], p[6], and p[5] are activated; primary output y[5]
alone is high;

• Marker M4: primary inputs p[7], p[6], p[5], p[2], and p[1] are activated; primary
output y[1] alone is high;

• Marker M5: primary inputs p[7], p[6], p[5], and p[3] are activated; primary output
y[3] alone is high;

• Marker M6: primary inputs p[7], p[6], p[5], and p[4] are activated; primary output
y[4] alone is high.

2.2. Proposed Modular Design of Priority Resolvers

A priority resolver of any size can be described in HDL according to the generalized
logic schematic portrayed in Figure 1. However, it would be cumbersome to describe
medium- and large-size conventional priority resolvers directly in HDL. In contrast, it
would be rather convenient to describe a medium- or large-size modular priority resolver
using small-size priority resolver modules and some additional logic, which is called a
modular implementation. A modular implementation, besides simplifying the HDL coding,
might help to minimize the critical path delay compared to a direct implementation. In this
section, we present a novel gate-level modular priority resolver design architecture that
can address any number of primary inputs and outputs and is suitable for a semi-custom
ASIC-style implementation or an FPGA-based implementation.
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To describe our modular design approach, we now consider an M-bit priority resolver
module and show how it can be used as a building block to realize an N-bit priority resolver
where N > M, as depicted in Figure 3. For simplicity of discussion, in Figure 3, N and
M are considered even, N is assumed to be equal to 3M, and N mod M is assumed to be
0. However, the proposed modular design architecture is generic and can be tailored to
realize any N-bit priority resolver using the required number of M-bit priority resolver
modules along with extra logic. Even if N mod M may not be equal to 0 and/or N is odd, a
combination of different size priority resolver modules may be used to realize a modular
N-bit priority resolver according to our proposition. In Figure 3, P and R represent the
primary input and primary output, respectively.
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Figure 3. Proposed modular design architecture to realize N-bit priority resolvers using M-bit priority
resolver modules and extra logic. Here, N = 3M and N mod M = 0. The critical path may be traversed
through an M-bit NOR gate and an (N/M)-input AND gate (which is highlighted by the blue dashed
line) or an M-bit priority resolver module and an (N/M)-input AND gate (which is highlighted by the
red dashed line). Internal outputs W1 and W2 are highlighted in pink, and the intermediate primary
outputs IRM+1, IR2M, IR2M+1, and IR3M are highlighted in green.
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Since N is assumed to be 3M for our discussion, three M-bit priority resolver modules
are used, as shown in Figure 3, with module 1 having inputs P1 up to PM, module 2
having inputs PM+1 up to P2M, and module 3 having inputs P2M+1 up to P3M. In Figure 3,
module 1 is assigned the highest priority while module 3 is assigned the lowest priority.
In terms of the primary inputs, P1 is assigned the highest priority, and P3M is assigned
the lowest priority in the modular N-bit priority resolver shown. W1 and W2 are internal
outputs, which are the outputs of the M-bit NOR gates that comprise the inputs of module 2
and module 3, respectively. IRM+1 up to IR2M represents the outputs of priority resolver
module 2, which are individually combined with W1 to produce the primary outputs RM+1
up to R2M. IR2M+1 up to IR3M represent the outputs of priority resolver module 3, which are
individually combined with W1 and W2 to produce the primary outputs R2M+1 up to R3M.

Referring to Figure 3, to explain the modular design architecture, if any of the primary
inputs of module 1 are activated, the output of the first M-bit NOR gate. viz. W1, would
become 0. As a result, RM+1 up to R2M (representing the outputs of priority resolver
module 2) and R2M+1 up to R3M (representing the outputs of priority resolver module 3)
would become 0, regardless of whether any of their primary input(s) were activated.
Supposing that none of the primary inputs of module 1 are activated, W1 would become
1, and the highest priority will now be passed to module 2. Under this condition, even if
any one of the primary inputs of module 2 is activated, W2 would become 0, and hence,
R2M+1 up to R3M (representing the outputs of priority resolver module 3) would become
0 regardless of whether any of its primary inputs were activated. If any module input is
activated, the primary outputs belonging to modules with a lower priority would become 0
regardless of the active/inactive state of their corresponding primary inputs. This principle
can be used to combine small-size priority resolver modules to realize medium- or large-
size priority resolvers along with extra logic, as illustrated by the example realization
shown in Figure 3.

