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Abstract: Bananas are one of the most important crops worldwide. However, a large amount of
residual lignocellulosic biomass is generated during its production and is currently undervalued.
These residues have the potential to be used as feedstock in bio-based processes with a biorefinery
approach. This work is based on the valorization of banana leaf and has the following objectives
(i) to determine the effect of certain physical and environmental factors on the concentration of
glucose present in banana leaf extract (BLE), using a statistical regression model; (ii) to obtain
Bacterial Nanocellulose (BNC), using BLE (70% v/v) and kombucha tea as fermentation medium. In
addition, the physicochemical properties of BNC were evaluated by X-ray diffraction (XRD), Fourier
transform infrared (FTIR), and thermogravimetric analysis (TGA). The results indicate that storage
time, location, leaf color, and petiole type are factors related to BLE concentration, which is reduced
by approximately 28.82% and 64.32% during storage times of five days. Regarding BNC biosynthesis,
the results indicate that the highest yield, 0.031 g/g, was obtained at 21 days. Furthermore, it
was determined that the highest production rate was 0.11 gL−1h−1 at 11 days of fermentation.
By FTIR, it was determined that the purification step with NaOH (3M) should be carried out for
approximately two hours. This research supports the development of a circular bioeconomy around
the banana value chain, as it presents a way of bioprocessing residual biomass that can be used to
produce bioproducts.

Keywords: biorefinery; banana; nanocellulose; circular bioeconomy; valorization; sustainability;
biopolymer; linear regression; bioprocesses; Kombucha

1. Introduction

Banana is a perennial tropical crop belonging to the Musaceae family and is one of
the most important crops in the world in terms of metric tons harvested [1,2]. It is also of
economic and food importance for many developing countries [3]. The banana production
system generates different by-products as (i) starchy material, rejected fruits that do not
reach the commercial standard [4,5], this by-product is used for the production of flour,
cattle feed, or snacks; and (ii) lignocellulosic biomass: rachis, leaf, and pseudostem [2].
However, these lignocellulosic residues are usually not valorized [6–8]. Banana leaves can
be used as packaging for certain foods [9], but conventionally they are left on the plantation
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ground. This practice is thought to benefit the crop; however, it has been determined that it
can cause a nutritional imbalance in the plant [10], in addition to generating environmental
and health problems [11,12].

On the other hand, the rachis with the banana bunches arrives at the collection center,
where the banana is finally packaged. The rachis is piled up to be discarded [13,14]. It
is estimated that in Ecuador, the main banana exporter worldwide, the waste/product
ratio is 3.79, and the annual waste production is 2.65 Mt of biomass on a dry basis [15].
The valorization of residual biomass based on the circular bioeconomy model would be a
sustainable strategy that could generate new sources of employment, important for food
security and in line with some of the Sustainable Development Goals (SDGs) [16].

For the residual biomass to be valorized, it must first pass through a pretreatment
stage. The operations used in the pretreatment stage can be physical, chemical, biological,
or a mixture of these [17–20]. Physical pretreatment involves using different techniques
such as steam, crushing, grinding, ultrasound, microwaves, or drying. On the other
hand, chemical pretreatment makes use of acidic, basic, or oxidizing reagents. In contrast,
biological pretreatment is based on fungi [21] and enzymes [22–25]. The pretreatment
step usually consists of solubilizing the hemicellulose structure and reducing the lignin
composition of the biomass [23,26], which facilitates enzyme access to the polymers in the
enzymatic hydrolysis stage of cellulose [27,28]. Enzymes are used to reduce the complex
sugars present in the biomass, thereby increasing the concentration of simple sugars, such
as glucose, galactose, arabinose, and xylose. These sugars serve as a carbon source in the
fermentation stage [29–31].

Different studies demonstrate the use of this biomass to obtain (i) bioenergy, such
as bioethanol [32–36], and biogas [37,38], and (ii) compounds of interest, such as biofer-
tilizers [39,40], lactic acid [41], activated carbon [42], biopolymers [43], bacterial nanocel-
lulose [44], among other compounds of industrial interest. In this sense, banana leaves
can be used as a raw material for obtaining different bioproducts. It is mainly composed
of cellulose (21.90–32.56%), hemicellulose (25.80–12.00%), and lignin (39.10–17.00%), ex-
pressed as a percentage of dry weight [35,45,46]. Likewise, it has been determined that the
total phenolic content is 2731.49 ± 14.41 mg eq. of gallic acid/100 g of fresh matter, being a
potential source of polyphenols, among which epigallocatechin gallate is included [47].

