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Abstract: Hydrothermal carbonization (HTC) of rice husk was optimized in terms of the adsorption
capacity at equilibrium (qe) and hydrochar mass yield (MY). The studied variables were reaction
temperature, residence time, and biomass-to-water ratio by means of response surface methodology.
In both cases, reaction temperature resulted the most significant parameter promoting high qe values
at higher temperatures when treating methylene blue (MB) as the target pollutant. Nevertheless, MY
was low (~40%) when focusing on a possible industrial application. Hence, maximizing qe and MY
simultaneously by optimization of multiple responses emerges as a promising solution to improve
MY values (>60%) with no significant differences regarding the qe response. Furthermore, additional
activation was conducted on optimal hydrochars to further investigate the enhancement of qe. As a
result, no statistical differences between non-modified and activated hydrochars were observed for
qe; however, the pseudo-second-order constant (k2) seemed to be increased after alkali activation,
mainly due to a larger surface area. Non-modified and activated hydrochars were characterized
via SEM, FTIR, XRD, and BET, resulting in two significant effects contributing to MB adsorption:
increased surface area and functionalized hydrochar surface. Consequently, this work provides
valuable insights on subsequent application of this HTC optimization scheme at an industrial scale.

Keywords: hydrothermal carbonization; rice husk; process optimization; adsorbents; alkali activation

1. Introduction

Valorization of agro-residues is a valuable strategy to obtain carbonaceous materials to
be used in various applications. In particular, rice husk has gained interest as it is considered
a renewable energy source. Rice husk is the outer layer of the rice grain, accounting for 20%
of the whole grain weight, which is widely generated during the milling process [1]. This
residual biomass is often used as fuel in boilers and gasifiers for energy production [2–4].
On the other hand, residual biomass like rice husks is also utilized as raw material for
adsorbent materials involved in wastewater treatment [5,6].

Common activated carbons derived from pyrolysis entail high-energy-demand pro-
cesses, increasing costs [7]. Moreover, pyrolysis normally results in low mass yields for
biochar production. For instance, rice husk pyrolyzed at 550 ◦C loses around 70% of its ini-
tial mass [8]. Thus, in the search for another treatment demanding less energy consumption
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for biomass-based adsorbent production, hydrothermal carbonization (HTC) has emerged
as a promising alternative due to the relatively low temperature range (under subcritical
water at 180–250 ◦C) compared to other thermochemical processes [9]. At subcritical condi-
tions, the main constituents of biomass, such as hemicellulose, cellulose, and lignin, are
decomposed and then converted into a solid carbonaceous product called hydrochar. At
the same time, process water and a little gas phase are also formed because of the reactions
occurring when biomass is hydrothermally treated [10].

Most of the reported data in the literature refers to the maximization of hydrochar
adsorption capacity [11–13]; however, it is also essential to evaluate hydrochar yields so this
technology can be implemented at industrial scale [14]. In other words, keeping reasonable
hydrochar yields rather than solely focusing on treating biomass at high temperatures
when producing hydrochar-based adsorbent materials is critically needed.

Some studies have already addressed the use of hydrochar from rice husk towards
sorption applications [15–17]. For instance, Ding et al. [15] used rice husk hydrochar
for removing hexavalent chromium from aqueous solutions, providing insight into the
mechanism of adsorption and reduction of (Cr (VI)). Hossain et al. on the other hand
fully characterized rice husk biochar from HTC, showing its remarkable surface area,
porous structure, and carbon content, proving its suitability as adsorbent material for
transitional compounds [17]. Nevertheless, it is necessary to develop an optimization
scheme that maximizes the adsorption capacity of hydrochar while reaching high hydrochar
yields. This scheme involves exploring various process parameters, such as reaction
temperature, residence time, and biomass-to-water ratio, to identify the optimal conditions
that can simultaneously maximize the adsorption capacity of hydrochar and the hydrochar
mass yield. This comprehensive approach will contribute to developing sustainable and
economically viable hydrochar-based adsorbents with improved adsorption performance.
It requires careful control over specific parameters, including high porosity and large
surface area, that provide increased accessibility for contaminants and more active sites for
adsorption [18]. Functional groups on the hydrochar surface also play a crucial role when
interacting with target pollutants [19].

