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Abstract: Four nonlinear regression techniques were explored to model gas oil viscosity on the base
of Walther’s empirical equation. With the initial database of 41 primary and secondary vacuum gas
oils, four models were developed with a comparable accuracy of viscosity calculation. The Akaike
information criterion and Bayesian information criterion selected the least square relative errors
(LSRE) model as the best one. The sensitivity analysis with respect to the given data also revealed that
the LSRE model is the most stable one with the lowest values of standard deviations of derivatives.
Verification of the gas oil viscosity prediction ability was carried out with another set of 43 gas oils
showing remarkably better accuracy with the LSRE model. The LSRE was also found to predict
better viscosity for the 43 test gas oils relative to the Aboul Seoud and Moharam model and the
Kotzakoulakis and George.

Keywords: vacuum gas oil; gas oil; viscosity; empirical modeling; sensitivity analysis; Akaike
information criterion; Bayesian information criterion; nonlinear regression

1. Introduction

The modeling of characteristics of petroleum and its derivatives has been a subject
of numerous studies [1,2]. Different regression techniques [3–14] and artificial intelli-
gence [15,16] (machine learning, neural network) approaches have been applied to model
petroleum characteristics. Nonlinear regression has been the most used approach for
model parameter estimation [17]. Typically, it minimizes an objective function based on
the sum of squares of errors between experimental and calculated values [17]. Usually,
the models have various parameters to be determined, and sometimes multiple solutions
of the objective function can be obtained. The optimal solution depends mostly on the
initial guess of parameters [17]. The appropriate parameter estimation has been reported
to assure by application of sensitivity analysis on the calculated parameter values [17].
The sensitivity analysis (SA) is the study of how the variation in the output of a model
(numerical or otherwise) can be apportioned, qualitatively or quantitatively, to different
sources of variation, and how the given model depends on the information fed into it [18].
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Good modeling practice requires that the modelers provide an evaluation of the confidence
in the model, possibly assessing the uncertainties associated with the modeling process and
with the outcome of the model itself [18]. Originally, SA was created to deal simply with
uncertainties in the input variables and model parameters. Over the course of time, the
ideas have been extended to incorporate model conceptual uncertainty, that is, uncertainty
in model structures, assumptions, and specifications [18]. In our recent research [14], we
developed an empirical model to predict the viscosity of secondary vacuum gas oils (VGOs)
that outperformed the existent empirical models published in the literature. This model
was developed based on data for 24 VGOs, extending the model of Aboul-Seoud and Mo-
haram [1] by separating the influence of the specific gravity and the average boiling point
on the VGO viscosity, adopting the idea of Kotzakoulakis and George [7]. The model was
validated with data for 10 additional VGOs not included in the initial database of 24 VGOs
showing a better prediction ability than the model of Aboul-Seoud and Moharam [14]. In
that study [14], we applied nonlinear regression using the classical approach for estimation
of model parameters by minimization of the sum of squares of errors between experi-
mental and calculated values. The viscosity measurement, however, is associated with a
relatively high error (about 5% repeatability, and about 15% reproducibility) [19]. The error
in viscosity measurement in our recent study [14] was found to linearly increase with the
temperature of the measurement decreasing (between 5.5 and 57.8% for the temperature
range 60–100 ◦C, being the lowest at the highest temperature).

The model parameters can be estimated not only by minimization of the sum of
squares of errors between experimental and calculated values but also by minimization of
the sum of absolute errors, and by minimization of the sum of relative errors [20]. Which of
these nonlinear regression methods gives the best prediction is a question that needs to be
investigated. For that reason, we employed data of 41 VGOs from primary and secondary
origin to examine the application of four nonlinear regression methods: classical least
square method, minimization of the sum of absolute errors, minimization of the sum of
the squares of relative errors, and the minimization of the sum of the absolute relative
errors for modeling of VGO viscosity prediction with the aim to answer the question which
nonlinear regression method provides the most appropriate prediction of viscosity of VGO
and other oils.

Hernández et al. [3], Hosseinifar, and Jamshidi [4], Samano et al. [17], and Alcazar, and
Ancheyta [21], after the application of nonlinear regression, employed sensitivity analysis
to find the most appropriate values of the model parameters. This approach was also
adopted in this work and extended not only to the model parameters but also to the given
data. In the works mentioned above [3,4,17,21] no sensitivity analysis with respect to the
given data has been carried out.

The aim of this research is to evaluate which nonlinear regression technique is best
suited to model oil viscosity and how the application of sensitivity analysis with respect to
obtained model parameters and with respect to given data can assist in the selection of the
most appropriate model.

2. Materials and Methods
2.1. Experimental Materials and Methods

Kinematic viscosity at 80 ◦C, specific gravity, average boiling point, refractive index,
molecular weight, and aromatic ring index of the 43 VGOs from primary and secondary
origin were used to develop the empirical model for prediction of viscosity applying the
four nonlinear regression methods are presented in Table 1. Kinematic viscosity of VGOs
was estimated on the basis of the Engler specific viscosity measured in accordance with
ASTM D1665 at 80 ◦C using Equation (1) [22]:

Kin. vis. = 7.41× Engler specific viscosity, (1)

where
Kin. vis. = kinematic viscosity, mm2/s
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Engler specific viscosity = Engler specific viscosity, ◦E

Table 1. Properties of primary and secondary VGOs used to develop the empirical model for the prediction of viscosity
applying the four nonlinear regression methods.

Nr Sample SG T10% T50% T90% T95%
ABP,
◦C

Kin. vis. at
80 ◦C, mm2/s

RI at
20 ◦C Kw MW,

g/mol ARI

1 HAGO-1 0.9512 343 397 455 476 398 7.3 1.5385 11.20 342 2.2
2 LVGO-1 0.9715 343 414 493 517 417 12.1 1.5509 11.07 364 2.5
3 HVGO-1 0.9858 426 491 548 562 488 49.9 1.5524 11.27 461 3
4 HAGO-2 0.959 335 395 458 480 396 13.6 1.5442 11.09 339 2.3
5 LVGO-2 0.9856 330 410 488 508 409 15.2 1.5612 10.86 354 2.7
6 HVGO-2 1.0084 430 489 540 554 486 62.1 1.5685 11.00 458 3.4
7 HAGO-3 0.9514 323 377 439 461 380 12.9 1.5409 11.09 322 2.1
8 LVGO-3 0.9768 324 395 482 508 400 16.7 1.5567 10.91 344 2.5
9 HVGO-3 0.997 405 470 534 551 470 34.8 1.5626 11.05 434 3.1
10 FCC SLO-1 0.9871 232 282 412 455 309 3.6 1.5763 10.29 254 2.4
11 FCC SLO-2 1.0549 292 372 475 518 380 9.9 1.614 10.01 319 3.3
12 FCC SLO-3 1.0573 329 392 471 493 397 16.2 1.6135 10.07 337 3.5
13 FCC SLO-4 1.0671 337 401 476 498 405 21.3 1.6194 10.02 346 3.6
14 FCC SLO-5 1.0624 324 391 471 494 395 17.4 1.6172 10.01 335 3.5
15 FCC SLO-6 1.0953 331 400 491 525 407 33.8 1.6392 9.77 346 3.9
16 FCC SLO-7 1.0788 326 397 493 531 405 24.2 1.628 9.91 345 3.7
17 FCC SLO-8 1.063 317 389 484 520 397 18.5 1.6178 10.01 337 3.5
18 FCC SLO-9 1.0835 327 401 480 501 403 28.5 1.6309 9.85 342 3.8
19 FCC SLO-10 1.177 371 435 562 634 456 312.8 1.6927 9.30 395 5.1
20 FCC SLO-11 1.1011 332 394 482 530 403 21.2 1.644 9.70 340 3.9
21 VGO blend 0.9165 376 446 525 544 449 14.2 1.5088 11.91 404 1.7
22 HAGO-4 0.905 357 425 489 505 424 8 1.5029 11.92 371 1.4
23 LVGO-4 0.912 322 417 528 550 422 8.6 1.5088 11.82 369 1.6
24 HVGO-4 0.922 411 486 552 568 483 27.2 1.5082 12.02 453 1.8
25 HAGO-5 0.9710 338 395 459 480 397 13.0 1.5532 10.96 341 2.5
26 LVGO-5 0.9860 320 391 470 495 394 13.0 1.5642 10.78 337 2.6
27 HVGO-5 1.0150 419 477 531 545 476 57.5 1.5751 10.88 442 3.4
28 FCC SLO-12 1.0970 333 395 487 545 405 22.2 1.6417 9.74 343 3.9
29 VBGO-1 0.9399 376 445 495 505 439 14.7 1.5259 11.56 391 2.1
30 VBGO-2 0.9449 373 433 486 497 431 13.5 1.5307 11.45 381 2.1
31 FCC SLO-13 1.0529 278 366 459 483 368 14.5 1.6139 9.96 306 3.2
32 FCC SLO-14 1.0765 321 386 469 493 392 16.2 1.6283 9.86 330 3.6
33 HTVGO-1 0.8939 364 433 506 521 434 10.41 1.4949 12.13 383 1.3
34 HTVGO-2 0.8901 360 429 504 520 431 9.57 1.4927 12.16 378 1.2
35 BG LIGHT 0.8650 306 376 464 514 382 3.7 1.4786 12.21 319 0.8
36 PEMBINA 0.8940 340 428 522 629 430 7.8 1.4936 12.10 378 1.2
37 EKOFISK 0.9030 342 444 535 577 440 7.8 1.5013 12.04 391 1.4
38 BRENT 0.8940 322 406 502 555 410 8.4 1.4990 11.98 353 1.3
39 BOW RIVER 0.9320 342 421 504 570 422 9.5 1.5171 11.56 370 1.8
40 COKER 1.009 333 429 514 560 425 20.7 1.5761 10.70 374 3.1
41 BU ATTIFEL 0.8380 385 445 512 550 447 8.3 1.4541 13.01 393 0.0

