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1. Introduction

The fossil fuel society is facing environmental, socio-economic, and geopolitical issues.
We can no longer postpone our transition towards sustainable economic models based on
renewable energy sources. The threat of climate change resulting from human activities
and the need to ensure environmental sustainability are now a global priority [1]. Much
attention is now focused on the energy sector due to its prominence as the largest emitter
of greenhouse gases and its related geopolitical tensions. During this historical period,
the European Union is conscious of how vital it is to limit reliance on energy imports and
discover new forms of energy production to improve energy security. The European Union
has recently proposed a new and stricter package of proposals to reduce net greenhouse
gas emissions [2]. The initiative called “Fit for 55”, within the recent European Green Deal
climate actions, sets a maximum emission threshold to be met by 2030, corresponding to
55% of the figures recorded in 1990. This program involves particularly the energy sector,
which must increase the share of renewable energy to 40% in the same period. This is a
rather ambitious target considering that, by 2017, renewable energies provided just 17.6%
of the total energy supply in the EU. Consequently, this recent decision has also informed
the new targets for the share of renewable energy established by the Renewable Energy
Directive II, moving them from 32 to 40% by 2030.

Sustainable energy production can foster a neutral balance of GHG, especially when
sources such as lignocellulosic biomass are highly available and their procurement does
not interfere with food chains. From this point of view, biomass is considered an important
renewable energy source to reduce net CO2 emissions, contributing to climate change
mitigation [3]. In particular, the use of biomass wastes for energy purposes is regarded
as one of the most promising solutions by policymakers and the scientific community
to achieve this goal [4–6]. Bioenergy is one of the main contributors to the renewable
energy market. Biomass-based energy production is expected to increase in the next
decades, expanding its role in the EU’s renewable energy mix and harnessing its potential
contribution to a low carbon economy.

Biomass includes a wide range of raw materials, mainly from agriculture, forestry,
and marine fields. The biomass elemental composition is mainly represented by carbon,
hydrogen, oxygen, and nitrogen, which constitute many components, including cellulose,
hemicelluloses, lignin, extractives, lipids, fat, proteins, simple sugars, starches, water,
hydrocarbons, ash, and other compounds. The variability of the characteristics is due to the
multiple types and origins of vegetable raw materials and their components (e.g., wood,
branch, barks, shell, leaves, straws, pits, and so on) [7].

Biomass residues and wastes are often difficult to utilise as energy sources due to
several challenges, including heterogeneity of the material, high moisture content, poor
biological stability, and low energy density [5,8,9]. Moreover, despite the numerous op-
portunities available, there are also critical issues related to the general sustainability of
biofuels and the nature of the biomass from which they derive, also raising several ethical
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and social issues [10,11]. A solution that helps to avoid food/non-food competition is the
use of lignocellulosic biomass, agro-industrial wastes, and agricultural residues [11–13],
which, on average, represented about 442 Mt/year of production from 2006 to 2015 in
Europe [14]. Thus, to support residual biomass use, a European policy on the redefinition of
the waste and residue sector was implemented through the directive 2008/98/EC [15,16].

Sustainability issues play a central role in bioenergy applications. It is no coincidence
that the Renewable Energy Directive (RED) has been revised, extending the sustainability
criteria to solid and gaseous biomass fuels used for heat and power production [11]. The de-
mand for renewable energy is expected to increase remarkably in the next years, especially
during this historical phase where the energy issue is urgent in the EU. Traditional biomass
sources will probably not be enough to satisfy sustainability criteria and meet future energy
needs. This implies the need to draw from the widened field of agricultural residues,
by-products, and wastes from the agroforest and agro-industrial sectors [11]. However,
this kind of biomass material’s limited bulk and energy densities affect the harvesting
and logistic costs and partly limit its energy and environmental sustainability [17,18]. The
dissimilarities in physical properties and chemical composition can affect a biomass power
plant’s combustion efficiency, maintenance, and logistics, partly limiting its energy and
environmental sustainability. In order to meet expectations, the bioenergy sector must seek
a higher degree of efficiency in the whole supply chain [19]. The initiatives also include
re-considering the structure of the supply chain by introducing solutions, such as the
pelletisation of agricultural residues, to improve the logistics and sustainability aspects of
the supply chain and the quality of the biofuel [11,16,18].