Based on this background, this work investigates the effect of the HTC process pa-
rameters over adsorption capacity and hydrochar yields simultaneously by applying the
optimization of multiple responses approach, which is addressed using the response surface
methodology (RSM). It allows studying the combined effect of the reaction temperature,
residence time, and biomass-to-water ratio, performing only the necessary number of
experiments. As a result, multivariate models are obtained to predict the mentioned output
variables in the design space. The optimal hydrochars were then validated and further mod-
ified by alkali activation to deeply investigate the maximum adsorption capacity during
batch-dye removal using methylene blue as the target pollutant.

2. Materials and Methods
2.1. Hydrochar Preparation

Rice husk was obtained from a local milling producer and then stored and treated in
the laboratory as received. The ultimate analysis carried out on raw biomass is indicated in
Table 1. The CHNS contents were determined based on the BS EN ISO 16948 standard [20]
using a Perkin Elmer 2400 elemental analyzer, while the ash content was measured follow-
ing the UNE-EN ISO 18122 method [21] in a Hysc MF-05 muffle furnace. Proximal analysis
of biomass is also shown in Table 1, which was reported from our previous study using the
same biomass type [22].

The HTC experimental runs were performed in a 500 mL high-pressure reactor (model
TGYF-B-500ML), where raw rice husks and distilled water were preloaded following the
desired biomass-to-water ratio. Once the reactor was hermetically closed, it was turned on
so the temperature could be gradually increased up to the set point (±1 ◦C) and maintained
during the adjusted residence time. After that, the reactor was cooled down at ambient
conditions and opened to discharge hydrochar, separated from process water via vacuum
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filtration. Before opening the reactor, the gas phase must be purged. Finally, hydrochar
samples were dried overnight at 105 ◦C before further characterization and adsorption tests.
The reactor provides magnetic stirring, which was set at 1000 rpm. In addition, the pressure
inside the reactor is autogenous [9] and it depends mainly on the reaction temperature,
ranging from 1 to 5 MPa (e.g., 5 MPa was the pressure registered by the manometer at the
highest HTC temperature level).

Table 1. Ultimate and proximate analysis of raw rice husk.

Ultimate Analysis Proximate Analysis

C 35.01 Cellulose 28.63
H 6.41 Hemicellulose * 28.33
O * 38.07 Lignin 23.59
N 0.98
S 0.08
Ash content 19.45

* Values determined by difference. Units: wt.%, d.b.

2.2. HTC Process Optimization

The study investigated three key parameters, reaction temperature, residence time,
and biomass/water ratio, for reaching optimum conditions for rice-husk-based hydrochar.
To this end, a central composite design (CCD) was proposed, including the following
parameter ranges: (a) temperature: 183–267 ◦C; (b) time: 39.5–140.5 min; and (c) B/W
ratio: 0.0165–0.0585. To obtain a circumscribed-rotatable design, 17 experimental runs
were randomly carried out for the HTC essays, including the factorial design points and
axial and center points [23], as indicated in Table 2. The reaction temperature was based
on a temperature range where the HTC process is intended to occur, namely, where
hydrothermal reactions occur to decompose the biomass constituents [24]. The residence
time range was selected according to previous hydrothermal treatment performed in a
reactor with similar characteristics to the reactor employed in this work [25]. In the case of
the B/W ratio, it was proposed based on the reactor volume.

Table 2. Range and levels for the central composite design proposed.