Note: Properties of VGOs under numbers 35–40 were taken from Fisher [23].

The specific gravity of VGOs was measured in accordance with ASTM D 4052 method.
The distillation characteristics were measured by high-temperature simulation distillation
(HTSD) according to the ASTM D7169 method. The average boiling point was estimated
by Equation (2):

ABP =
T10% + T30% + T50% + T70% + T90%

5
. (2)
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2.2. Theory/Calculation
2.2.1. Models

Walther’s equation [24] was used as a basis for the empirical modeling of the viscosity
of oils [7,10]. Mehrotra [10] proposed a correlation that has the form:

ln(ln(ν + 0.8)) = α1 + α2ln(T), (3)

with
α1 = 0.148(Tb)

0.5 + 5.489 (4)

and
α2 = −3.7. (5)

Aboul-Seoud and Moharam [1] modified Equations (3)–(5) by including in it oil
specific gravity and the empirical model then took the form:

ln(ln(ν + 0.8)) = α1 + α2ln(T), (6)

where
α1 = 4.3414(Tbγ)0.2 + 6.6913 and a2 = −3.7. (7)

We started our model development from a form analogous to the modified Walther’s
equation as shown in Equations (6) and (7), having the following appearance:

zi = f (xi, yi, a) + εi, i = 1, . . . , n, (8)

where zi is the result (VGO kinematic viscosity), xi (average boiling point), and yi (specific
gravity) is the input data; the unknown parameter a = (a1, a2, a3, a4, a5)

T is a 5-dimensional
vector; and εi are random numbers, n = 41; and

f (x, y, a) = exp(exp(a1xa2 ya3 + a4))− a5. (9)

To estimate the components of parameter a we used four optimization methods:
Method 1: Classical least squares method:

min

{
F1(a) =

n

∑
i=1

(zi − f (xi, yi, a))2 : a ∈ R5

}
. (10)

Method 2: Minimization of the sum of absolute values:

min

{
F2(a) =

n

∑
i=1
|zi − f (xi, yi, a)| : a ∈ R5

}
. (11)

Method 3: Minimization the sum of squared relative errors:

min

{
F3(a) =

n

∑
i=1

(
zi − f (xi, yi, a)

zi

)2
: a ∈ R5

}
. (12)

Method 4: Minimization the sum of absolute relative errors:

min

{
F4(a) =

n

∑
i=1

∣∣∣∣ zi − f (xi,yi, a)
zi

∣∣∣∣ : a ∈ R5

}
. (13)

2.2.2. Computational Minimization

In many cases, there are well-known specialized algorithms for global optimization.
Such a case is when f is a monotone function, see for example [25,26]. On the other hand,
there are many examples when the sum of squares can have several local minima, see
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for example [26] and references therein. In our case, we did not have any conditions
guaranteeing the convergence of an iterative process to the global extremum. In this
study, one of the goals was to examine that the above-stated four methods are adequate
mathematical models capable of satisfactorily describing the data. In order to do this, a
minimum of the difference between measured and predicted oil viscosity (different for
each model) was searched and sensitivity of model parameters with respect to the data
was performed.

As an initial guess, the following modification of Aboul-Seoud and Moharam correc-
tion to Walther’s model was used:

a1 = 0, a2 = 0.2, a3 = 0.2, a4 = −1, a5 = −0.8

If one starts the computations with the above-mentioned initial conditions, that is,
when a1= 4.3414 and a1= −15.01620372 many overflow warnings/errors are obtained.

Using a set of quasi-random points in a five-dimensional parametric space in the
neighborhood of the initial guess and calculating the values of corresponding criterion
function Fj, the computations started (for method 1) with the initial condition:

a1 = 0, a2 = 1.0889, a3 = 0.825, a4 = −1.6, a5 = −1.6333.

More precisely, Halton sequences of quasi-random numbers, with base 2–6 were used
to cover the hypercube neighborhood of the initial guess and the lengths of vertices 2. As
examples, Halton squares of 20 × 20 points with bases 2, 3, and 4, 5 are plotted on Figure 1.
One may compute the initial condition using initial guess and Halton points with indices
and bases (0, 2), (8, 3), (10, 4), (3, 5), and (5, 6), respectively.

Figure 1. (a) Halton square with bases 2, 3. (b) Halton square with bases 4, 5.

The discovery strategy for initial conditions of the other three methods was the same.
All computations were performed by the use of CAS Maple and NLPSolve with

Modified Newton Iterative Method starting from the corresponding initial condition. The
stop-criteria is the absolute difference of two consecutive iterations to be less or equal
to 0.01.

2.2.3. Sensitivity Analysis with Respect to Obtained Model Parameters

After successive realization of Newton iterative procedure for method 1, one may re-
ceive the following parameters ã1 = 0.0000972, ã2 = 1.5542645, ã3 = 1.0946136,
ã4 = −1.5265719, ã5 = −1.4404829.

Here, it is worth denoting that the derivatives of F1(a) = ∑n
i=1(zi − f (xi, yi, a))2

were huge numbers outside a “really small” neighborhood of the minimum. Indeed, one
may check F1(0.0000972, ã2, ã3, ã4, ã5) = 394.358 andF1(0.0000970, ã2, ã3, ã4, ã5) = 659.175.
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Therefore, it is necessary to use numbers with at least seven digits after the decimal sign.
In Figure 2, the graph of function F1(a, ã2, ã3, ã4, ã5) is plotted in blue.

Figure 2. Graphs of functions F1(a, ã2, ã3, ã4, ã5) (blue) and F1
(
a, a0

2, a0
3, a0

4, a0
5
)

(red) in the interval
[0.00009727..0.0000973]. Abscissa—variable a; Ordinate—variable F1

Moreover, taking in mind the above fact, the appropriateness of the estimated param-
eters was verified by a sensitivity analysis using perturbations of model parameters in the
range of ±20%, similarly as it is described by the authors of [3,4,17,21].