Banana leaves have been traditionally used as packaging for certain foods [48,49].
However, new applications for this residual biomass are being studied. Tarrés et al. [6],
obtained lignocellulosic micro/nanofibers (LCMNF) where the results determined that
this biomass has the potential to be used in paper manufacturing with lower production
costs and higher yields than the cellulose nanofiber (CNF) production method. Regarding
bioenergy production, Suhag et al. [27] reported a maximum bioethanol yield of 0.38 g/g
sugar, using dried banana leaf as a carbon source. The use of banana leaf extract has also
been investigated. Chai et al. [50] determined that pressed banana leaf juice has a high
glucose content (16.6 gl−1), and from this result, they produced lipases. Tan et al. [7] used
the juice extracted from banana frond (JEBF), which contains a total sugar of 14% with
the amount of glucose (18.9 gl−1), sucrose (13.29 gl−1), and fructose (15.63 gl−1) with a
total volume of 0.33 l JEBF/kg banana leaf with a theoretical yield of 65% for obtaining
bioethanol. These results demonstrate the potential of banana leaf extract as a carbon
source in the fermentation process of different microorganisms.

The valorization of waste biomass employing bio-based processes is a current
trend [51–54]. However, there are different barriers to these developments. High produc-
tion costs compared to products obtained from petroleum [53]. In addition, the variability
of the quality, physical, structural, and chemical composition attributes of biomass [55], can
technically and economically affect the operation of a biorefinery [56–58]. These attributes
possibly vary due to certain factors such as environment, crop management, and location;
however, this is not clear. Moreover, it is not known how this would affect the yield of
fermentable sugars in the juice extracted from the banana leaves.
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This research analyzes how the quality attributes of banana leaves influence the
concentration of its reducing sugars and their use as a carbon source for the produc-
tion of bacterial nanocellulose (BNC) using a symbiotic culture of bacteria and yeast
(SCOBY) [59,60]. SCOBY is a microbial consortium including yeast, acetic acid bacteria
(AAB), and lactic acid bacteria (LAB). In addition, SCOBY performs well in different media
such as fruit juices, corn liquor, and media containing polyphenols at relatively low costs.
It is used as a starter culture, together with black or green tea, to prepare Kombucha tea
(KT) [60,61]. Green tea mainly provides four polyphenolic derivatives: (-)-epicatechin (EC),
(-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate
(EGCG). Likewise, black tea mainly provides two polyphenolic derivatives: theaflavin and
thearubigins [61]. In addition, they are used as a source of nitrogen for fermentation [62].

KT has remarkable nutritional properties [62–65] and its consumption has increased
in recent years [66–69]. For the preparation of this beverage, it is usually left to ferment
for 7 to 14 days in static, aerobic conditions and the absence of light [59,66]. As a side
stream of the fermentation, a biofilm containing BNC is obtained, known as tea fungus
(TF), which is formed at the gas-liquid interface of the container [70–73]. BNC has ap-
plications in different sectors such as medicine, food, and cosmetology [44,70,74], can be
produced sustainably [69], and exhibits unique physical and biochemical properties [73].
However, it must be purified because, during fermentation, melanoidins are produced that
are embedded in TF. Therefore, the biofilm must undergo physical or chemical treatment
for its purification and subsequent characterization. Analyzes performed for BNC char-
acterization include (i) thermogravimetric analysis (TGA), (ii) Fourier transform infrared
(FTIR), and (iii) X-ray diffraction (XRD).

This work aims to: (i) determine the relationship between the morphological charac-
teristics of banana leaves and the content of reducing sugars in the extracts obtained from
them and, (ii) characterize the bacterial nanocellulose formed from banana leaf extract (BLE)
as the sole carbon source for fermentation according to its physicochemical properties.

2. Materials and Methods

In the first part, the methods for analyzing the influence of certain factors of the
banana leaf on the concentration of reducing sugars are indicated. In the second part, the
procedure for obtaining BNC from BLE and kombucha tea as fermentation medium is
described, and the methodology for the determination of the physicochemical properties
of BNC by FTIR, TGA, and XRD.