Factor Levels

Factor −α −1 0 +1 +α

Temperature (◦C) 183 200 225 250 267
Time (min) 39.5 60 90 120 140.5
B/W ratio 0.0165 0.025 0.0375 0.05 0.0585

As aforementioned, the optimization study performed in this work lies in preparing
adsorbent materials using hydrochar. Therefore, once hydrochar was obtained, it was
employed for methylene blue (MB) adsorption, which was selected as the target pollutant.
The hydrochar mass yield (MY) and the adsorption capacity at equilibrium (qe) are the
response variables to be studied. In this sense, MY was calculated based on Equation (1):

MY =
mdry hydrochar

mdry raw biomass
× 100% (1)

The adsorption tests were carried out under the following conditions: 50 mL of an
MB solution was prepared with an initial concentration of 0.05 mmol L−1 (~16 mg L−1)
and then added to a 100 mL glass flask, keeping the hydrochar addition ratio of 2 g L−1.
The experiments were conducted at room temperature (~25 ◦C) under magnetic stirring
(1000 rpm). The MB adsorption was monitored by measuring the MB absorbance using a
Hach DC/890 colorimeter at different times until stabilization. All samples were previously
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filtered with a syringe filter to remove the remaining hydrochar particles. After determining
the MB concentration using a calibration curve, the qe values were calculated according to
Equation (2), as also indicated by Jais et al. [13]:

qe =
(C0 − Ce) V

m
, (2)

where C0 and Ce represent both the initial and equilibrium concentrations of MB in mg L−1,
V is the solution volume in L, and m is the mass of adsorbent in g.

The subsequent optimization study was made using Design Expert (v.11) using RSM,
where MY and qe were analyzed individually based on the results in Table 3. At this point,
a statistical analysis was performed, including ANOVA with a 95% confidence level, to
propose multivariate models for MY and qe. The models’ agreement was assessed by fit
statistics, including R2 and adjusted R2 values, lack of fit tests, and diagnostics plots (i.e.,
normal plot of residuals and residuals versus predicted plot).

Table 3. Design matrix including the corresponding responses.

Std. Order Run Order T: Temperature (◦C) t: Time (min) W: B/W Ratio MY (%) qe (mg g−1)

1 7 200 60 0.025 54.66 4.55
2 15 250 60 0.025 33.33 5.54
3 14 200 120 0.025 68.00 5.82
4 5 250 120 0.025 34.66 7.67
5 1 200 60 0.05 73.00 6.05
6 12 250 60 0.05 42.67 6.83
7 4 200 120 0.05 58.60 4.98
8 11 250 120 0.05 36.66 6.06
9 17 183 90 0.0375 69.02 6.59
10 10 267 90 0.0375 31.05 7.42
11 13 225 39.5 0.0375 55.75 6.96
12 16 225 140.5 0.0375 51.32 6.23
13 2 225 90 0.0165 50.00 4.90
14 3 225 90 0.0585 52.40 4.36
15 9 225 90 0.0375 47.78 5.06
16 8 225 90 0.0375 53.98 5.41
17 6 225 90 0.0375 58.39 5.27

Predicted optimal factors and responses and validation results

Optimal conditions for qe maximization (sample name: H1)

Prediction 250 60 0.05 41.49 7.11
Validation 43.33 (±2.30) 6.82 (±0.23)

Optimal conditions for MY and qe maximization (sample name: H2)

Prediction 200 60 0.05 66.50 6.22
Validation 63.66 (±2.14) 5.65 (±0.57)

Once individual models for MY and qe were proposed, optimizing the multiple re-
sponses approach was addressed to optimize MY and qe simultaneously. In this approach,
an individual desirability value (di) is associated with each response variable value (yi),
describing the importance of the optimization. In this case, both MY and qe were maxi-
mized. To better understand the desirability strategy, Bezerra et al. [26] indicated that these
desirabilities can be calculated from Equation (3), where Li and Hi represent the minimum
and maximum values that each response can take, respectively. It means modifying these
values as required can refine the optimization process. As no specific values were con-
sidered, the minimum and maximum experimental responses were assigned to Li and Hi
by default. Finally, both individual desirability values are integrated into overall/global
desirability (D) as indicated in Equation (4), which also lies within 0 and 1. The highest
overall desirability reflects the optimal combination of operating conditions (i.e., the reac-
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tion temperature, residence time, and B/W ratio combination that allowed maximizing MY
and qe simultaneously).