Generating random numbers in the ±20% interval around the obtained values, we
were lucky to refine it a0

1 = 0.0000973, a0
2 = 1.5542641, a0

3 = 1.0946132, a0
4 = −1.5265719,

a0
5 = −1.4404824. Here F1

(
a0

1, a0
2, a0

3, a0
4, a0

5
)
= 367.502. In Figure 2, the graphs of functions

F1(a, ã2, ã3, ã4, ã5) and F1
(
a, a0

2, a0
3, a0

4, a0
5
)

are compared.
The same procedures were to methods 2, 3, and 4. All results are summarized in

Table 2.

Table 2. Numerically calculated values of parameter a0 =
(

a0
1, a0

2, a0
3, a0

4, a0
5

)T
.

Coefficient Least Squares Least abs. Errors Squared rel. Errors Abs. rel. Errors

Before SA After SA Before SA After SA Before SA After SA Before SA After SA

a0
1 0.0000972 0.0000973 0.0888705 0.0888705 9 × 10−7 9 × 10−7 0.0841792 0.0841793

a0
2 1.5542645 1.5542641 0.6573309 0.657331 2.1851235 2.1851235 0.6533058 0.6533059

a0
3 1.0946136 1.0946132 0.4784847 0.4784848 1.5193787 1.5193787 0.5075231 0.5075231

a0
4 −1.5265719 −1.5265719 −5.5717615 −5.571762 −0.4953817 −0.4953818 −5.0323918 −5.0323919

a0
5 −1.4404829 −1.4404824 −2.4403382 −2.440338 1.9089183 1.9089184 0.0382231 0.0382233

2.2.4. Sensitivity Analysis with Respect to Given Data

Following Ref. [20], the optimization criterion in the four methods were rewritten as
constrained optimization problems

min
{

Fj(a) : a ∈ Rp}, (14)

subject to
gi(a) = 0, i = 1, . . . , n, (15)

hi(a) ≤ 0, i = 1, . . . , m. (16)
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The Lagrangian function for the primal problem (14)–(16) is

L(a, λ, µ) = Fj(a) +
n

∑
i=1

λigi(a) +
m

∑
i=1

µihi(a), (17)

where λi are Lagrange multipliers associated with gi λ = (λ1, . . . , λn); µi are Lagrange
multipliers associated with hi, µ = (µ1, . . . , µn) The Lagrange dual function is defined by
L̃(a, λ, µ) = inf{L(a, λ, µ) : a ∈ Rp}. As an infimum of affine functions, the Lagrange dual
function is concave. Let us recall that in the local minimum a0 the necessary conditions,
described in Karush-Kuhn-Tucker theorem, are satisfied.

The gradients of Lagrangians of stated methods are calculated. Calculating the arith-
metic mean µx and deviation σx of derivatives with respect to xi (for example), the stan-
dardized deviation of derivatives

Sxi =

∂Lj(a0)
∂xi

− µx

σx
, i = 1, . . . , n, j = 1, . . . , 4, (18)

are interpreted as sensitivity coefficients with respect to xi.

2.2.5. Sensitivity Analysis of Least Squares Method

The classical least square problem is equivalent to the following Lagrange problem

min
n

∑
i=1

ε2
i , (19)

subject to
zi − f (xi, yi, a) = εi, i = 1, . . . , n. (20)

The Lagrangian function for the least square method (19), (20) is

L1(a) =
n

∑
i=1

(zi − f (xi, yi, a))2 =
n

∑
i=1

(
zi − exp

(
exp

(
a1xa2

i ya3
i + a4

))
+ a5

)2 (21)

Therefore, the sensitivities with respect to zi are
∂L1
(
a0)

∂zi
= 2

(
zi − exp

(
exp

(
a0

1xa0
2

i ya0
3

i + a0
4

))
+ a0

5

)
= 2

(
zi − f

(
xi, yi, a0

))
, i = 1, . . . , n. (22)

Let

µz =
1
n

n

∑
i=1

∂L1
(
a0)

∂zi
=

2
n

n

∑
i=1

zi −
2
n

n

∑
i=1

f
(

xi, yi, a0
)

(23)

be the arithmetic mean of derivatives. Let

σ2
z =

1
n− 1

n

∑
i=1

(
∂L1
(
a0)

∂zi
− µz

)2

(24)

be the variance of derivatives (here the Bessel’s correction is used).
Standardizing, the sensitivity coefficients with respect to zi are obtained.

Szi =

∂L1(a0)
∂zi

− µz

σz
, i = 1, . . . , n. (25)

Similarly, the sensitivities with respect to xi and yi are
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∂L1(a)
∂xi

= −2a1a2xa2−1
i ya3

i exp
(
a1xa2

i ya3
i + exp

(
a1xa2

i ya3
i + a4

)
+ a4

)
×
(
zi − exp

(
exp
(
a1xa2

i ya3
i + a4

))
+ a5

)
= −2a1a2xa2−1

i ya3
i ln( f (xi, yi) + a5)( f (xi, yi) + a5)(zi − f (xi, yi)),

(26)

∂L1(a)
∂yi

= −2a1a3xa2
i ya3−1

i exp
(
a1xa2 ya3

i + exp
(
a1xa2

i ya3
i + a4

)
+ a4

)
×
(
zi − exp

(
exp
(
a1xa2

i ya3
i + a4

))
+ a5

)
= −2a1a3xa2

i ya3−1
i ln( f (xi, yi) + a5)( f (xi, yi) + a5)(zi − f (xi, yi)).

(27)

Using both equalities in (26) and (27), is derived

∂L1(a)
∂yi

=
a3

a2

xi
yi

∂L1(a)
∂xi

, i = 1, . . . , n. (28)

From (26), arithmetic mean, and variance

µx =
1
n

n

∑
i=1

∂L1
(
a0)

∂xi
, σ2

x =
1

n− 1

n

∑
i=1

(
∂L1
(
a0)

∂xi
− µx

)2

,

the sensitivity coefficients with respect to xi are calculated

Sxi =

∂L1(a0)
∂xi

− µx

σx
, i = 1, . . . , n. (29)

Analogously, using (28), calculated values of ∂L1(a)
∂xi

corresponding arithmetic mean µy

and variance σ2
y , the sensitivity coefficients with respect to yi are obtained.

Syi =

∂L1(a0)
∂yi

− µy

σy
, i = 1, . . . , n. (30)

Let us mark, that sometimes it is suitable to have the expressions for derivatives of L1
in terms of Lagrange multipliers λi:

L1(a) =
n

∑
i=1

ε2
i +

n

∑
i=1

λi(zi − f (xi, yi, a)− εi). (31)

It is straightforward

∂L1(a)
∂zi

= λi = −2εi,
∂L1(a)

∂xi
= −λi

∂ f (xi ,yi ,a)
∂xi

, i = 1, . . . , n.
∂L1(a)

∂yi
= −λi

∂ f (xi ,yi ,a)
∂yi

,

(32)

2.2.6. Sensitivity Analysis of Absolute Value Minimization Problem

Analogously, it is suitable to consider the following constrained analog to absolute
value minimization problem in method 2:

min
n

∑
i=1

εi, (33)

subject to
zi − f (xi, yi, a) ≤ εi, i = 1, . . . , n, (34)

f (xi, yi, a)− zi ≤ εi, i = 1, . . . , n, (35)

0 ≤ εi, i = 1, . . . , n. (36)
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The Lagrangian for the problem (33)–(36)

L2(a) =
n

∑
i=1

εi +
n

∑
i=1

µ1i(zi − f (xi, yi, a)− εi) +
n

∑
i=1

µ2i( f (xi, yi, a)− zi − εi) +
n

∑
i=1

µ3iεi,

where µji ji are the Lagrange multipliers,

i = 1, . . . , n, j = 1, 2, 3 (37)