3. Physical Implementation and Design Metrics

Priority resolvers of different sizes ranging from 4 bits to 128 bits were described in
Verilog HDL according to the direct approach and the proposed modular approach and
were synthesized using a 28 nm CMOS standard digital cell library [19]. For the modular
design, different sizes of priority resolver modules were considered to implement larger-
size priority resolvers. Specifically, 4-bit priority resolver modules were used to implement
8-, 16-, 32-, 64-, and 128-bit priority resolvers; 8-bit priority resolver modules were used
to implement 16-, 32-, 64-, and 128-bit priority resolvers; 16-bit priority resolver modules
were used to implement 32-, 64-, and 128-bit priority resolvers; 32-bit priority resolver
modules were used to implement 64- and 128-bit priority resolvers; and 64-bit priority
resolver modules were used to implement 128-bit priority resolvers along with extra logic.

A typical low-leakage standard cell library specification with a 1.05 V supply voltage
and a 25 ◦C operating junction temperature was considered for the synthesis and simulation.
Synopsys EDA tools, namely Design Compiler, was used for the synthesis and to estimate
the total area (i.e., cells area + interconnect area) of the synthesized designs; VCS was used to
perform the functional simulation; PrimeTime was used to estimate the (critical path) delay;
and PrimePower was used to estimate the total (average) power dissipation. During the
simulation and synthesis, the default wire load was used and a fanout-of-4 drive strength
was assigned to all the priority resolver primary outputs. For the synthesis, the optimization
goal was specified as speed. The critical path delay of the directly implemented 128-bit
priority resolver was estimated to be 4.79 ns, and so the test benches corresponding to the
various priority resolvers were supplied at a latency of 5 ns (@ 200 MHz) to simulate and
verify their functionality. All the distinct input vectors were considered to simulate the
functionality of the 4-bit and 8-bit priority resolvers. For 16-, 32-, 64-, and 128-bit priority
resolvers, it would be cumbersome to consider all the distinct inputs since the number of
distinct input vectors of an N-bit priority resolver is given by O[2N]. Hence, some random
input vectors were considered to represent the test benches of 16-, 32-, 64-, and 128-bit
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priority resolvers. The same test benches were supplied to directly implemented and
modular priority resolvers. The switching activity recorded during functional simulations
was used to estimate the total power dissipation. A priority resolver usually forms a part of
a sub-system that would be integrated into a system, and the clock is generally determined
for an entire system. So, a virtual clock was used to constrain the input and output ports
of the priority resolvers, and it did not form a part of the physical realization. Hence, the
estimated design metrics of the various priority resolvers are entirely attributable to their
corresponding logic.

The standard design metrics, viz. total area, critical path delay, and total power
dissipation of directly implemented priority resolvers, are given in Table 2, and the same
metrics corresponding to the modular priority resolvers are given in Table 3. In the first
column of Table 3, the notation (X_Y) implies that an X-bit priority resolver module was
used as the building block to construct a larger-size Y-bit priority resolver. Understandably,
the 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit priority resolvers that were realized directly were
used as building blocks for the modular priority resolver designs.

Table 2. Design parameters of directly implemented priority resolvers, synthesized using a 28 nm
CMOS standard digital cell library.

Priority Resolver
Size

Area (µm2) Critical Path
Delay (ns)

Total Power
Dissipation (µW)Cells Interconnect Total

4 bits 16.77 1.70 18.47 0.25 2.86
8 bits 41.93 4.04 45.97 0.41 4.20

16 bits 94.80 9.08 103.88 0.73 11.40
32 bits 200.52 32.93 233.45 1.27 16.92
64 bits 411.97 67.60 479.57 2.45 32.62

128 bits 834.86 136.96 971.82 4.79 51.51

Table 3. Design parameters of (proposed) modular priority resolvers, synthesized using a 28 nm
CMOS standard digital cell library.

Priority Resolver
Size

Area (µm2) Critical Path
Delay (ns)

Total Power
Dissipation (µW)Cells Interconnect Total

4-bit priority resolver module used as the building block
8 bits (4_8) 48.80 4.72 53.52 0.29 5.10

16 bits (4_16) 114.87 11.17 126.04 0.50 13.47
32 bits (4_32) 246.01 38.32 284.33 0.76 21.27
64 bits (4_64) 508.29 79.56 587.85 1.33 41.60

128 bits (4_128) 1032.84 162.03 1194.87 2.45 63.60
8-bit priority resolver module used as the building block

16 bits (8_16) 112.33 10.89 123.22 0.45 14.25
32 bits (8_32) 254.65 39.75 294.40 0.74 22.03
64 bits (8_64) 544.38 85.44 629.82 1.60 44.42

