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Abstract: Devices that harvest electrical energy from mechanical vibrations have the 

problem that the frequency of the source vibration is often not matched to the resonant 

frequency of the energy harvesting device. Manufacturing tolerances make it difficult to 

match the Energy Harvesting Device (EHD) resonant frequency to the source vibration 

frequency, and the source vibration frequency may vary with time. Previous work has 

recognized that it is possible to tune the resonant frequency of an EHD using a tunable, 

reactive impedance at the output of the device. The present paper develops the theory of 

electrical tuning, and proposes the Bias-Flip (BF) technique, to implement this tunable, 

reactive impedance. 

Keywords: energy harvesting; bias-flip; piezo-electric  

 

1. Introduction 

Figure 1 shows a schematic of a Piezoelectric (PZ) Energy Harvesting Device (EHD) that is the 

subject of this research. This structure is referred to as a cantilever structure, and is used to amplify the 
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amplitude of the source vibration [1]. Previous work has shown that maximum output power is 

achieved when the cantilever has a high Q resonance at the frequency of the source vibration. 

However, the frequency of the source vibration is not usually matched to the resonant frequency of the 

EHD. The source vibration may vary with time. This paper addresses the problem of electronically 

tuning the PZ EHD to achieve maximum power in situations where the source vibration is not a stable 

frequency matched to the mechanical resonant frequency of the EHD. 

Figure 1. Schematic of a Piezo-Electric (PZ) Energy Harvesting Device (EHD) based on 

the Cantilever Beam structure. 

 

In the interest of simplicity, we will analyze the structure in Figure 2. The results achieved through 

analysis of this structure can be generalized to the cantilever structure through the addition of 

geometrical constants. 

Figure 2. Schematic of the simplified EHD that is analyzed in this paper. Ap is the area of 

the PZ capacitor, and tp is the thickness. Z is the complex amplitude of the source 

vibration, and X is the complex amplitude of the mechanical displacement of the mass M. 

This simplified model illustrates the concepts of electronic tuning that apply to the 

cantilever structure of Figure 1. 

 

This paper describes three concepts for electrically tuning of PZ EHDs. 

1. Use of voltage amplitude to tune the mechanical stiffness of the EHD; 

2. Coupling of the mechanical resonator to an electrical RLC tank circuit; 

3. Bias-Flip (BF) technique to emulate the large tunable inductor that is required for the RLC  

tank circuit. 
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These three concepts were introduced in summary form in [2]. In the succeeding sections of this 

paper, these concepts will be presented in more detail. Section 6 shows that BF can be used to 

effectively optimize the power output from a PZ EHD. In this paper, we have changed some of the 

notation that we used in [2], in order to conform to generally accepted usage. 

In this paper, we will analyze the PZ EHD. However, many of the results and conclusions are 

equally applicable to electromagnetic and electrostatic EHDs. Cammarano et al. [3] have described 

concepts very similar to #1 and #2 above in the context of electro-magnetic EHDs. 

2. Frequency Tuning by Voltage 

The material equations for PZ material can be written as follows [1]. 

 dE
Y


  (1) 

  dED   (2)

The parameters are defined below. 

 mechanical strain (displacement/length) 

 mechanical stress (force/area) 

Y Young’s Modulus (force/area) 

d piezo-electric (PZ) coefficient (m/volt) 

22 d
Y


   





2

2

1 
 PZ coupling constant 

E electric field (volt/m) 

D electrical displacement (coulomb/m2) 

 dielectric constant (coul/volt-m) 
mk  mechanical (short-circuit) spring constant 

 mkmm / mechanical (short-circuit) resonant frequency 

 ppe tAC / electrical ( 0 ) capacitance 

 )1/( emc CC motion constrained ( 0 ) capacitance. 