Thus
∂L2(a)

∂zi
= µ1i − µ2i, i = 1, . . . , n, (38)

∂L2(a)
∂xi

= a1a2xa2−1
i ya3

i (µ2i − µ1i)( f (xi, yi, a) + a5) ln( f (xi, yi, a) + a5), (39)

∂L2(a)
∂yi

= a1a3xa2
i ya3−1

i (µ2i − µ1i)( f (xi, yi, a) + a5) ln( f (xi, yi, a) + a5). (40)

It follows from a well-known lemma from the proof of Karush-Kuhn-Tucker con-
ditions (in fact Fritz John conditions), see [27] that if a0 is an optimal solution of the
problem (33)–(36), then there exist multipliers µ0

0, µ0
ji such that µ0

0, µ0
ji ≥ 0, j = 1, 2, 3, i =

1, . . . , n, not all zero, and

µ0
0∇ ε

n

∑
i=1

εi + ∑
i∈J1(a0)

µ0
1i∇e(zi − f (xi, yi, a)− εi) + ∑

i∈J2(a0)

µ0
2i∇ ε( f (xi, yi, a)− zi − εi) + ∑

i∈J3(a0)

µ0
3i∇ ε(−εi) = 0, (41)

where:
J1

(
a0
)
= {i ∈ 1, . . . , n : zi − f (xi, yi, a)− εi = 0}, J2

(
a0
)
= {i ∈ 1, . . . , n : f (xi, yi, a)− zi − εi = 0}

J3

(
a0
)
= {i ∈ 1, . . . , n : εi = 0}

are the corresponding active conditions, ε = (ε1, ε2, . . . , εn)
T Simplifying

µ0
0e− ∑

i∈J1(a0)

µ0
1iei − ∑

i∈J2(a0)

µ0
2iei − ∑

i∈J3(a0)

µ0
3iei = 0, (42)

where ei is the i-th unit vector and e = (1, . . . , 1)T . Let us note:

J1

(
a0
)
∪ J2

(
a0
)
= {1, 2, . . . , n} = J3

(
a0
)

and J1

(
a0
)
∩ J2

(
a0
)
= ∅. (43)

Hence, one may construct a non-negative solution of the linear system setting:

µ0
1i = 0, µ0

2i = 1 if εi < 0, i.e., i ∈ J2, (44)

µ0
1i = 1, µ0

2i = 0 if εi > 0, i.e., i ∈ J1, (45)

µ0
0 = 1, µ3i = 0, i = 1, . . . , n. (46)

2.2.7. Sensitivity Analysis of Squared Relative Errors

Analogously to previous subsections, the minimization problem in Method 3 is equiv-
alent to the following Lagrange problem. The equivalent Lagrange problem is

min
n

∑
i=1

ε2
i , (47)

subject to
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zi − ( f (xi, yi, a)) = ziεi, i = 1, . . . , n. (48)

The Lagrangian is

L3(a) =
n

∑
i=1

(
zi − f (xi, yi, a)

zi

)2
=

n

∑
i=1

(
1−

exp
(
exp
(
a1xa2

i ya3
i + a4

))
− a5

zi

)2

(49)

The first derivatives are (here the already calculated derivatives of L1 are used)

∂L3
(
a0)

∂zi
=

1
z2

i

∂L1
(
a0)

∂zi
− 1

2z3
i

(
∂L1
(
a0)

∂zi

)2

, (50)

∂L3
(
a0)

∂xi
=

1
z2

1

∂L1
(
a0)

∂xi
, (51)

∂L3
(
a0)

∂yi
=

1
z2

1

∂L1
(
a0)

∂yi
, (52)

where i = 1, . . . , n.
The formulas for sensitivity analysis of the sum of absolute relative errors are omitted

because they are similar to the explanation in Section 2.2.7.

3. Results

The data in Table 1 indicate that the selected vacuum gas oils (VGO) differentiate
significantly in their properties. The most important for modeling viscosity oil properties:
specific gravity, and average boiling point [14] varied in the range 0.838 ÷ 1.177 for specific
gravity, and 309 ÷ 488 ◦C for average boiling point. The VGO viscosity at 80 ◦C varied
between 3.6 and 312.8 mm2/s.

The Bayesian approach was used over several classical distributions to find the dis-
tribution functions of specific gravity (SG) and average boiling point (ABP). Using the
Bayesian information criterion, one may conclude that the best distribution for SG is the
normal distribution with mean and variance 0.98712, 0.0771899, respectively. The second
and third candidates for continuous probability distribution are Gamma distribution and
LogNormal distribution. The histogram and PDF (Probability Density Function) of SG data
are plotted on Figure 3.

Figure 3. Normal distribution plot for the SG data of the VGOs from Table 1.
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For the second data—ABP, using similar arguments, we again obtained the normal
distribution with mean and variance 416.284, 39.0181, respectively. The histogram and PDF
function are plotted in Figure 4.

Figure 4. Normal distribution plot for the ABP data of the VGOs from Table 1.

Table 2 presents data about regression coefficients for the four methods obtained
after application of the Newton iterative procedure, and after the sensitivity analysis with
respect to obtained parameters. These data show that the performed sensitivity analysis
with respect to the model parameters in most cases led to a modification of the values of
the regression coefficients.

Table 3 indicates data of calculated viscosity of the 41 VGOs from Table 1, error,
absolute relative error, and average abs. rel. error (AARE), also known as %AAD (average
absolute deviation) by the use of the optimized values of the regression coefficients from
Table 2 (model parameters after sensitivity analysis). The errors, and the %AAD were
computed as shown in Equations (53) and (54) respectively:

Error (E) : E =

(
υexp − υcalc

υexp

)
× 100 (53)

%AAD =
1
n

n

∑
i=1

∣∣vexp − vcalc
∣∣

vexp
× 100 (54)

Considering the %AAD as a criterion for classification of the four studied methods
the method %AAD increases in the order: Method 3 < Method 4 < Method 1 < Method 2.

Table 4 shows the standardized sensitivities for the four studied estimation methods.

Table 3. Calculated results for four estimation methods, calc.—calculated value; rel.error.—relative error (in %).

Least Squares
(Method 1)

Least abs. Errors
(Method 2)

Squared rel. Errors
(Method 3)

Abs. rel. Errors
(Method 4)

Nr calc. Error rel.
Error calc. Error rel.

Error calc. Error rel.
Error calc. Error rel.

Error

1 HAGO-1 9.79 −2.52 34.7 9.74 −2.47 33.9 8.48 −1.21 16.7 7.99 −0.72 10
2 LVGO-1 13.25 −1.17 9.7 13.09 −1.01 8.4 12.34 −0.26 2.1 11.6 0.48 4
3 HVGO-1 50.96 −1.05 2.1 49.76 0.15 0.3 51.55 −1.64 3.3 47.02 2.89 5.8
4 HAGO-2 9.98 3.62 26.6 9.93 3.67 27 8.69 4.91 36.1 8.22 5.38 39.5
5 LVGO-2 13.33 1.87 12.3 13.21 1.99 13.1 12.41 2.79 18.3 11.8 3.4 22.4
6 HVGO-2 64.42 −2.32 3.7 63.15 −1.05 1.7 64.75 −2.65 4.3 60.14 1.96 3.2
7 HAGO-3 8.25 4.65 36.1 8.27 4.63 35.9 6.71 6.19 48 6.43 6.47 50.1
8 LVGO-3 11.22 5.48 32.8 11.14 5.56 33.3 10.08 6.62 39.7 9.58 7.12 42.6
9 HVGO-3 38.5 −3.7 10.6 37.9 −3.1 8.9 38.86 −4.06 11.7 36.37 −1.57 4.5

10 FCC SLO-1 5.72 −2.16 60.8 5.95 −2.39 67.2 3.72 −0.16 4.5 3.93 −0.37 10.3
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Table 3. Cont.