2.1. Determination of Factors Affecting the Concentration of Reducing Sugars in Banana
Leaf Extract
2.1.1. Collection and Pretreatment of the Banana Leaf

The samples were obtained from two banana exporting farms of the Cavendish sub-
group (Musa acuminata) located in the Tres Postes (−1.983744822954974, −79.6114196251947)
and Mariscal Sucre (−2.1013910, −79.4960170), according to the Global Positioning System
(GPS), a precinct in the province of Guayas-Ecuador. Thirty leaves per farm were collected
from 30 plants in each farm, trying to choose green leaves without symptoms of necrosis,
chlorosis, or insect perforations, and fully expanded from the third layer of leaves from the
top in plants at the harvest stage. The samples were coded and transported in plastic bags
to the laboratory. The leaves were washed with abundant running water and sponges to
remove dust, organic matter, or residues and then left to dry in the sun for two hours for
further processing. The banana leaves were stored at ambient conditions (28 ◦C and 1 atm).

2.1.2. Banana Leaf Treatment and Reducing Sugars Estimation

Before obtaining the BLE, some physical attributes such as fresh weight (g), length
from the base of the leaf blade to the apex (cm), and width at the widest part of the
blade (cm) were determined. In addition, indicators of leaf blade color and petiole type
were determined visually on both the upper and lower sides. The color palette of the



Resources 2021, 10, 121 4 of 19

banana descriptor guide of the International Network for the Improvement of Banana and
Plantain served as the basis for these descriptions [74]. Subsequently, the extract of each
sample was obtained by passing the leaves three times through a mill called “trapiche”,
this equipment is made up of three rollers that press the banana leaf, like the one used
to obtain sugar cane juice. Between each subsample, the “trapiche” was washed with
abundant running water to minimize the influence of the extracts of other samples. The
process of obtaining the extract was based on the methodology described in [7]. The juice
from each subsample was collected in 2000 mL beakers and stored at low temperature
(4 ◦C). The extract from each subsample was collected in a 2000 mL Erlenmeyer flask and
stored at a low temperature (4 ◦C). The extract samples were centrifuged at 3500 RPM
for 35 min at −4 ◦C; a centrifuge was used (Thermo Scientific Sorvall ST 16R, Dreieich,
Germany). Reducing sugars were analyzed by the 3,5-dinitrosalicylic acid method [75,76].
The calculation of the concentration of reducing sugars in the BLE was performed using
the D-glucose standard curve.

2.1.3. Data Analysis

The relationship between the response variable: reducing sugar concentration and the
factors: farm location, leaf weight, leaf length, leaf width, and volume of extract obtained,
were analyzed using the scatter plot matrix; in addition, the Analysis of Variance and Linear
Regression were used to determine the statistical model that best describes the process.
All statistical tests were analyzed at 5% significance. RStudio software (version 4.0.3)
was used.

2.2. Juice Extracted from the Banana Leaf as a Means of Obtaining BNC
2.2.1. Culture Medium, Collection, and Purification of the Membrane

To make the infusion, two liters of distilled water were heated for 15 min at 60 ◦C,
followed by the addition of 20 gL−1 of green tea (Sangay brand) for 15 min. Then the
temperature of the infusion was expected to drop to 25 ◦C to be inoculated with 10%
Kombucha mother tea (pH 4, 5◦ Brix, and Specific Gravity 1.025). The SCOBY could
include yeasts of the species Saccharomyces spp., Zygosaccharomyces spp., and Brettanomyces
bruxellensis [59,77], acetic acid bacteria of the species Komagataeibacter spp, and lactic
acid bacteria [77,78]. Next, BLEs were pasteurized for 15 min at 65 ◦C, separately, and
standardized at 4◦ Brix. The fermentation process was carried out in 500 mL glass jars,
previously sterilized and dried. The total volume of the ferment was 150 mL, whose
composition is 5 g of SCOBY, BLE (70% v/v), and it was completed with the new Kombucha
tea. The mouths of the vials were covered with surgical gauze and a plastic band. The
ferments were stored at room temperature for 21 days, without shaking, following the
methodology described in [78,79].