L inductance 

 mcmc LC/1 motion constrained resonant frequency 

 mechanical damping factor (force/velocity) 



m

m

m
Q mechanical Q-factor 

 LL RG /1 load conductance 


mcm

LN
L C

G
G


normalized load conductance 

 inin RG /1 internal conductance 
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 m
mcm

inN
in Q

C

G
G 


normalized internal conductance 

Refer to the device of Figure 2. When the output is shorted, E = 0, and the mechanical stiffness is 
given by Young’s modulus, ppm tYAk / . The short-circuit, resonance frequency is given by

mkmm /2  . However, when the output is in the open circuit condition, D = 0; the open-circuit 

stiffness is given by )1(  moc kk , where  is the dimensionless PZ coupling constant, defined in 

Table 1. From this, it can be shown that the open-circuit and short-circuit resonant frequencies oc and

m are related by the equation )1(22   moc . This relationship is well-known, and has been used to 

experimentally determine the coupling constant ρ [1]. 
Similarly, we define the electrical capacitance ppe tAC /  for the case when there is no stress 

)0(  ; and we define the motion constrained capacitance )1/(  emc CC  for the case when δ = 0. 

The equations for the PZ EHD shown in Figure 2 are given below  

 maF     )(2 ZXmXjdVkXkF mm    (3)

dt

dQ
i     V

RLj
dXkjVCjQj

L
mmc 
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  (4)

These equations can be solved for )(V  and )(X  as shown below. 
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When the source vibration frequency ω equals the mechanical resonant frequency m , Equation (5) 

for output voltage reduces to a familiar form. 
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(7)

where mcmmin CQG   and dZGI inp / . 

This results in the familiar circuit model for the PZ EHD, shown at the left of Figure 3.  
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Figure 3. The circuit within the dashed box is the equivalent circuit that applies to a PZ 
EHD when =m. At this frequency, the PZ current pI  is independent of the load. For  

 ≠ m this equivalent circuit does not accurately model device behavior, because the PZ 
current pI  changes as the load changes. The circuit at the right includes an inductor to 

cancel the capacitive reactance of the EHD.  

 

If a purely resistive load is connected to the EHD, the device capacitance mcC  degrades output 

power. As a result, an inductor (or an effective inductor) is added to the output circuit for the purpose 

of cancelling the capacitive admittance and achieving maximum average power to the load. 

in
av G

d

Z
P

2

max 8

1






  (8)

In succeeding sections, simulations of voltage and output power are shown as a function of 
frequency. In [2] simulations were shown for 2.0 ; 50mQ ; and 10 m

N
in QG  . Throughout 

this paper, simulations are shown for 05.0 ; 20mQ ; and 0.1 m
N
in QG  . These values are 

more representative of today’s commercial devices. 

Figure 4. Voltage magnitude for the case of no inductor. Voltage is normalized to dZ / , 

the open-circuit voltage at 1w .  

 
Figure 4 shows the magnitude of the output voltage as a function of frequency, calculated using 

Equation (5), for the case of no inductor ( 0mc ). On the vertical axis, voltage is normalized to the 
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maximum open-circuit voltage at the mechanical resonant frequency dZVoc /max  . Frequency, on the 

horizontal axis, is normalized to m . For 1/  mw  , Figure 4 confirms the predictions of 

Equation (7). For 0N
LG , the normalized voltage magnitude is 0.707; and for N

in
N
L GG  , the 

normalized voltage magnitude is 0.447. However, for 1w , Figure 4 shows interesting behavior, 

especially for N
in

N
L GG  . For 0N

LG , the voltage shows a resonance at mmoc  025.11  . 

Figure 4 shows that, for large N
LG , the voltage peaks at the mechanical or short-circuit resonance 

frequency m . However, for small N
LG , the device characteristics change. When 0N

LG , the peak 

voltage occurs at mmoc  025.11  . This can be understood as follows. For large N
LG , the 

electric field is effectively shorted. As N
LG decreases, the electric field in the EHD increases, and alters 

the effective spring constant of the cantilever beam. 

It is tempting to assume from the above that frequency tuning is possible only in the narrow range 

ocm   [4]. However, as we will see below, the addition of a resonant electrical circuit allows the 

voltage to swing below zero and above ocV , thereby enabling a wider tuning range.  