Least Squares
(Method 1)

Least abs. Errors
(Method 2)

Squared rel. Errors
(Method 3)

Abs. rel. Errors
(Method 4)

Nr calc. Error rel.
Error calc. Error rel.

Error calc. Error rel.
Error calc. Error rel.

Error

11 FCC SLO-2 13.72 −3.82 38.5 13.77 −3.87 39.1 12.76 −2.86 28.9 12.8 −2.9 29.3
12 FCC SLO-3 17.82 −1.62 10 17.89 −1.69 10.4 17.19 −0.99 6.1 17.27 −1.07 6.6
13 FCC SLO-4 21.53 −0.23 1.1 21.68 −0.38 1.8 21.1 0.2 0.9 21.43 −0.13 0.6
14 FCC SLO-5 17.88 −0.48 2.8 17.97 −0.57 3.3 17.25 0.15 0.9 17.41 −0.01 0
15 FCC SLO-6 28.27 5.49 16.3 28.74 5.02 14.9 28.01 5.75 17 29.34 4.42 13.1
16 FCC SLO-7 23.89 0.32 1.3 24.15 0.06 0.2 23.54 0.67 2.8 24.21 0 0
17 FCC SLO-8 18.38 0.09 0.5 18.48 −0.01 0 17.78 0.69 3.8 17.96 0.51 2.8
18 FCC SLO-9 23.7 4.81 16.9 23.99 4.52 15.9 23.33 5.18 18.2 24.11 4.4 15.4
19 FCC SLO-10 312.7 0.1 0 312.8 0 0 288.07 24.73 7.9 316.69 −3.89 1.2
20 FCC SLO-11 27.18 −5.94 27.9 27.66 −6.42 30.2 26.87 −5.63 26.5 28.3 −7.06 33.2
21 VGO blend 13.82 0.37 2.6 13.49 0.7 5 13.04 1.15 8.1 11.68 2.51 17.7
22 HAGO-4 9.81 −2.41 32.6 9.68 −2.28 30.8 8.54 −1.14 15.4 7.77 −0.37 5.1
23 LVGO-4 10.25 −2.65 34.8 10.1 −2.5 32.9 9.03 −1.43 18.8 8.25 −0.65 8.5
24 HVGO-4 23.44 8.16 25.8 22.67 8.93 28.3 23.48 8.12 25.7 20.59 11.01 34.8
25 HAGO-5 10.69 2.31 17.7 10.63 2.37 18.2 9.49 3.51 27 9.01 3.99 30.7
26 LVGO-5 11.02 1.98 15.3 10.97 2.03 15.6 9.84 3.16 24.3 9.43 3.57 27.5
27 HVGO-5 54.1 3.4 5.9 53.38 4.12 7.2 54.46 3.04 5.3 51.49 6.01 10.4
28 FCC SLO-12 26.07 −3.87 17.4 26.49 −4.29 19.3 25.74 −3.54 15.9 26.98 −4.78 21.5
29 VBGO-1 14.48 0.22 1.5 14.19 0.51 3.5 13.75 0.95 6.5 12.53 2.17 14.8
30 VBGO-2 13.44 0.06 0.5 13.2 0.3 2.2 12.58 0.92 6.8 11.56 1.94 14.4
31 FCC SLO-13 11.5 3 20.7 11.56 2.94 20.3 10.32 4.18 28.8 10.35 4.15 28.6
32 FCC SLO-14 18.34 −2.14 13.2 18.5 −2.3 14.2 17.71 −1.51 9.3 18.12 −1.92 11.9
33 HTVGO-1 10.37 0.03 0.3 10.19 0.21 2 9.19 1.21 11.7 8.27 2.13 20.5
34 HTVGO-2 9.86 −0.26 2.7 9.7 −0.1 1.1 8.6 1 10.4 7.76 1.84 19.2
35 BG LIGHT 6.19 −2.49 67.4 6.32 −2.62 70.8 4.32 −0.62 16.7 4.2 −0.5 13.5
36 PEMBINA 9.88 −2.08 26.7 9.73 −1.93 24.7 8.62 −0.82 10.5 7.8 0 0
37 EKOFISK 11.8 −4 51.3 11.55 −3.75 48.1 10.8 −3 38.5 9.67 −1.87 24
38 BRENT 8.28 0.12 1.4 8.25 0.15 1.8 6.78 1.62 19.3 6.28 2.12 25.3
39 BOW RIVER 11.23 −1.73 18.2 11.07 −1.57 16.5 10.13 −0.63 6.6 9.31 0.19 2
40 COKER 19.68 1.02 4.9 19.53 1.17 5.7 19.26 1.44 7 18.52 2.18 10.5
41 BU ATTIFEL 8.75 −0.45 5.4 8.61 −0.31 3.7 7.35 0.95 11.4 6.5 1.8 21.7
AARE
(%AAD) 17.3 17.5 15.2 16.0

Table 4. Standardized sensitivities for four estimation methods.

Nr.
Least Squares Least abs. Errors Squared rel. Errors Abs. rel. Errors

Szi Sxi Syi
Szi Sxi Syi

Szi Sxi Syi
Szi Sxi Syi

1 −0.83 0.17 0.17 −0.96 0.2 0.21 −1.28 0.93 0.95 −1.34 0.8 0.87
2 −0.39 0.13 0.13 −0.96 0.24 0.25 0.06 0.12 0.12 0.94 −0.86 −0.86
3 −0.35 0.85 0.93 1.01 −0.43 −0.57 0.13 0.29 0.32 0.34 −1.27 −1.41
4 1.2 −0.25 −0.25 1.01 0.1 0.1 1.07 −1.12 −1.12 0.6 −0.47 −0.45
5 0.62 −0.22 −0.21 1.01 0.07 0.06 0.69 −0.82 −0.82 0.66 −0.71 −0.68
6 −0.77 2.59 2.75 −0.96 0.96 1.13 0.12 0.41 0.44 0.31 −1.41 −1.52
7 1.54 −0.23 −0.22 1.01 0.12 0.12 1.2 −1.11 −1.1 0.54 −0.35 −0.32
8 1.81 −0.47 −0.46 1.01 0.09 0.08 0.93 −1.23 −1.22 0.5 −0.49 −0.45
9 −1.22 2.07 2.17 −0.96 0.56 0.64 −0.04 1.02 1.1 −0.14 1.3 1.46

10 −0.71 0.05 0.04 −0.96 0.17 0.17 −0.55 0.18 0.16 −2.92 0.57 0.52
11 −1.26 0.49 0.42 −0.96 0.25 0.25 −1.86 2.17 1.94 −1.14 1.23 1.16
12 −0.54 0.31 0.28 −0.96 0.3 0.3 −0.05 0.41 0.38 −0.5 1.12 1.08
13 −0.08 0.06 0.05 −0.96 0.35 0.35 0.19 −0.06 −0.06 −0.31 1.14 1.1
14 −0.16 0.09 0.08 −0.96 0.3 0.3 0.19 −0.06 −0.05 −0.41 1.06 1.02
15 1.81 −2.14 −1.87 1.01 −0.15 −0.15 0.39 −1.08 −0.96 0.41 −1.13 −1
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Table 4. Cont.