Figure 1 shows the process diagram for obtaining BNC from the mixture of BLE, green
tea infusion, vinegar, and SCOBY. The process is like that of the KT production, with BLE
being used as the carbon source. During fermentation, a membrane is produced at the
liquid-air interface of the ferment, which is harvested and washed with sodium hydroxide
(3M) for purification, thus eliminating the presence of melanoidins and microorganisms.
Finally, the membrane is washed with distilled water and repeatedly drained until neutral-
ized (pH 7) [71,80]. The residual NaOH solution is used to treat the residual bagasse from
the leaf, and finally, this effluent is treated for final disposal.
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Figure 1. Process diagram for obtaining bacterial nanocellulose from banana leaf extract. Figure 1. Process diagram for obtaining bacterial nanocellulose from banana leaf extract.
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2.2.2. Acidity Level (pH) of Kombucha Tea Based on BLE

The acidity level of the ferment was monitored every 24 h with a digital pH meter
(APERA instruments, LLC-PC60, EE.UU., Columbus, OH, USA).

2.2.3. Determination of Fresh Weight and Thickness of BNC

The polymeric membrane was harvested from the fermentation media every 24 h until
day 21; then, the membrane was weighed on an analytical balance. Next, the thickness
of the BNC formed in the fermentation media was measured with a vernier caliper at ten
different points, and their values were averaged as described in [79–81].

2.2.4. BNC Production

The membrane formed at the liquid-gas interface of the ferment was harvested, dried
on a glass plate at 105 ◦C for 1 h, and the dry weight was calculated. The volume of the
culture medium was 150 mL. Equations (1) and (2) were used to calculate the yield and
production rate, respectively [82,83].

BNC yield (g/g) = WS·(So − Se)
−1, (1)

BNC production rate
(

gL−1h−1
)
= W·(V·t)−1, (2)

where: Ws dry weight of BNC (g), So and Se mass of the substrate (g) at the beginning and
at the end of fermentation, respectively, W is the amount of BNC produced (g), V is the
volume of culture medium (L), and t, is the time of culture fermentation (h).

2.2.5. Fourier Transform Infrared (FTIR)

The membrane obtained on day 21 was purified with NaOH (3M) to eliminate the
presence of microorganisms and biochemical compounds present in the sample. Different
treatment times were experimented with, 0, 0.5, 1.0, 1.5 and 2.0 h. The treated samples
were analyzed by FTIR. The spectra were recorded by the attenuated total reflectance (ATR)
technique, in the range of 4000 to 600 cm−1, accumulating 32 spectra with a resolution of
4 cm−1 in a Spectrum GX spectrometer (Perkin Elmer, Waltham, MA, USA).

2.2.6. Thermogravimetric Analysis (TGA)

TGA was performed on the purified membrane. Standard TGA mode used nitrogen
(99.99%) as an equilibrium purge gas, flow rate 10 mL/min, nitrogen (99.99%) 40 mL/min
as sample purge gas [78].

2.2.7. X-ray Diffraction (XRD)

Measurements were made using Cu Kα1 radiation (wavelength 1.54059 Å), in parallel
beam configuration, using the following system: the incident parallel slit was 5◦, the
incident slit was 0.2 mm, the length-limiting slit was 10 mm, the receiver parallel slit
analyzer was 0.5◦ and is operated at 45 kV and 200 mA [44,63].

3. Results and Discussion
3.1. Determination of Factors Affecting the Concentration of Reducing Sugars in Banana
Leaf Extract

Over the course of a month, the process of selection and classification of banana
leaves was carried out, based on the following parameters (input variables): location of
the farm, the time elapsed from harvesting to obtaining the extract, fresh weight of the
leaf including petiole, length of the leaf including petiole, the width of the leaf, the color
of the upper surface of the leaf and petiole canal. Additionally, the density of BLE was
calculated, giving a value of 1020 g/mL at 25 ◦C and 1 atm. Subsequently, following the
steps described in Figure 1, the leaves are subjected to the extraction process, which is
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characterized by (output variables): extract volume, BLE yield per unit leaf mass, and
reducing sugars concentration.

Table 1 shows the mean values of the quantitative variables concerning farm location.
During the experiment, it was observed that as the storage time of banana leaves increased,
physical characteristics such as weight and color of the upper surface varied. Regarding leaf
length and width, these values coincide with those reported by Suada [84], who obtained
the following results: leaf length 257.70 ± 27.66 cm, and leaf width 70.23 ± 5.83 cm. On the
other hand, Tan et al. [7] determined that the percentage of juice extracted and filtered was
33% (v/p), and Chai et al. [50] estimated a percentage of 36% (v/p); however, in this work,
a maximum average value of 13% (v/p) was calculated. In addition, it was determined
that the Mariscal Sucre and Tres Postes samples reduced their BLE yield by 64.32% and
28.82% on the fifth day, respectively. There is no report so far on BLE performance at
different times and environmental storage conditions. This study shows that storage at
room temperature would produce large losses in juice yield and is certainly not a practice
that should be carried out. In addition, the information obtained could serve as a baseline
for future research that seeks to optimize the storage stage in biorefinery processes based
on the use of banana leaves as raw material.