3. Coupled Oscillators 

In the simulations in the previous section, we did not attempt to cancel the reactive admittance of 
the PZ capacitor, and we observed the degradation in output voltage. Since 1)/(  mcmL

N
L CGG   in 

the simulations above, the degradation is not large. However, in some cases, the PZ EHD has a large 
capacitance, which can substantially degrade output power at m  . In Figure 5, we simulate 

Equation (5) for the case mmc   . This is equivalent to adding an inductor that cancels the reactive 

admittance of the capacitor at m  . The inductor performs as expected at m  . The output 

voltage equals max
ocV . Moreover, for large N

LG , the output voltage continues to show a resonant peak at 

m  ; and the voltage falls away sharply away from m  . 

However, for m  , Figure 5 shows a surprising result when N
LG  is small. Two peaks occur at 

118.1/   mw   and 894.0/   mw  . These resonances result from the poles in the 

denominator of Equation (5) when 0N
LG . 

   0222222  mmcm   (9)

Solution to the pole-splitting equation above, for the case mmc    and 05.0  gives the values 

of w  and w  above. Note that, when 0mc  (case of no inductor), the solutions of Equation (9) are 

0w  and 025.11  w . Pole splitting, which describes coupled modes of the mechanical 

and electrical resonators, occurs only for small N
LG . When N

LG is large, the electric field in the PZ 

material is screened, and coupling is suppressed. 
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Figure 5. Voltage magnitude for the case when an inductor of value 12 )(  mcmCL   is 

added to the circuit. Voltage is normalized as in Figure 4. 

 

Figure 6. Roots of the Pole-splitting Equation (9). The normalized pole frequencies 

mw  /  and mw  /  are plotted vs. mmcmcw  / . 

 

The roots of the pole-splitting equation are shown in Figure 6 for several values of coupling 
constant  . In Figure 5, we selected mmc   , in order to optimize output power at m  . But, we 
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discovered that, if we increased the load resistance, we could also optimize output voltage at w   

and w . (We will show in the next section that output power is also optimized at these frequencies). 

This analysis suggests that we can tune the EHD resonant frequency by varying mc . 

We can gain further insight into the pole-splitting by returning to Equations (5) and (6). For small 
N
LG , the following relationship holds between )(X  and )(V . 

22

2

22

2
















mc
N
Lmcmc

X

Gj

X
dV  (10)

Using Equation (10) the force of the spring can be written as 

XkdVkXkF
mc

mmmspring 










22

2

1



 (11)

The above equation shows that, by tuning L, we can vary mc and vary the effective spring constant. 

When mc  , )(V  has a phase of 180° relative to )(X ; and the voltage reduces the effective 

spring constant. When mc  , )(V  has a phase of 0° relative to )(X ; and the voltage increases 

the effective spring constant. When mc  , the magnitude of )(X  is zero. If we adjust mc such 

that the corresponding root of Equation (9) equals the source vibration frequency, then Equation (11) 

reduces to  

XkF
m

mspring 









2

2




 (12)

Equation (12) shows that the effective spring constant can be tuned over a wide range. 
It is also somewhat surprising that the peak voltages at  and  are 3.5× to 5.5× higher than max

ocV

. The simulations in this paper assume that the source magnitude Z  is held constant as the frequency 
changes. As a result, the input acceleration increases in proportion to 2 , and )()(    VV . The 

important result is that the peak voltages away from resonance can be somewhat higher than max
ocV , and 

the higher voltage enables frequency tuning. 

4. Optimizing Output Power 

In the previous section, we showed that voltage can be made to peak at frequencies  and  ,, 

which are different from m . Figure 7 shows that power is also maximized at these frequencies. The 

curve for N
in

N
L GG   indicates that output power peaks at m  , at the power avPmax given by  

Equation (8). The curve for N
in

N
L GG 10  shows a peak at m   at a degraded power level. The curve 

for N
in

N
L GG 1.0 shows two peaks at  and  that have output power comparable to avPmax . When N

LG

is further reduced to N
in

N
L GG 01.0 , the output power at  and  decreases. 
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Figure 7. Normalized average output power for the case when an inductor of value 
12 )(  mcmCL   is added to the circuit. Average power is normalized by avPmax  Equation (8). 