Nr.
Least Squares Least abs. Errors Squared rel. Errors Abs. rel. Errors

Szi Sxi Syi
Szi Sxi Syi

Szi Sxi Syi
Szi Sxi Syi

16 0.1 −0.1 −0.08 1.01 −0.08 −0.08 0.22 −0.19 −0.17 −0.25 1.19 1.13
17 0.03 −0.02 −0.02 −0.96 0.31 0.31 0.27 −0.24 −0.21 0.68 −1.08 −0.96
18 1.59 −1.45 −1.27 1.01 −0.08 −0.08 0.44 −1.06 −0.96 0.45 −1.04 −0.92
19 0.03 −0.85 −0.74 1.01 −6.15 −6.09 0.17 −1.06 −0.94 0.12 2.22 2.06
20 −1.96 2.19 1.89 −0.96 0.44 0.43 −0.68 2.53 2.24 −0.47 1.68 1.55
21 0.12 −0.04 −0.05 1.01 0.07 0.05 0.44 −0.4 −0.45 0.73 −0.71 −0.78
22 −0.8 0.15 0.17 −0.96 0.2 0.21 −1.12 0.82 0.91 −1.25 0.72 0.86
23 −0.87 0.19 0.2 −0.96 0.2 0.21 −1.41 1.05 1.16 −1.26 0.77 0.91
24 2.7 −2.16 −2.48 1.01 −0.04 −0.09 0.49 −1.22 −1.44 0.36 −0.68 −0.78
25 0.76 −0.18 −0.18 1.01 0.1 0.09 0.97 −0.99 −0.98 0.69 −0.57 −0.54
26 0.65 −0.17 −0.16 1.01 0.09 0.09 0.92 −0.94 −0.92 0.71 −0.61 −0.57
27 1.12 −3.04 −3.15 1.01 −0.5 −0.62 0.21 −0.44 −0.47 0.31 −1.26 −1.33
28 −1.28 1.34 1.16 −0.96 0.42 0.42 −0.28 1.37 1.22 −0.39 1.51 1.4
29 0.07 −0.03 −0.03 1.01 0.06 0.04 0.38 −0.33 −0.36 0.73 −0.76 −0.81
30 0.02 −0.01 −0.01 1.01 0.07 0.05 0.41 −0.34 −0.37 0.79 −0.75 −0.78
31 0.99 −0.29 −0.24 1.01 0.08 0.08 0.92 −1.12 −0.98 0.64 −0.65 −0.55
32 −0.71 0.44 0.38 −0.96 0.31 0.31 −0.18 0.67 0.59 −0.53 1.22 1.14
33 0.01 0 0 1.01 0.1 0.09 0.69 −0.48 −0.55 0.91 −0.59 −0.65
34 −0.09 0.02 0.02 −0.96 0.2 0.21 0.68 −0.43 −0.49 0.99 −0.58 −0.64
35 −0.82 0.06 0.07 −0.96 0.17 0.17 −2.66 0.72 0.78 −2.89 0.55 0.65
36 −0.69 0.13 0.15 −0.96 0.2 0.21 −0.64 0.53 0.61 −1.12 0.68 0.83
37 −1.32 0.36 0.4 −0.96 0.22 0.23 −3.5 2.64 3.02 −1.42 0.94 1.13
38 0.04 −0.01 −0.01 1.01 0.12 0.11 1.16 −0.67 −0.73 1.04 −0.49 −0.51
39 −0.57 0.14 0.15 −0.96 0.21 0.22 −0.24 0.35 0.38 1.18 −0.78 −0.82
40 0.34 −0.22 −0.22 1.01 −0.01 −0.03 0.33 −0.42 −0.42 0.59 −0.96 −0.94
41 −0.15 0.02 0.03 −0.96 0.19 0.2 0.81 −0.42 −0.52 1.09 −0.5 −0.59

Note: The bold figures mean high values of standardized sensitivities.

The data in Table 4 display that Method 1 VGO under numbers 6, 9, 15, 20, 24, 27 ex-
hibited a high sensitivity for the data of ABP (x). The VGO under number 24 demonstrated
high sensitivity for the data of viscosity (z). The VGOs under numbers 6, 9, 24, 27 indicate
a high sensitivity for the data of SG (y). For Method 2 only the data of VGO under number
19 exhibits a high sensitivity for the data of ABP (x) and SG (y). For Method 3, the data of
VGO under numbers 35 and 37 demonstrate a high sensitivity for the data of viscosity (z).
The VGOs under numbers 11, 20, and 37 show high sensitivity for the data of ABP (x). The
data for SG (y) of VGOs under numbers 20, and 37 display a high sensitivity. Method 4
indicates a high sensitivity for VGOs under numbers 10 and 35 for the data of viscosity (z),
under number 19 for ABP (x) and SG (y).

Table 5 presents data about the means and standard deviations of derivatives. It is
evident from these data that Method 3 is characterized with the lowest standard deviation
of derivatives followed by Method 4. Methods 1 and 2 have two and three orders of
magnitude higher standard deviation of derivatives than those of Methods 3 and 4.

Akaike Information Criterion.

Table 5. Means and standard deviations of derivatives.

Least Squares Least abs. Errors Squared rel. Errors Absl. rel. Errors

µ σ µ σ µ σ µ σ

with respect to zi 0 6.06 −0.02 −0.02 0 0.04 −0.01 0.1
with respect to xi 0 2.81 −0.28 −0.28 0 0 0 0.02
with respect to yi 0.16 1409.28 −129.95 848.78 0 2.54 −0.16 8.36
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Table 6 presents independent data (kin. viscosity at 80 ◦C; ABP, and SG)) for 43 gas
oils to verify the capability of the four methods to predict viscosity. These data include
gas oils ranging from light gas oil to VGO. The SG and ABP for this independent data set
vary between 0.805 and 1.006, and between 205 and 463 ◦C, respectively. The kinematic
viscosity varies between 0.8 and 28.1 mm2/s. The % AAD increases in the order Method 3
(18.2%) < Method 4 (28.3%) < Method 1 (61.8%) < Method 2 (67.8%).

Table 6. Independent data for gas oils (from light gas oil to VGO) to verify the capability of the four methods to predict
viscosity at 80 ◦C.

Calculated Viscosity, mm2/s Abs. Relative Error, %

Nr VGO and Light
Gas Oils

Kin. vis. at
80 ◦C,
mm2/s

ABP SG Method
1

Method
2

Method
3

Method
4

Method
1

Method
2

Method
3

Method
4

1 HYDRA 9.9 439 0.8861 10.4 10.2 9.2 8.3 5.0 3.0 6.9 16.0
2 EL BUNDUQ 11.6 434 0.9240 12.3 12.0 11.3 10.3 5.6 3.5 2.8 11.1
3 SUNNILAND 13.3 444 0.9420 15.7 15.3 15.0 13.7 17.5 14.9 12.7 3.1
4 Urals 14.4 445 0.9235 14.0 13.6 13.2 11.9 3.1 5.4 8.5 17.1
5 INNES 10.5 435 0.8793 9.7 9.6 8.5 7.7 7.3 8.8 19.4 27.0
6 LOKELE 15.4 441 0.9581 16.7 16.4 16.1 14.9 8.4 6.3 4.7 3.1
7 Cold Lake 8.0 407 0.9291 9.6 9.6 8.3 7.8 20.6 19.5 4.0 2.3
8 CANMET 5.4 376 0.9446 7.9 7.9 6.3 6.1 45.5 46.3 15.8 12.8
9 VISBROKEN 5.0 382 0.9696 9.2 9.2 7.8 7.6 84.3 84.1 56.1 51.3

10 CHAMPION
EXPORT 14.0 426 0.9721 15.1 14.9 14.4 13.5 8.1 6.5 2.9 3.2

11 UDANG 9.3 455 0.8460 9.7 9.5 8.5 7.5 4.8 2.4 8.6 19.2
12 KAKAP 4.8 424 0.8570 8.0 7.9 6.5 6.0 66.6 65.4 34.5 24.0
13 DAQUING 8.2 446 0.8651 10.0 9.7 8.7 7.8 21.4 18.9 6.4 4.9