Quality is a crucial issue for the energy use of residual biomass, especially for agri-
cultural biomass [20]. A strong commitment is needed in the development of qualitative
standards, which are indispensable for orienting the market and the stakeholders of the
sector [21–23]. It is also necessary to increase knowledge of the properties of raw materi-
als, especially residual and agro-industrial ones [8,24–26], identifying the most important
qualitative factors and the relationships between them [23,27–29].

The critical issues related to the quality of biomass are also overcome through the
application of monitoring plans of the characteristics of energy materials along the supply
chain up to the end-user [30–32] and the introduction of modern analytical techniques
alternative to traditional ones, with particular attention to those based on infrared spec-
troscopy [33–38].

These techniques can tackle the problems related to the complexity of the chemical
structure of biomass, providing rapid and cheap results and representing an important
decision-making tool for the different stakeholders involved in the bioenergy chain [39].
The development of a rapid technique able to provide this information [40] could be
valuable for the energy sector, making the results more realistic and useful for the power
plant [30] and providing indications on biofuel traceability and sustainability [41,42].

Based on the aforementioned aspects, this Special Issue (SI) was proposed in this
journal to promote research on these topics, especially the link between biomass quality
and bioenergy sustainability. A research effort is required to exploit the available biomass
materials, especially less traditional ones, by developing innovative production processes
and measurement systems to produce sustainable biofuels and bioenergy.

2. Papers Published in This Special Issue

The interest in this SI was demonstrated by five research papers published between
2020 and 2022. Four corresponding authors submitted seven manuscripts, with ten others
participating as co-authors. All the published papers deal with aspects connected with
the SI’s theme, such as residual biomass quality, sustainability assessment of solid biofuel
production, and bioenergy sustainability assessment. The contributions, as expected, were
mainly in the solid biofuel sector, where biomass quality has an important effect in terms
of environmental sustainability. The SI enriches the current state of the art in this field,
reporting the results of specific case studies.
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Pizzi et al. [43] evaluated the different residues of rubber tree cultivation and their qual-
ity to give valuable indications for possible valorisation. This was carried out considering a
significant number of samples coming from Africa and many analytical parameters. Ac-
cording to the study, from each hectare cultivated with rubber seed, about 30 kg of biodiesel
could be produced, substituting about 26 kg of fossil fuels, with the related improvement
in sustainability. They also found that capsules and shells could be used to produce enough
thermal energy for drying rubber seeds and other products, further improving sustainabil-
ity. Together with its energy uses, the extraction meal could be used as a bio-fertiliser or
for feeding purposes in line with the circular economy concept. The information reported
is useful to improve the latex production chain’s overall sustainability and evaluate the
possible bioenergy value chains. However, the study solely focused on assessing biomass
quality, while no specific analysis was directly carried out on sustainability.

Ilari et al. [44] assessed the quality of different residual biomass typologies used
by a specific power plant in Italy. They evaluated the carbon footprint of the produced
energy by LCA, making possible the comparison with standard energy production. All
the tested biomass samples showed results suitable for biofuel use in the power plant
but with high variability in quality, especially ash content. The sustainability assessment
is limited to global warming and energy use at the plant gate. On average, the carbon
footprint resulted in 17.4 g CO2eq./MJ electrical energy, entailing a saving of more than
90% with respect to fossil energy production. The authors highlighted that local sourcing
of biomass materials with an efficient logistics system presents environmental benefits and
significant economic advantages regarding various logistical aspects of biomass transport
and energy distribution. The use of residual biomass determines a further improvement
in sustainability.