 

Figure 7 suggests that output power can be optimized at frequencies different from m  by adjusting 

the external inductor (or effective inductor). Equation (5) provides a general expression for )(V . 

Varying the parameter 1)(  mcmc LC in Equation (5) is equivalent to varying the inductor. 

Maximizing power with respect to mc gives the expression 

2

22
222

2222
22
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)(

m

m
m

mm
mc

Q










  

(13)

When we use Equation (13) to determine the value of mc that optimizes power at each frequency, 

the resulting voltage and power are shown in Figures 8 and 9. 

Equation (13) suggests that we need two strategies for optimizing power, depending on the source 
frequency  . For frequencies near m , (Region 2), Equation (13) reduces to 

22222 )( mmmc Q   (14)

Note that, when m  , Equation (14) reduces further to mmc   , which is equivalent to 

matching the capacitive admittance (refer to Figure 3). When  is above or below m  (Regions 1 and 

3), Equation (13) reduces to the pole-splitting Equation (9). Far from m , output power is maximized 

at the pole frequencies [roots of Equation (9)]. However, as   approaches m , interaction between the 

poles shifts the max-power frequency [given by Equation (13)] slightly away from the pole frequency. 
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Figure 8. Normalized voltage magnitude for the case when the reactive admittance is 

optimized to give maximum output power using Equation (13). Plots of Voltage vs. 
frequency are given for different values of normalized load conductance N

LG . These plots 

can be thought of as envelopes of curves such as Figure 5 for different values of mc . 

 

Figure 9. Normalized average power for the case when the reactive admittance is 

optimized to give maximum output power using Equation (13). Plots of power vs. 
frequency are given for different values of normalized load conductance N

LG . Power increases 

with increasing ω because source acceleration increases, thereby increasing input power. 

 
  

‐2.5

‐2.0

‐1.5

‐1.0

‐0.5

0.0

0.5

1.0

1.5

0.7 0.8 0.9 1.0 1.1 1.2 1.3

Lo
g 1

0
(N
o
rm

al
iz
ed

 V
o
lt
ag
e
 M

ag
n
it
u
d
e
)

=1

=10

w = ω/ωm

=0.01

=0

=0.1

1)/(
20    05.0




mmmcin
N
in

m

QCGG
Q




‐3.5

‐3.0

‐2.5

‐2.0

‐1.5

‐1.0

‐0.5

0.0

0.5

0.7 0.8 0.9 1.0 1.1 1.2 1.3

Lo
g 1

0
(N
o
rm

al
iz
e
d
 A
ve
ra
ge
 P
o
w
e
rP
)

=1

=10

w = ω/ωm

=0.01

=0.1

1)/(
20    05.0




mmmcin
N
in

m

QCGG
Q




Region 1 Region 2 Region 3



J. Low Power Electron. Appl. 2013, 3 204 

 

 

Within the region 1)2(  mQw around the mechanical resonant frequency (Region 2), output 

power can be optimized by using (14) for reactive admittance and inL GG  . In Regions 1 and 3, 

power is optimized by using the pole splitting Equation (9) for reactive admittance and inL GG  . For 

the parameters used in this example ( 20mQ ), 025.0w . 

Cammarano et al. [3] have derived an equation very similar to Equation (13): Equation (8) in [3]. 

They observe that the power conditioning system at the output of the EHD can be used to synthesize 

the complex load impedance required by Equation (13), and they comment on the challenge of 

reducing the power of such systems. Chang et al. [5] have implemented a switch-mode power 

conditioning system to the output of a PZ EHD, and have demonstrated the ability to harvest energy 
from two sources simultaneously: m   and m 2.1 . 