Table 1. Banana leaf sample indicators.

Location Time
(day) 1

Length
(cm)

Width
(cm)

Weight
(g) 2

BLE
(mL)

Banana
Leaf

Color

Canal
Petiole

Yield
BLE

(% w/w)

Reducing
Sugars
(gL−1)

Mariscal
Sucre

1
283.00 102.00 1752.30 215.00 5e7804 Wide 12.52 18.00
291.00 109.00 2204.00 270.00 5e7804 Wide 12.50 18.40
299.00 100.00 1831.00 226.00 486904 Wide 12.59 17.60

2
244.00 100.00 656.56 83.00 719604 Open 12.89 13.50
237.00 72.00 786.63 130.00 486904 Wide 16.86 17.60
215.00 81.00 789.79 63.00 618604 Wide 8.14 16.40

3
263.00 100.00 1392.03 70.00 6e8904 Wide 5.12 13.50
256.00 100.00 1592.74 165.00 b0dc04 Wide 10.57 13.50
297.00 104.00 2131.50 375.00 486904 Open 17.95 18.00

4
290.00 106.00 1802.00 205.00 486904 Straight 11.60 13.50
242.00 60.00 473.81 60.00 5e7804 Open 12.92 5.30
273.00 82.00 954.00 75.00 b0dc04 Overlapping 8.02 11.50

5
203.00 68.00 535.61 41.00 618604 Wide 7.81 9.80
254.00 94.00 948.48 37.00 bfd404 Wide 3.98 13.10
309.00 88.00 1254.01 20.00 bfd404 Wide 1.63 9.40

Tres
postes

1
256.00 108.00 1608.81 220.00 719604 Open 13.95 17.60
268.00 105.00 1862.38 210.00 334c04 Open 11.50 17.60
254.00 105.00 1790.47 245.00 3b5d04 Wide 13.96 16.00

2
286.00 92.00 1211.55 136.00 b0dc04 Open 11.45 15.60
269.00 101.00 1334.91 205.00 9bba04 Open 15.66 13.50
266.00 99.00 1094.56 140.00 dfeb04 Wide 13.05 17.60

3
258.00 95.00 1220.18 125.00 719604 Wide 10.45 17.20
250.00 91.00 1384.55 155.00 9bba04 Wide 11.42 17.60
205.00 78.00 971.91 120.00 bfd404 Open 12.59 13.90

4
268.00 89.00 1232.00 145.00 3b5d04 Straight 12.01 13.90
263.00 103.00 1763.00 250.00 5e7804 Open 14.46 17.60
316.00 101.00 1774.00 130.00 486904 Straight 7.47 13.90

5
262.00 97.00 1340.25 150.00 6e8904 Open 11.42 13.50
260.00 106.00 970.60 90.00 dfeb04 Open 9.46 13.50
200.00 90.00 1350.37 95.00 dfeb04 Open 7.18 13.50

1 Values obtained by averaging three replicates (leaves) per day. 2 Values of the sum of the weight of the leaf
blade, midrib, and petiole.

Concerning the concentration of reducing sugars, Oliveira et al. [85], determined that
the water-soluble extractives of the banana leaf variety ‘Dwarf Cavendish’ are mainly
composed of reducing sugars (16.00%); this is due to the presence of starch in this mor-
phological region of the plant. Chai et al. [50] determined that the content of fermentable
sugars in banana leaf juice was 29.09gL−1, of which 55% is glucose. Tan et al. [7] found that
banana leaf juice contained 14% of total sugars. In this study, the highest concentration of
reducing sugars was found to be 18 gL−1. The use of banana leaf extract eliminates the
pretreatment stage such as acid/alkali hydrolysis and enzymatic hydrolysis that have been
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traditionally used [7,86–89], and replaces the costly glucose in the fermentation stage [50],
making the process of obtaining reducing sugars sustainable.

In Figure 2, the box diagrams of each of the quantitative variables concerning the
location are presented. Furthermore, the level of correlation of quantitative variables
with respect to reducing sugars (RS) concentration can be graphically established. This is
determined by observing the width of the ellipse; the greater the width, the less correlation
will exist between the variables. In the case of the treatment days, thin ellipses are observed
concerning the RS, indicating a strong correlation between the variables. However, the
correlations of RS with the other variables are low.