14 SERGIPANO
PLATFORMA 9.2 437 0.8715 9.5 9.3 8.2 7.4 3.2 1.5 11.0 19.5

15 LAKE ARTHUR 8.6 420 0.8766 8.4 8.4 7.0 6.4 1.9 2.7 19.0 25.2

16 MARGHAM
LIGHT 6.3 415 0.8691 7.9 7.9 6.3 5.9 24.8 24.3 0.1 6.8

17 SYNTHETIC
OSA STREAM 9.3 411 0.9434 10.7 10.6 9.6 9.0 15.4 14.1 2.7 3.6

18 COLD LAKE
BLEND 28.1 463 0.9655 25.0 24.4 25.0 22.9 11.1 13.1 11.2 18.4

19 DULANG 4.8 409 0.8504 7.0 7.0 5.3 5.0 44.6 45.3 9.3 3.4
20 HARRIET 5.6 422 0.8902 9.1 9.0 7.7 7.1 63.3 61.4 38.6 27.7
21 TIA JUANA P 26.1 461 0.9673 24.4 23.9 24.4 22.5 6.4 8.4 6.6 14.0
22 TIA JUANA M 19.7 450 0.9373 16.2 15.8 15.7 14.2 17.6 19.6 20.5 27.7
23 SOUEDIE 20.3 454 0.9529 19.4 19.0 19.1 17.4 4.3 6.4 6.0 13.9
24 ARAB HEAVY 11.7 450 0.9285 15.3 15.0 14.7 13.3 30.8 27.5 25.2 13.3

25 ARAB
MEDIUM 8.2 445 0.9183 13.5 13.2 12.7 11.5 65.4 61.5 55.3 40.4

26 ARAB LIGHT 10.2 449 0.9196 14.3 14.0 13.6 12.2 40.2 36.6 32.9 19.9
27 MAGNUS 13.1 451 0.8995 12.8 12.5 11.9 10.6 2.2 4.7 9.0 18.6
28 GULLFAKS 16.4 453 0.9204 15.1 14.7 14.5 13.0 7.7 10.1 11.7 20.6

29 FLOTTA
BLEND 16.4 458 0.9168 15.6 15.2 15.0 13.4 4.6 7.2 8.3 17.9

30 EKOFISK 10.6 444 0.8963 11.7 11.4 10.6 9.6 10.0 7.5 0.4 9.8
31 HT Kerosene 0.8 205 0.8053 3.4 3.9 0.8 1.6 323.5 389.2 1.9 101.8
32 HTDiesel-2 1.2 251 0.8310 3.7 4.2 1.3 1.9 211.2 249.1 5.5 61.0
33 HTDiesel-3 2.1 310 0.8576 4.5 4.8 2.2 2.7 114.0 129.7 6.2 26.2
34 FCC LCO 1.1 250 0.9461 4.2 4.6 1.8 2.4 281.6 317.0 68.1 119.8
35 FCC HCO-1 2.2 309 0.9960 5.9 6.1 3.9 4.2 166.7 176.7 76.9 89.3
36 FCC HCO-2 3.4 325 0.9950 6.4 6.6 4.6 4.7 89.1 94.2 34.1 39.7
37 FCC HCO-3 4.4 340 1.0064 7.4 7.6 5.7 5.8 69.0 71.7 30.4 32.7
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Table 6. Cont.

Calculated Viscosity, mm2/s Abs. Relative Error, %

Nr
VGO and
Light Gas

Oils

Kin. vis.
at 80 ◦C,
mm2/s

ABP SG Method
1

Method
2

Method
3

Method
4

Method
1

Method
2

Method
3

Method
4

38 SRLVGO 2.4 314 0.8800 4.7 5.0 2.5 2.9 97.3 109.9 5.4 20.7
39 SRVGO-1 1.1 246 0.8345 3.7 4.2 1.2 1.9 236.9 278.7 11.8 73.4
40 SRVGO-2 1.37 269 0.8456 3.9 4.4 1.5 2.1 187.3 217.8 11.3 54.9
41 VBGO-3 1.7 295 0.8618 4.3 4.7 2.0 2.5 153.4 174.5 17.4 45.7
42 SRHVGO-1 7.75 442 0.9230 13.3 13.0 12.5 11.3 72.1 68.3 61.1 46.4
43 SRHVGO-1 12.39 440 0.9227 13.1 12.8 12.2 11.1 5.4 3.1 1.7 10.6
%AAD 61.8 67.8 18.2 28.3

3.1. Evaluation of the Accuracy of Viscosity Estimation by the Studied Four Methods

Besides the error (53), and %AAD (54) the following additional statistical parameters
were used to evaluate the accuracy of viscosity estimation by the studied four methods for
the data set of Table 1 [3]:

Standard error (SE) : SE =

(
∑
(
(υexp − υcalc)

2

n

)) 1
2

(55)

Relative standard error (RSE) : RSE =
SE

mean o f the sample
× 100 (56)

Sum of square errors (SSE) : SSE = ∑
1

υ2
exp

(υexp − υcalc)
2 (57)

Residual (R) : R = υexp − υcalc, (58)

Relative Error (RE) : RE = (∑(
vexp − vcalc

vexp
))× 100 (59)

Table 7 summarizes the statistical analyses for the four studied methods employing
the data in Table 1. According to the statistical parameters standard error, relative standard
error Methods 1 and 2 surpass in the accuracy of viscosity prediction Methods 3 and
4. However, regarding the statistical parameters relative error, the sum of square errors,
%AAD, Method 3 seems to be the best. It is difficult to distinguish the best method on the
basis of the statistical parameters estimated by Equations (53)–(59). The Akaike information
criterion (AIC) and Bayesian information criterion (BIC) were found capable of estimating
the relative quality of a statistical method, and thus being able of providing means for
model selection [13,28,29] when several models are available. Below the estimation of AIC
and BIC for the four studied methods is summarized:
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Table 7. Statistical analysis of the four methods for the data from Table 1.

Method 1 Method 2 Method 3 Method 4

Min E −67.3 −70.8 −38.5 −33.3
Max E 36.0 35.9 48.0 50.2

RE −232.4 −217.0 149.8 296.5
SE 3.1 3.1 5.1 3.7

RSE 12.0 12.2 20.0 14.5
SSE 2.4 2.5 1.5 1.7

%AAD 17.3 17.5 15.2 16.0
R2 0.996 0.9959 0.9948 0.9953

Slope 0.996 0.9954 0.9244 1.0118
Intercept 0.1023 0.0095 0.5351 −1.6381

AIC 211 175 −14 190
BIC 220 184 −5 198

Consider the obtained errors {ε1, . . . , εn} as independent random samples from a
density function f (ε_i|θ) , n = 41. Supposing normal distribution of errors:

f ( x|θ) = f (x|{µ, σ}) = 1
σ
√

2π
exp

(
−1

2

(
x− µ

σ

)2
)

. (60)

Then by the definition of likelihood function:

L(θ) =
n

∏
i=1

f ( εi|θ) =
n

∏
i=1

1
σ
√

2π
exp

(
−1

2

(
εi − µ

σ

)2
)

(61)

The function L has maximum, if

µ = µ̂ =
1
n

n

∑
i=1

εi and σ2 = σ̂2 =
1
n

n

∑
i=1

(εi − µ̂)2. (62)

Method 1: Obtained errors:
{

ε1, . . . , εn
}

. Estimating the maximizers of likelihood
function: µ̂ = 9.0452 and σ = 167.7992. Hence the Akaike information criterion value is

AIC1 = 2× [number o f parameters]− 2× ln
(

L
(
θ̂
))
≈ 211 (63)

Analogously AIC2 ≈ 175, AIC3 = −14, and AIC4 = 190.
For model comparison, the model with the lowest AIC score is preferred [29].
Bayesian information criterion
The Bayesian information criterion is defined by

BIC = [number of parameters] × ln([number of data points])− 2× ln
(

L
(
θ̂
))

, (64)

In our case:

BIC1 ≈ 220, BIC2 ≈ 184, BIC3 ≈ −5, BIC4 ≈ 198.

Again: the model with the lowest BIC score is preferred.
On the base of AIC, and BIC one may conclude that Method 3 is the model with the

highest quality.