5. Bias-Flip Technique 

For a typical, discrete EHD, nFCmc 100 , and the inductor required to match this reactance at  

100 Hz is impractically large: HL 25 . However, it has been shown that the Bias-Flip technique can 

be used to synthesize a reactive impedance for effective impedance matching [6,7]. This technique is 

suitable to ULP miniaturization. It utilizes a very small inductor together with ULP microelectronics to 

emulate an inductor that is large and tunable. The BF technique has been shown to be effective in 
maximizing the output power of PZ EHDs at m   [7]. In this section, we will describe the  

Bias-Flip technique in the context of the equivalent circuit of Figure 3 describing a PZ EHD operating 

at the mechanical resonance frequency. 

Figure 10. Operation of a Bias Flip (BF) Inductor. (a) A small inductor is connected to the 

output through ideal switches; (b) When the switchers are closed, the LC tank circuit begins 

to oscillate, when the switches are opened, half a period later, the sign of the voltage has 

been adiabatically “flipped”; (c) To achieve maximum power to the load, the bias is flipped 

when Ip changes sign; (d) The resulting voltage waveform is “in-phase” with the current. 
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The BF technique is illustrated in Figure 10. In the BF circuit, the large inductor is replaced by a 

small inductor, connected by MOS switches. When the switches are closed, a high frequency tank 

circuit is formed. After ½ period of oscillation of this tank circuit, the switches are opened, and the 

voltage on the capacitor has “flipped” adiabatically from +V to −V. In this paper, the switches are 

assumed to be ideal and lossless. 
Refer to Figure 3. When an ideal inductor is used together with a matched resistive load inL RR  , 

the maximum average output power is given by )8/(2
max inp
av GIP  . [See Equation (8)] In Figure 11, we 

show how effective the ideal Bias-Flip circuit is in achieving maximum power.  

Figure 11. Normalized Average Power delivered to the load at m  . The equivalent 

circuit of Fig 3 is used with inL RR  . The dashed line shows the case of no inductor. The 

solid line shows the improvement in output power that is achievable using the Bias-Flip 

inductor. Both curves are normalized to the average power obtained using an ideal tuned 
inductor )8/(2

max inp
av GIP  . 

 

In the worst case of very large mcC , the output power is degraded by several orders of magnitude, 

when no inductor is used. However, the Bias-Flip approach delivers power )/( 22
inp

av
BF GIP  , which is 

%81/8 2  of the max power obtained using an ideal inductor. This illustrates the effectiveness of 
Bias-Flip circuits to achieve high output power when mcC is large [7]. 

So far in this paper, we have discussed the case in which AC power is delivered to a resistive load. 

We have done this because the analysis can be performed in closed form. However, in many energy 

harvesting applications, it is necessary to rectify the AC power and store it in a battery or  

super-capacitor. The Bias-Flip technique is especially applicable to this case, as shown in [7]. 

The rectification circuit analyzed in [7] is shown in Figure 12. For simplicity, we assumed that the 

EHD is operating at the mechanical resonance frequency, and we use the equivalent circuit of Figure 3. 
The output AC voltage )(tv is rectified in the diode bridge and stored on the capacitor RECTC  that is 

maintained at voltage RECTV by the Energy Management Circuit. The analysis below assumes  

ideal diodes.  
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Figure 12. Circuit to rectify and store the AC power being generated by the EHD. It is 

assumed that the EHD is operating at the mechanical resonance frequency. 

 

Operation of the Bias-Flip rectifier is described with reference to Figure 13. 

Figure 13. (a) Voltage waveform )(tv in Figure 12 for the case 0mcC ; in this case, the 

Bias-Flip circuit is not required; (b) Voltage waveform for the case of large mcC without 

Bias-Flip compensation; when the current becomes positive, there is a large negative 
voltage on the capacitor mcC , this must be discharged before the voltage can swing 

positive; (c) When the current becomes positive, the polarity of the voltage )(tv  is 

“flipped”. This reduces the time to diode turn-on and increases power transferred to RECTC . 
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Figure 13. Cont. 