In Table 1, the factors of the completely randomized Experimental Design model are
analyzed. The model is shown in Equation (3).

RS
(

gL−1
)
= µ+ Time + Width + Weight + Length + Location + ColorLeaf + Canalpetiole + Error (3)

The time and location factors have a highly significant effect, the petiole carcass
type factor has a significant effect at 5%, and finally, the leaf color factor is significant at
10% (Table 2).

Table 2. Anova of the linear regression model.

Sum Sq Df F Value Pr(>F)

Time 81.421 1 38.0784 0.0000007555 ***

Banana leaf Length 0.663 1 0.3099 0.5817536

Location 29.662 1 13.8719 0.0007806 ***

Weight of Banana leaf 2.365 1 1.1062 0.3010395

Banana leaf width 2.050 1 0.9586 0.3351280

Cod_color banana leaf 39.652 10 1.8544 0.0917887 .

Canal_petiole 23.151 3 3.6090 0.0240843 *

Residue 66.286 31
Signif. codes: ‘***’ 0.001; ‘*’ 0.05; ‘.’ 0.1; ‘ ‘ 1.

When analyzing these factors as a mixed regression model, the results obtained in
Table 3 indicate that storage time and the location from which the sample is obtained
are very significant factors affecting RS recovery. As the time elapsed from banana leaf
collection to juice extraction increases, the RS concentration decreases by 1.134 units
for each day. This indicates that prolonged storage under ambient conditions reduces
the RS concentration, possibly due to the presence of microorganisms, such as fungi
and bacteria, thus causing leaf biodeterioration. Similar results have been observed in
sugarcane [90,91]. In this sense, Solomon [88] determined that most sugar factories in India
have an average delay of 3 to 5 days between harvesting and milling, losing 1.0–1.3 sucrose
units from the cane. He further indicates that this is due to factors such as humidity, ambient
temperature, cane variety, invertase activities in the cane, and maturity stage. According
to Wyse [90], in sugar beetroots, the reduction of sucrose content during postharvest is
due to the continuous metabolic activity of living cells and the presence of endogenous
enzymes capable of degrading sugars. It is important to note that no fungal growth was
observed on banana leaves during this research. Likewise, it is observed that the location
is a highly significant factor, i.e., when the leaves are collected from the Mariscal Sucre
parish, the RS concentration is reduced by 2.07 units. This is due to the fact that the
physicochemical characteristics of the biomass depend on the environment in which the
crop is grown [15,45].
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Table 3. Linear regression model coefficients.

Estimate Std. Error T Value Pr(>|t|)

Intercepto 22.705961 2.686999 8.450 0.00000000152 ***

Time −1.134597 0.183866 −6.171 0.00000075549 ***

Banana leaf length −0.004871 0.008750 −0.557 0.581754

Location (Mariscal Sucre) −2.077652 0.557834 −3.724 0.000781 ***

Weight of banana leaf −0.001057 0.001005 −1.052 0.301039

Banana leaf width 0.032122 0.032809 0.979 0.335128

Cod_color[T.3b5d04] −4.107568 1.623970 −2.529 0.016729 *

Cod_color[T.486904] −2.459556 1.830761 −1.343 0.188875

Cod_color[T.5e7804] −2.711858 1.657470 −1.636 0.111924

Cod_color[T.618604] −4.695788 1.965974 −2.389 0.023190 *

Cod_color[T.6e8904] −6.070761 1.946733 −3.118 0.003908 **

Cod_color[T.719604] −4.512197 1.706995 −2.643 0.012760 *

Cod_color[T.9bba04] −3.166541 1.755115 −1.804 0.080928 .

Cod_color[T.b0dc04] −1.468817 2.420680 −0.607 0.548416

Cod_color[T.bfd404] −4.646796 1.903255 −2.441 0.020531 *

Cod_color[T.dfeb04] −4.025819 1.792450 −2.246 0.031973 *

Canal_petiole[Wide range] 1.178651 0.589376 2.000 0.054347 .

Canal_petiole[Overlapping] −1.495045 1.319143 −1.133 0.265759

Canal_petiole[Straight] −0.963140 1.001189 −0.962 0.343496
Signif. codes: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; ‘.’ 0.1; ‘ ‘ 1.