3.2. Sensitivity Analysis with Respect to Given Data

Tables 4 and 5 summarizes the means and standard deviations of derivatives of the
four investigated methods.

The variances σ2 in the datasets of derivatives (especially with respect to yi, i = 1, ..., n,
we have σ2

y ≈ 1408 or 850, respectively) are huge in the first two methods.
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In Table 4 the extreme values of sensitive coefficients are marked in bold. In fact,
the extreme value of the deviation of the derivative is a sign of a possible problem: the
model is not suitable for certain data or the given point does not correspond to the model,
etc. On the other hand, different objective functions and corresponding analyses produce
different extremal values in the set of all sensitivities. Therefore, it is a good idea to
perform sensitivity analysis through different objective/target functions to one and the
same mathematical model and to analyze the obtained values in order to improve the
model or to exclude an initially given data. In Figure 5 the distributions of sensitivity
coefficients in the four methods are presented.

Figure 5. The boxed-graphs of sensitivity coefficients with respect to z, x, and y for all four methods.
Each boxed-graph is based on the five-number statistical characteristics; minimum, first quartile,
median, third quartile, and maximum (the central rectangle represents from the first quartile to the
third quartile; the segment inside the rectangle is the median; the dot is the mean). (a)—Method 1;
(b)—Method 2; (c)—Method 3; (d)—Method 4.

The two mentioned sets of derivatives, mentioned above, are spread out from their
average value—the mean. A situation like this is possible if we did not find the extremum,
or if the model function is not adequate, or the derivatives are huge in “any” small
neighborhood of the extremum. In any case, the calculated values of variance are reasons
to doubt the first two methods. Contrary to the third and fourth method the variances are
not so huge numbers. As example we present toon Figure 6 the histogram of derivative
values, computed for the first and fourth methods.
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Figure 6. Histogram and probability density function of normal distribution, generated for the set of all derivatives
(computed in optimal values of parameters) with respect to yi. (a): Method 1. (b): Method 4.

Based on the arguments above, one may consider Method 3 or Method 4. Preferably,
Method 3 taking in account the mean absolute percentage error.

3.3. Verification of the Viscosity Prediction Ability of the Four Studied Methods

The 43 gas oils from Table 6 were selected in such a way to cover the whole possible
diversity of properties of gas oils from primary and secondary origin which can encounter
in any refinery all over the world. As was already mention in section “Results” Method
3 surpassed all other methods concerning the accuracy of viscosity prediction. Table 8
summarizes the statistical analyses for the four studied methods employing the data in
Table 6. These data indubitably reveal the superiority of Method 3 as the best method to
model gas oil viscosity. As a supplement the oil viscosity models of Aboul Seoud and
Moharam [1] (Equation (6)), and Kotzakoulakis, and George [7] (Equation (65)), which
are based on Walther’s equation, were verified to predict viscosity of the 43 gas oils from
Table 6. They predict the 43 gas oil viscosities with %AAD of 21.8%, and 89% respectively
proving the superiority of Method 3 model.

lnln(VIS + 0.8) = 14.69ABP0.0684SG0.267 − 3.682ln(T) (65)

Table 8. Statistical analysis of the four studied methods and the models of Aboul Seoud and Moharam (Aboul Seoud and
Moharam, 1999), and Kotzakoulakis and George (Kotzakoulakis and George, 2017) for the data from Table 6.

Method 1 Method 2 Method 3 Method 4 Aboul Seoud
and Moharam

Kotzakoulakis
and George

Min E −323.5 −389.2 −76.8 −112.8 −94.2 −729.9
Max E 17.6 19.6 20.5 28.1 35.2 57.2

RE −2526.6 −2743.7 −480.1 −517.2 30.5 −291151
SE 2.6 2.7 1.8 2.2 2.7 7.1

RSE 28.3 29 19.9 23.6 28.9 77.3
SSE 44.1 57.6 3 5.7 3.7 141.1

%AAD 61.8 67.8 18.2 27.1 21.8 89
R2 0.9324 0.9323 0.9294 0.9281 0.9038 0.4352

Slope 0.771 0.7311 0.8669 0.7603 0.7209 0.8797
Intercept 3.66 3.93 1.48 1.75 1.5 3.45

AIC 192 159 9 153 204 316
BIC 201 168 18 162 215 326

The model obtained by Method 3 is currently used not only to predict viscosity of gas
oils but also as a tool for verification of the correctness of viscosity measurement of gas oils
in LUKOIL Neftohim Burgas Research laboratory. Several times it proved its usefulness
as an indicator for incorrect viscosity measurement especially when H-Oil gas oils which
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contain both high amount of aromatic compounds and relatively high content of waxes
that makes problematic their viscosity measurement. Once HVGO viscosity at 80 ◦C was
measured equal to 72 mm2/s while the model based on Method 3 reported the value of
54 mm2/s. The repetition of the viscosity measurement reported the value of 54 mm2/s.

4. Conclusions

The gas oil properties average boiling point and specific gravity along with modified
Walther’s equation and nonlinear regression techniques can be used to model oil physical
property viscosity. The four nonlinear regression techniques: least squares of absolute
errors, least absolute errors, least squares of relative errors, and least absolute relative
errors can model gas oil viscosity. The developed gas oil viscosity models by use of the four
nonlinear regression methods showed comparable accuracy of viscosity calculation for the
initial base of 41 vacuum gas oils. The statistical parameters relative error, standard error,
relative standard error, sum of square errors, % average absolute deviation, coefficient
of determination were not in position to unequivocally select the best model. Both AIC,
BIC and the standard deviations of derivatives unambiguously indicated that the model
developed by nonlinear regression least squares of relative errors was the best one. The
sensitivity analysis with respect to given data also revealed that the LSRE model is the
most stable one with the lowest values of standard deviations of derivatives.

The LSRE model demonstrated the highest accuracy of viscosity prediction of 43 gas
oils not included in the initial data base. It was also superior in oil viscosity prediction
relative to other published models based on modified Walther’s equation. The LSRE can
be used not only to predict gas oil viscosity but also to examine the correctness of the oil
viscosity measurement.

Author Contributions: Conceptualization, E.S.; Data curation, S.N. and R.D.; Formal analysis, D.Y.;
Investigation, D.D.S. (Denis D. Stratiev) and L.T.-Y.; Methodology, S.S., N.A.A.; Software, V.A., D.N.,
S.R. and D.D.S. (Danail D. Stratiev); Supervision, K.A.; Writing—original draft, D.S., S.N. and I.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Asen Zlatarov University–Burgas, Project: Information and
Communication Technologies for a Digital Single Market in Science, Education and Security DCM #
577/17.08.2018 (2018–2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful for the support provided by the Bulgarian Ministry of
Education and Science under the National Research Programme “Information and Communi-cation
Technologies for a Digital Single Market in Science, Education and Security” approved by DCM #
577/17 August 2018.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

ABP Average boiling point
AIC Akaike information criterion
ARI Aromatic ring index
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%AAD % average absolute deviation
BIC Bayesian information criterion
E Error
FCC Fluid catalytic cracking
HAGO Heavy atmospheric gas oil
HCO Heavy cycle oil
HTVGO Hydrotreated vacuum gas oil
HVGO Heavy vacuum gas oil
LAE Least absolute errors
LARE Least absolute relative errors
LCO Light cycle oil
LSAE Least squares of absolute errors
LSRE Least squares of relative errors
LVGO Light vacuum gas oil
MW Molecular weight
NLLSR Nonlinear least square regression
RE Relative error
RI Refractive index
RSE Relative standard error
SA Sensitivity analysis
SE Standard error
SG Specific gravity
SLO Slurry oil
SRHVGO Straight run heavy vacuum gas oil
SRLVGO Straight run light vacuum gas oil
SRVGO Straight run vacuum gas oil
SSE Sum of square errors
VBGO Visbreaker gas oil
VGO Vacuum gas oil
υ Kinematic viscosity, mm2/s
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