 

When the capacitance is zero, as shown in Figure 13a, Bias-Flip is not required. )sin()( tRItv inp   

until ontt  ; at which time, )(tv becomes clamped at RECTV . Between ont and offt power is supplied to 

the storage unit. At offtt  , the diodes turn off, and )(tv returns to zero following the curve

)sin()( tRItv inp  . The presence of non-zero mcC degrades transferred power: Figure 13b. When the 

current turns positive, there is a negative bias on mcC that must be discharged before the voltage can 

swing positive. This delays diode turn-on, and forces a reduction in RECTV , both of which degrade 

transferred power. This degradation can be corrected by adiabatically flipping the bias on mcC when 

the current changes sign, as illustrated in Figure 13c. 

Figure 14. Power transferred to the storage capacitor RECTC  as a function of RECTV  for 

different values of mcC . Power is normalized to avPmax (see Equation (8)). The curve for 

0mcC is negligibly different from the curve for nFCmc 10 , and is not shown. For the 

case of no capacitor, the max power transfer of 0.92 occurs at inpRECT RIV 4.0 . 

 

V
o
lt
ag
e

t

Large Cmc

With BF

Bias
flip

VRECT

ton toff

)(tiR pin

(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cmc=10nF

VRECT /(IpRin)

P
R

E
C

T
IN

Cmc=100nF

Cmc=200nF

Cmc=500nF

Cmc=1uF




 kGR

Hz

inin

m

10

100
2

1





J. Low Power Electron. Appl. 2013, 3 208 

 

 

The energy transferred per cycle depends on RECTV . When RECTV is low, the power transfer interval 

onoff tt  is long, but the power is low. When RECTV is high, the power transfer is high, but the transfer 

interval is short. In fact, for RECTV  above a maximum value the diodes do not turn on, and no power is 

transferred. Figure 14 shows the power transfer as a function of RECTV , for various values of mcC . This 

simulation is made using the values  kRin 10  and Hzm 100)2/(  . 

Figure 15. Shows the rectified power as a function of mcC . For each point on the curve, 

RECTV was selected to give the max power transfer. Power is normalized to avPmax , and 

capacitance has units Farads. 

 

Figure 15 shows that, for large mcC , output is severely degraded. However, the Bias-Flip circuit is 

effective in recovering most of the lost output power. This analysis confirms the conclusions of 

Ramadass and Chandrakasan [7] that for an EHD, operating at resonance, the Bias-Flip circuit is 

effective in canceling the reactive impedance of the device, and achieving near-optimum output power. 

In the next section, we will demonstrate that the Bias-Flip technique can be used to form an effective 

LC tank circuit that, when coupled to the EHD can tune the resonant frequency. 

6. Bias Flip for Frequency Tuning 

In Section 5, we confirmed the effectiveness of the BF technique for power optimization at the 
mechanical resonant frequency. When m  , and the equivalent circuit of Figure 3 applies, we can 

optimize power to the load by “canceling” or “matching” the reactive admittance of the capacitor with 
an inductor. We select an inductor value such that mmcmc LC    2/1)( . Matching the reactive 

admittance aligns the phase of the voltage across the load with the phase of the current. This works 

because the current source is assumed to be ideal. Varying the reactive load does not change the 
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current from the source. We confirmed the finding of [7] that the BF inductor is effective in canceling 
capacitive admittance at m . In this section, we will demonstrate that the BF inductor can also be used 

to tune the resonant frequency of the EHD and optimize power at frequencies substantially different 
from m . 

In order to maximize output power at any frequency, we need to maximize the input power 

delivered from the mechanical source to the EHD. In other words, we need to align the phase of the 

force with the phase of the source velocity. 
In the following analysis, we assume the phase of )(tz  to be zero. )cos()( tZtz  , and the 

velocity of the source is )sin(/ tZdtdz  . The source velocity has a phase of +90o. The force 

acting on the EHD is given by Equation (3). Our goal is to maximize. 

  ZFFdzP I
av

i 



2

1

2
 (15)

Where IF is the imaginary part of F . )sin()cos()( tFtFtF IR   . From this, we conclude that 

input average power is maximized when F has phase +90°, matched to source velocity, and X has 

phase −90°. 