128 bits (8_128) 1123.88 176.82 1300.65 3.30 72.30
16-bit priority resolver module used as the building block

32 bits (16_32) 240.93 38.16 279.07 0.77 21.47
64 bits (16_64) 534.72 89.20 623.92 0.78 44.23

128 bits (16_128) 1122.30 191.28 1313.58 1.35 70.57
32-bit priority resolver module used as the building block

64 bits (32_64) 505.24 76.26 581.50 1.42 40.94
128 bits (32_128) 1114.68 175.16 1289.84 1.42 68.77

64-bit priority resolver module used as the building block
128 bits (64_128) 1028.27 179.97 1208.24 2.48 62.79
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From Tables 2 and 3, it can be observed that the modular priority resolvers generally
occupy more area compared to directly implemented priority resolvers. This is because,
architecture-wise, modular priority resolvers, besides featuring the priority resolving logic,
involve extra logic represented by the NOR and AND gates in Figure 3, which is absent in
the directly implemented priority resolvers portrayed in Figure 1.

Although the area is a standard design metric, delay and power dissipation merit
greater consideration than the area. From Tables 2 and 3, it can be noted that for any given
priority resolver size, the modular priority resolvers, regardless of the underlying priority
resolver module used, had a reduced delay compared to the directly implemented priority
resolvers. This may be reasoned theoretically as follows. The primary output of a directly
implemented N-bit priority resolver that is assigned the least priority, i.e., RN in Figure 1,
is produced by a final N-input AND gate. Supposing N = 128, a 128-input AND function
is required to realize R128 according to the architecture shown in Figure 1. It is common
knowledge that any large logic function would be decomposed by a logic synthesis tool
before physical realization using a standard digital cell library. This is because modern
standard digital cell libraries do not usually support AND gates with a fan-in > 4. Hence,
even after logic decomposition, a 128-input AND function would give rise to multiple
levels of logic in the critical path of a directly implemented 128-bit priority resolver. On the
other hand, if we consider a 128-bit modular priority resolver implemented using say 16-bit
priority resolver modules (referred to as a 16_128 modular priority resolver in Table 3),
according to the architecture shown in Figure 3, the critical path may involve a 16-input
NOR gate and an 8-input AND gate (as highlighted by the blue dashed line) or a 16-input
AND gate and an 8-input AND gate (as highlighted by the red dashed line), and the high
fan-in gates would be decomposed before physical synthesis. Nevertheless, either way, the
critical data path of a 16_128 modular priority resolver would likely contain fewer logic
gates compared to the critical path of a directly implemented 128-bit priority resolver, and
this is the reason why modular priority resolvers, in general, have the potential to achieve
reduced delay compared to directly implemented priority resolvers. This is substantiated
by the delay metric given in Tables 2 and 3. By comparing Tables 2 and 3, the following
observations were recorded.

• Compared to the directly implemented 8-bit priority resolver, a 4_8 modular priority
resolver had a 29.3% reduced delay;

• Compared to the directly implemented 16-bit priority resolver, the 4_16 and 8_16 mod-
ular priority resolvers achieved reductions in delay of 31.5% and 38.4%, respectively;

• Compared to the directly implemented 32-bit priority resolver, the 4_32, 8_32, and
16_32 modular priority resolvers achieved similar reductions in delay of 40.2%, 41.7%,
and 39.4%, respectively;

• Compared to the directly implemented 64-bit priority resolver, among the different
modular priority resolvers, the 16_64 modular priority resolver achieved a maximum
reduction in delay of 68.2%;

• Compared to the directly implemented 128-bit priority resolver, the 16_128 modular
priority resolver achieved a maximum reduction in delay of 71.8%, and the 32_128
modular priority resolver achieved a similar delay reduction of 70.4%.

As noted earlier, the directly implemented priority resolvers occupied less area than
the modular priority resolvers. Consequently, the former dissipates less power than the
latter for all the priority resolver sizes considered. However, the product of power and
delay, also called the power-delay product (PDP), commonly serves as a low power/low
energy figure of merit for digital logic designs [20]. Therefore, we calculated the PDP of the
directly implemented and modular priority resolvers for comparison, and these are given
in Table 4.
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Table 4. Power-delay product (PDP) of direct and modular implementation of priority resolvers.