Mariscal Sucre and Tres Postes are located at an altitude of 10 and 9 m above sea level,
respectively. Tres Postes has a fine, clayey soil texture and an ideal climate for banana
and other food crops [91]. On the other hand, the Mariscal Sucre precinct has a fine soil
type in 49% of the territory, and the rest is medium soil type. It also has a humid tropical
Mediterranean climate with an average annual atmospheric temperature between 25 and
26 ◦C [92]. Several factors can affect banana plant composition, including acidic pH soils,
soil type, and excessive application of chemical fertilizers. These factors could be analyzed
in future research.

On the other hand, it has been determined that leaf color varies with respect to color
#334c04 (Hex Color Codex), observing significant relationships concerning the decrease in
RS concentration, which could be due to leaf senescence. Likewise, it was determined that
the wide-ranging petiole type with erect margins positively influenced RS concentration
by 1.18 units. These relationships between the different factors studied in this work have
not been analyzed by other researchers.

To determine which variables are related to glucose concentration, the generalized
linear model was used. The following statistical values were estimated; Residual stan-
dard error: 1.462 on 31 degrees of freedom, Multiple R2: 0.8423, Adjusted R2: 0.7507;
F-statistic: 9.196 on 18 and 31 DF, p-value: 0.00000006194. In this sense. The estimated
parameters that have some degree of significance are expressed in Equation (4) with their
respective coefficient.

RS
(

gL−1
)
= 22.706 − 1.135·Time − 2.078·LocationMS − 4.108·ColorT.3b5d04 − 4.696·ColorT.618604 − 6.071

·ColorT.618604 − 4.512·ColorT.719604 − 4.647·ColorT.bfd404 − 3.167·ColorT.9bba04 − 4.06
·ColorT.dfeb04 + 1.179·Canalpetiole−width

(4)
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3.2. Banana Leaf Extract as a Means to Obtain BNC
3.2.1. Culture Medium, Collection, and Purification of the Membrane

For the fermentation stage, BLE (70% v/v), mother vinegar (10% v/v) were used
as sugar sources. Green tea infusion provided nutrients containing nitrogen, vitamins,
and minerals [65]. The culture medium resulted in a BNC polymer with a surface area
equal to the dimensions of the container with the presence of melanoidins. The membrane
is then purified with NaOH. In addition, in this process, the leaf bagasse remains as a
residue that undergoes a washing treatment with the residual solution generated in the
BNC purification stage.

Different agricultural and food wastes have been used as a carbon source for the
production of BNC [93–96]. With respect to the use of residual biomass from the banana
value chain, rotten banana [83], as well as banana peel [44,81], have been used as a carbon
source in the fermentation stage to obtain this biopolymer. In this work, BLE and Kombucha
tea have been used for the first time as a medium for BNC biosynthesis.

In Figure 3, the products that are obtained from the banana leaf recovery process are
shown. In Figure 3a the juice of the extracted banana leaf is observed. Figure 3b shows
the membrane formed at the liquid-gas interface, whose dark color is due to the formation
of melanoidins.
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produced from BLE (70%), and KT (20%) after 21 days of fermentation.

3.2.2. Acidity Level (pH) of Kombucha Tea Based on BLE

The pH parameter of the fermentation process is closely related to microbial growth [59].
These assimilate the glucose present in the medium to carry out their various metabolic
processes [97,98]. Therefore, due to these biochemical and metabolic processes, acetic and
gluconic acid are generated, which lowers the pH of the fermentation medium [99–102]. In
this sense, the lowest acceptable pH value should not be less than 3 [99]. Figure 4 shows
the increase in pH at different fermentation times. The BLE-based Kombucha tea starts
with a pH of 6.39 and reaches a pH of 3.5 after 21 days of fermentation.

3.2.3. Determination of Fresh Weight and Thickness of BNC

The main source of carbon during fermentation was the reducing sugars present in
the banana leaf extract. The BNC is collected by simply removing it from the fermentation
medium since this biopolymer forms a membrane that floats on the fermenting liquid-
gas interface [100]. This membrane serves as a physical barrier to protect the microbial
consortium against external agents [63,81,103], and is thought to help reduce the loss
of oxygen from the medium caused by increased acidity [102]. As shown in Figure 5a,
the results indicate that the weight of the CNB increases during the first 14 days, after
which time the mass of CNB does not increase significantly. If the BNC weight increases
significantly, it could precipitate to the bottom [79].
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In Figure 5b, it is observed that the thickness of the membrane increases with time.
These results are in agreement with those obtained in different studies [81,98,104,105].
Ramirez [104] determined that the optimum time for BNC recovery is 21 days.