Figure 16. Phase of mechanical displacement )(X for three cases: (1) No inductor;  

(2) Inductor optimized using (13) and (3) Inductor optimized using the pole-splitting 
Equation (9). In all three cases, 0LG . 

 

Additional insight into maximization of output power is seen in Figure 16. Here, we compare the 
phase of mechanical displacement )(X  for three conditions 

1. No inductor. The phase is −90° only at   1moc . Below m , the phase is ≈0°, and 

above m , the phase is ≈ −180°. Only at oc   is the force in phase with the source velocity; 

2. Inductor, optimized using Equation (13). Note that the phase approaches −90° above and below 

m  ;  
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3. Inductor optimized using the pole-splitting Equation (9). The phase is −90° for all frequencies.  

The improvement in power at frequencies above and below m  results from phase alignment 

between force and source velocity. 

Figure 17 shows output power for 3 conditions. 

1. No inductor: 1 N
in

N
L GG ;  

2. Inductor optimized using Equation (13): 1 N
in

N
L GG ;  

3. Inductor optimized using Equation (13): 1.0N
LG .  

Figure 17. Normalized Average Output Power for three cases. (1) No inductor & 
1 N

in
N
L GG ; (2) Inductor optimized using Equation (13) & 1 N

in
N
L GG ; (3) Inductor 

optimized using Equation (13) & 1.0N
LG  . 

 

Case #2 illustrates the case where the reactive admittance is chosen to optimize output power, but 
the load conductance N

LG  is kept at 1 N
in

N
L GG . Very little improvement is achieved, because the 

voltage is kept low by the high load conductance, and the voltage is ineffective in modulating the 

cantilever spring constant. Case #3 shows power improvement of ~50X compared to case #1. When 

we compensate for the increase in acceleration with frequency, case #3 demonstrates that it is possible 
to achieve output power at m   that is comparable to the maximum power at m . 

Additional insight into the mechanism of frequency tuning can be obtained by transforming the 

mechanical equations of motion to an equivalent circuit [1,8,9], as shown in Figure 18. 
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Figure 18. (a) Equivalent circuit model for a PZ EHD in which mLm  , mR , 
1 mm kC , ZmVF

2 , )()()(  XjSI s  , and dkA m  The subscript m 

denotes the mechanical circuit. )(S is used for velocity to avoid confusion with voltage; 

(b) Equivalent circuit model of Figure 18a, in which the electronic circuit is replaced by an 

electrical impedance Ze. 

 
(a) 

 
(b) 

The equations for the mechanical portion of the equivalent circuit are shown below. 

sem
m

mF IAR
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LjV 







 )(

1 2 
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 )(2 


  (16)

where e , defined in Figure 18, is given by  

LmcLmc
e RLj

Lj

RLjCj //1/1)/(1

1
22 


 



  (17)

Define mZ  to be the impedance seen by the voltage source )(FV in Figure 18b. Setting 

0)Im( m  gives the pole-splitting equation, equivalent to Equation (9), in the limit LRL  . 
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The last term in the above equation can be used to tune the resonance frequency above or below the 

mechanical resonance frequency. The last term takes the form 
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where effL can be made positive or negative to add or subtract from mL . At the mechanical resonance 

frequency m  , 0
1

)Im( 
m

mm C
L


 , and output power is optimized by setting mc  . 

When m  the resonant frequency   must be reduced. This can be achieved by increasing the 

effective inductance, which can be achieved by setting  mc . When m  , the resonant 

frequency  must be increased. This can be achieved by decreasing the effective inductance, which 

can be achieved by setting  mc .  

These results are summarized in Table 1. 

Table 1. Strategy For Power Optimization in the Three Frequency Regions of Operation. 