Priority Resolver
Size

Direct
Implementation

Modular
Implementation

4 bits 0.72 –

8 bits 1.72 1.48 (4_8)

16 bits 8.32
6.74 (4_16)

6.41 (8_16)

32 bits 21.49

16.17 (4_32)

16.30 (8_32)

16.53 (16_32)

64 bits 79.92

55.33 (4_64)

71.07 (8_64)

34.50 (16_64)

58.13 (32_64)

128 bits 246.73

155.82 (4_128)

238.59 (8_128)

95.27 (16_128)

97.65 (32_128)

155.72 (64_128)

PDP is a useful figure of merit to quantify the energy efficiency of a digital logic design.
From Table 4, it can be noted that from the PDP perspective, the modular implementation
was preferable to the direct implementation for the different priority resolver sizes con-
sidered. This is mainly due to the significant delay reduction achieved by the modular
implementation compared to the direct implementation. The following observations were
made from Table 4:

• Compared to the directly implemented 8-bit priority resolver, a 4_8 modular 8-bit
priority resolver had a 14% reduction in PDP;

• Compared to the directly implemented 16-bit priority resolver, the 4_16 and 8_16 mod-
ular 16-bit priority resolvers achieved reductions in PDP of 19% and 23%, respectively;

• Compared to the directly implemented 32-bit priority resolver, the 4_32, 8_32, and
16_32 modular 32-bit priority resolvers achieved similar reductions in PDP of 24.8%,
24.2%, and 23.1%, respectively;

• Compared to the directly implemented 64-bit priority resolver, among the different
modular priority resolvers, the 16_64 modular 64-bit priority resolver achieved a
maximum reduction in PDP of 56.8%;

• Compared to the directly implemented 128-bit priority resolver, among the different
modular priority resolvers, the 16_128 and 32_128 modular 128-bit priority resolvers
achieved similar reductions in PDP of 61.4% and 60.4%, respectively.

In general, choosing a small priority resolver module would result in the use of several
such modules for a modular implementation. For example, a 4_128 modular priority
resolver requires thirty-two 4-bit priority resolver modules which will increase the fan-in
of the AND gates producing the primary outputs, as seen in Figure 3. This problem can be
alleviated by using large priority resolver modules—for example, a 64_128 modular priority
resolver requires just two 64-bit priority resolver modules and therefore, the fan-in of the
final AND gates can be significantly reduced. However, a large priority resolver module
would internally feature a large fan-in AND gate (evident from the logic corresponding to
RN in Figure 1). Hence, the general idea is that to realize a medium- or large-size modular
priority resolver, an optimally sized priority resolver module should be chosen such that



J. Low Power Electron. Appl. 2024, 14, 25 11 of 12

the resulting modular implementation would comprise an optimum number of priority
resolver modules to achieve the maximum reduction in delay and potentially the maximum
reduction in PDP. For example, a 16_128 modular priority resolver was found to be optimal
in Table 3 among the different 128-bit modular priority resolvers. The optimal size of a
priority resolver module and the optimal number of priority resolver modules to be used
to implement an optimum modular priority resolver may be determined by trial and error,
as was performed in this work. Alternatively, a generalized mathematical model may be
developed to guide the optimal implementation of a modular priority resolver.

From Tables 2 and 3 concerning delay and power/PDP, we can infer that a 4_8 modular
priority resolver is preferable to a directly implemented 8-bit priority resolver, 4_16 and 8_16
modular priority resolvers are preferable to a directly implemented 16-bit priority resolver,
4_32 and 16_32 modular priority resolvers are preferable to a directly implemented 32-bit
priority resolver, a 16_64 modular priority resolver is preferable to a directly implemented
64-bit priority resolver, and a 16_128 modular priority resolver is preferable to a directly
implemented 128-bit priority resolver.

4. Conclusions

Given that a priority resolver is a useful circuit in many embedded systems, this article
presented a novel gate-level modular design strategy for the priority resolver. Compared
to the existing transistor-level priority resolver designs which require considerable manual
effort for both design and characterization, the proposed modular priority resolver design
strategy corresponds to the gate level which makes it suitable for logic description using an
HDL and subsequent synthesis using commercial/open-source EDA tools. Based on our
proposition, an N-bit priority resolver can be implemented using M-bit priority resolver
modules along with extra logic where N > M and N mod M may or may not be equal to
0. We considered different sizes of priority resolver modules for realizing many modular
priority resolvers and compared their performance with directly implemented priority
resolvers of the same size, based on a semi-custom ASIC-style implementation. It was
noted that the proposed modular implementation of priority resolvers was preferable
to the conventional direct implementation in terms of delay and PDP. As further work,
the proposed modular priority resolver design strategy may be used to effectively realize
incrementer/decrementer circuits and data comparators that utilize the priority resolver
function. Also, the possibility of designing a 2D gate-level modular priority resolver may
be explored as future work.
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