Ilari et al. [45] analytically defined the quality of residual woody biomass produced
in marginal areas and the solid biofuels obtained from that biomass material. They found
that a debarking process improved the quality by significantly decreasing the ash content.
The produced pellet showed low durability, suggesting use near the production point to
avoid problems due to transport and storage. Based on the information reported, due to
the limited quality of these biomass materials and related biofuels, they should be used to
satisfy the company’s energy needs, limiting problems and improving sustainability.

Ilari et al. [14] studied the impact of heat production from vineyard pruning pellets
by LCA, considering two different systems based on a mobile pelletiser (PS1) and on
a stationary pellet plant (PS2). An energy characterisation of vineyard pruning pellets
was carried out to evaluate pellet quality. The LCA impact assessment methods selected
were Eco-Indicator 99 (H) LCA Food V2.103/Europe EI 99 H/A and ReCiPe Midpoint.
The two methods returned similar results, with PS1 being slightly more impactful than
PS2. The major contributors to the final impact are direct emissions and ash management,
which contribute most to human health and ecosystem quality. Both these scenarios are
significantly less impactful with respect to the baseline scenario of heat from fossil fuels.
This is even more evident if the valorisation of wood ash is considered. Moreover, the
authors correctly pointed out that using this solid biofuel can simultaneously help avoid the
combustion of these pruning materials directly on the field without a specific combustion
device, which is very likely to happen. This could save a significant amount of direct
emissions affecting global warming and even reduce ecosystem toxicity and impacts on
human health.

Ilari et al. [46] studied the impact of heat production from the wood of the tree species
Hophornbeam widely spread in Italy and the Balkans. For the Hophornbeam, scientific
evidence demonstrates that coppice management favours a greater level of biodiversity
right after cutting, making active management useful also for the environment. The analysis
showed how the impact of the scenario for firewood is less than that for wood stoves.
Although there are differences in the combustion processes, they do not show substantial
differences in impact for the use step. The more significant impact of the woodstove
scenario is entirely due to the increased use of fuels, lubricants, and machines for the wood
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splitting and cutting phases. The comparison between short distance chains (BS1) and
medium distance chains (BS2 and AS) shows a foreseeable lower impact for a short chain.
The authors compared the results with the values of similar supply chains included in
technical standards such as the RED II regulation and the EU directive 2018/2001. Their
results are lower but comparable—3 g CO2eq/MJ in the present study (baseline) against
5 g CO2eq/MJ reported by the 2018/2001 regulation, referring to wood chips from wood
logs with transport distance in the 0–500 km range.

3. Conclusions

Environmental sustainability analysis helps to assess the coherence of a biomass energy
chain. This analysis can also direct the choices of policy-makers and administrative decision-
makers towards solutions that are not always understandable by the operators themselves.
The results make it possible to highlight virtuous supply chains, avoiding evaluations based
on impressions and, sometimes, on habits. Generally, these environmental assessments are
carried out using the Life Cycle Assessment method, as demonstrated by the papers in the
present SI.

A relationship is also emerging between sustainability and raw material or biofuel
quality. The most representative parameter of this ratio is moisture content. This factor has
always limited the biomass supply chains by reducing the combustible product’s energy
density, undermining the sustainability of the logistic processes of a supply chain.

An excellent example of a virtuous supply chain and an exercise in the application of
sustainability is the vine pruning pellets produced using a mobile pelletising machine. The
use of residual biomass and densification close to the origin of the raw material represents
an effective combination in making this solid biofuel sustainable and of higher quality than
the raw material, which is removed from polluting combustion in the field with harmful
effects on human health.

Although we can obtain biomass through forest management, overexploitation leads
to serious environmental issues. In contrast to the widespread idea that unmanaged
woods and forests guarantee a high biodiversity, regular coppice management can lead
to increased biodiversity due to the inclusion of species associated with different habitats,
such as pasture. This potential relationship between mild forest resource management
and biomass production was highlighted in one study. However, this topic has not been
thoroughly investigated.

The response to the SI can be considered satisfactory because the published papers
contribute by adding specific information on different bioenergy production chains. Still,
it is also evident how difficult it is to couple sustainability assessment with biomass and
biofuel quality analysis in the same work.
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