Frequency region Leff ωmc Phase of voltage Optimum power 

Region 1: ω < ωm >0 ωmc > ω ~ +90o RL >> Rin 
Region 2: ω ≈ ωm ≈0 ωmc = ω ≈ ωm ~0o RL = Rin 
Region 3: ω > ωm <0 ωmc < ω ~ −90o RL >> Rin 

Maximizing power in the three regions can be envisioned in term of an effective inductor. 
Alternatively, it can be envisioned in terms of setting the phase of the voltage )(V . The phase in each 

of the three regions is given in the table. In Region 2, the voltage across the load )(V is in phase with 

)(sI , and output power is optimized by setting inL RR  . However, in Regions 1 and 3, max power 

occurs when )(V  has a phase of +90o (Region 1) and −90° (Region 3) relative to the phase of )(sI , 

and optimum power is achieved by setting LR  to be substantially larger than inR . 

The foregoing analysis suggests that the Bias-Flip technique can be used to synthesize an inductor, 
by flipping the polarity of the voltage in such a way that )(X has a phase of −90° in all three regions 

of operation. Recall from Equation (10) that, when N
LG is small, the phase of )(X is related to the 

phase of )(V in a simple way. By adjusting the phase of )(V  as shown in Table 1, we also adjust the 

phase of )(X to −90°. 

Simulations were performed starting from the differential equations for )(tv and )(tx that are 

comparable to Equations (3) and (4), for the case of no inductor. These equations were solved subject 

to the boundary conditions. 

)0()2/(  tvTtv  )0()2/(  txTtx  and )0()2/(  t
dt

dx
Tt

dt

dx
 (20)

In the case of no Bias-Flip, )0()2/(  tvTtv . The effect of the BF inductor is to change the 

phase of v(t) every half-period. 
Using the voltage waveform, we calculated average output power. This is shown normalized to avPmax

in Figure 19. These simulations show that the BF technique is capable of achieving output power, 

comparable to the optimum power achievable with an optimized inductor. Moreover, the BF technique 

is self-tuning. If the bias is flipped whenever the source velocity crosses zero (as assumed in this 

simulation), the desired phase is maintained as the source frequency changes. No calculation is 

required to solve Equation (13). 
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Figure 19. Normalized average power as a function of frequency. In Regions 1 and 3, the 

Bias-Flip technique (red and blue dashed lines) improves output power by ~100X 

compared to the case of no inductor and no BF (green line). Moreover, it gives output 

power that is comparable to the maximum power achievable with an optimized inductor 

(red and blue solid lines). 

 

Analysis of the voltage waveforms reveals another aspect of self-tuning.  In Region 1, the bias flips 

from negative to positive at 0t  and from positive to negative at 2/Tt  , thereby emulating a +90° 

phase shift. In Region 3, the reverse happens. The bias flips from positive to negative at 0t  and 

from negative to positive at 2/Tt  , thus emulating a −90° phase shift. 

7. Conclusions 

In the preceding sections, we have explained the principles for electrically tuning of PZ EHDs. 

These principles are summarized below.  

Equation (11) shows that the effective spring constant of the mechanical resonator is a function of 

voltage. If the load conductance is large, the voltage is kept small, and the resonator responds only at 
the mechanical resonant frequency m . However, for small load conductance LG , the voltage can be 

used to tune the spring constant, and the resonant frequency of the mechanical oscillator. 

In Regions 1 and 3, output power is maximized by maximizing input power (force x velocity), 
transferred from the source to the EHD. At frequencies below m  (Region 1), this occurs when the 

phase of the voltage is +90° relative to the source vibration, and at frequencies above m  (Region 3), 

output power is optimized when the phase of the voltage is -90o relative to the source vibration.  

This optimum phase relationship can, in theory, be achieved using a tunable inductor, whose value 

can be obtained from Equation (13). A large tunable inductor is not generally practical. However, the 

Bias-Flip technique can be used to emulate a large, tunable inductor. Previous work has shown that the 
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BF technique can be used to optimize the output power at m , by cancelling the capacitive admittance 

of the EHD. In this work, we have shown how the BF technique can be used to tune an EHD and 

harvest energy from frequencies other than the mechanical resonance frequency. 
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