3.2.4. BNC Production

BNC production and yield were estimated for the different fermentation times. Figure 6a
shows that the yield increases until approximately day 15, after which time it remains
constant. This agrees with that indicated by some authors who observed better results in
an average of 15 days [81,96]. Likewise, Figure 6b shows that the production rate is highest
at 11 days and decreases after. A limitation of this study is that the fermentation kinetics
for the production of CNB has not been determined.
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3.2.5. Fourier Transform Infrared (FTIR)

The BNC samples obtained from the fermentation were purified with NaOH (3M),
and the effect of treatment time was observed by FTIR. Figure 7 shows the FTIR pro-
files of BNC using BLE (70%) at different treatment times with NaOH. The spectra ob-
tained showed typical BNC bands, which are the broad peak located in the region of
3200–3400 cm−1 [44,106,107], which corresponds to stretching vibrations of cellulose OH
groups, while the peak around 2900 cm−1 is related to C-H stretching [71,79]. The peak at
1634 cm−1 is attributed to the OH bending of adsorbed water [44,71,106,107]. The peaks
that appeared between 1055–1049 cm−1 correspond to C-O stretching at C3; C-C stretching;
and C-O stretching at C6 [71,108]. The band at 896 cm−1 is attributed to C-O-C stretching
at β (1,4) glycosidic. Finally, the peak at 658 cm−1 is observed from C-OH bonding out
of plane vibrations [44,71,79,107]. The spectra with treatment times of 1.5 and 2 h show
defined peaks corresponding to the cellulose I profile.

3.2.6. Thermogravimetric Analysis (TGA)

TGA was performed on the BNC sample treated with NaOH (3M) for two hours. In
Figure 8, it is observed in the TGA spectrum that the BNC film loses mass around 100 ◦C.
This could be due to the evaporation of the moisture present in the sample [71,106,107].
The pyrolysis of biosynthesized BNC in a medium with BLE (70% v/v) presents the
highest peak at 343.78 ◦C; this result is within the reported by different studies [71,107,109].
It is estimated that BNC starts at a higher temperature range (340–360 ◦C), associated
with the complete degradation of BNCs, including depolymerization, dehydration, and
decomposition of glucose [108].

3.2.7. X-ray Diffraction (XRD)

The diffractogram of BNC obtained from BLE (70% v/v) and purified with NaOH
(3M) for 2 h is presented in Figure 9. In this sense, Santos et al. [109] indicate that the
diffractogram of BNC has two dominant diffraction peaks, one between 14◦ and 15◦, and
another between 22◦ and 24◦. Each of the peaks presents the two crystalline phases in
cellulose, Iα, and Iβ.

In Figure 9, it is observed that the XRD curve presents some characteristic peaks of
crystalline cellulose I at 2 θ: 14.5◦, 16.5◦, 22.5◦, and 34.5◦. These results are in agreement
with various studies [107–109].
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4. Conclusions

Some feedstock factors can affect the yield of a bio-based production process. Testing
these yields through predictive modeling can help in the development of sustainable
biorefineries. In this sense, banana leaves are potential sources of reducing sugars that
can be used in bio-based processes with a biorefinery approach. However, to implement
this, it is necessary to know how storage time, feedstock source location, and physical
characteristics relate to the process yield. It has been determined that banana leaf yield
decreases by approximately 28.82% to 64.32% during storage times of three to five days.
The linear model relating these factors to reducing sugar yield has an adjusted R2 of
0.7507. Previous research on banana leaf valorization had not considered these aspects of
importance for industrial scale-up.

Furthermore, it has been shown that BNC films can be successfully obtained using
banana extract as a carbon source and SCOBY as a starter culture. The pH change of the
medium, the weight, and the thickness of BNC were evaluated. Yield (0.031 g BNC/g
fermentation medium) and production rate (0.11 g L−1h−1) were also calculated. In
addition, the physicochemical properties of BNC were analyzed by FTIR, XRD, and TGA,
demonstrating the presence of Nanocellulose.

This approach based on the use of leaf extract to obtain bio-based compounds could
contribute to the development of more sustainable processes and boost the creation of new
value chains based on the concept of circular bioeconomy.
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