di =


0; yi < Li(

yi−Li
Hi−Li

)s
; Li ≤ yi ≤ Hi

1; yi > Hi

, (3)

D = (d1 × d2 × . . . × dn)
1/n, (4)

2.3. Activation and Characterization of Optimal Hydrochars

Hydrochar was alkali-treated following the method of Rodriguez et al. [22]. Hydrochar
and a 3M KOH solution (100 mL per 1 g hydrochar) were stirred at 400 rpm and 70 ◦C for
2 h. The alkali-treated hydrochar was then filtered and dried for 20 h in an oven at 105 ◦C.

The optimal hydrochars and their corresponding activated samples were characterized
based on the following techniques: The hydrochar’s structure was examined using both
a Scanning Electron Microscope (SEM) and a Tescan Mira 3 microscope equipped with a
Schottky Field Emission Gun (Schottky FEG-SEM). The hydrochar samples were securely
positioned on SEM stubs and coated with a 20 nm layer of 99.99% pure gold using a Quorum
Q150R ES sputtering evaporator. Elemental analysis was performed on the SEM chamber
at 30 kV utilizing a Bruker X-Flash 6|30 detector for Energy Dispersive Spectroscopy (EDS).

FTIR transmission spectra of prepared samples were recorded using a Perkin Elmer
Spectrum II instrument with a lithium tantalite-MIR detector at room temperature, in the
wavenumber range from 350 to 4000 cm−1 using the KBr disc technique. For analysis,
the pulverized powder samples were mixed with KBr. The data was analyzed using the
Spectrum 10 STD software from Perkin Elmer.

The prepared samples were then subjected to powder X-ray diffraction (XRD) analysis
using a Rigaku Miniflex 600 diffractometer. This instrument features a 600 W X-ray tube, a
Bragg–Brentano goniometer with an 8-position autosampler, and a D/teX Ultra detector.
The data was analyzed using the SmartLab Studio II software. The measurements were
carried out with an X-ray generator operating at 40 kV and 15 mA, utilizing a CuK (alpha)
radiation source. The scanning range spanned from 0◦ to 100◦ (2θ), with a scanning rate of
10◦/min.

A single-point surface analysis using the BET method was conducted with an Auto
Chem II micrometrics instrument.

3. Results and Discussion
3.1. Adsorption Experiments and Optimization

The adsorption kinetics of different hydrochars were developed. A typical adsorp-
tion experiment is shown in Figure 1 for one of the center points of the design space (i.e.,
hydrochar obtained at 225 ◦C, 90 min, and B/W = 0.0375). Herein, qt represents the adsorp-
tion capacity in mg g−1 as a function of time. The fastest adsorption rate was observed
within the first 5–6 min, almost reaching the equilibrium. Regarding adsorption kinetics,
all experimental runs align with pseudo-second-order kinetics as indicated in Figure 1
(please refer to the inset plot: t/qt vs. t). This is in concordance with the literature [12,27,28],
which relates widely to pseudo-second-order kinetics for MB adsorption (R2 > 0.99). It was
confirmed by evaluating calculated and experimental qe values, which are very close. In
this context, qe values were considered for the optimization process.
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Figure 1. MB adsorption with time (qt vs. t) and pseudo-second order plot (inset graph: t/qt vs. t).

3.1.1. Statistical Analysis and Obtained Models

To evaluate the agreement of the proposed models, an ANOVA table is first provided
in Table 4, where the p-value of the models (<0.0001) confirmed their significance, as
indicated by the lack of fit p-values higher than 0.05. Both models’ predictors were selected
using the corrected Akaike Information Criterion (AICc), which compares the robustness of
different models according to the number of parameters employed, as shown in a previous
study [29]. In this sense, MY was described by a linear model, whereas qe was expressed
by a quadratic model. In terms of fit statistics, the adjusted R2 coefficient allows comparing
models showing different numbers of predictors, which was 0.84 in both models; however,
it is necessary to compare these values to the predicted R2 coefficients so that a difference
between adjusted and predicted R2 coefficients lower than 0.2 can be achieved. This was
the case for MY and qe, which means the obtained models were not overfitted. On the other
hand, other criteria, such as the coefficient of variation (C.V.%) and adequate precision, were
evaluated. For instance, the C.V.% should be lower than 10% to illustrate that experimental
results are reproducible. At the same time, good precision values greater than 4 are required
so the models can be appropriately used to navigate the design space. These requirements
were effectively fulfilled for both models.

Regarding diagnostic plots (see Supplementary Materials), the residuals seemed to
follow a normal distribution since linear trends were identified. In contrast, no defined
trends were shown in the residuals versus predicted plots. All these statistical criteria were
used for model evaluation. It aligned with the guidelines provided in Design Expert (v.11)
and previous studies [30–32].

Based on this statistical analysis, it can be stated that the experimental results success-
fully agreed with the attained models, which are presented in Table 5. Notice that the qe
model was only introduced in coded factors. This is attributed to the methodology applied
for predictor selection. In other words, since the AICc approach suggested discarding two
low-order terms, such as residence time and B/W ratio, the model can lack hierarchy if
fundamental factors express it and may not be helpful for prediction [32].
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Table 4. ANOVA table and fit statistics summary.

Source
Sum of Squares df Mean Square F-Value p-Value
MY qe MY qe MY qe MY qe MY qe

Model 2192.10 13.94 3 5 730.70 2.79 29.01 18.94 <0.0001 <0.0001
T: Temperature 2136.06 2.72 1 1 2136.06 2.72 84.60 18.84 <0.0001 * 0.0013 *
t: Time 12.75 - 1 - 12.75 - 0.5060 - 0.4894 -
W: B/W ratio 43.30 - 1 - 43.30 - 1.72 - 0.2125 -
Tt - - - - - - - - - -
TW - - - - - - - - - -
tW - 3.43 - 1 - 3.43 - 23.31 - 0.0005 *
T2 - 3.79 - 1 - 3.79 - 25.72 - 0.0004 *
t2 - 2.13 - 1 - 2.13 - 14.46 - 0.0029 *
W2 - 0.7627 - 1 - 0.7627 - 5.18 - 0.0439 *
Residual 327.46 1.62 13 11 25.19 0.1472 - - - -
Lack of Fit 270.64 1.56 11 9 24.60 0.1731 0.8660 5.58 0.6494 0.1612
Pure Error 56.82 0.0621 2 2 28.41 0.0310 - - - -
Cor Total 2519.56 15.56 16 16 - - - - - -

Std. dev. 5.02 0.3837 R2 0.8700 0.8959 Pred. R2 0.7732 0.7021
Mean 51.25 5.86 Adj. R2 0.8400 0.8486 Adeq. Precision 17.2791 13.7114
C.V.% 9.79 6.54

* significant model terms.

Table 5. MY and qe models in actual and coded factors.

Response Variable Obtained Models

MY
Actual factors MY = 161.3654 − (0.5002 × T)− (0.0322 × t) + (142.4416 × W)
Coded factors MY = 51.25 − (12.52 × T)− (0.9661 × t) + (1.78 × W)

qe Coded factors qe = 5.26 + (0.4464 × T)− (0.6550 × tW) +
(
0.5796 × T2)+ (0.4346 × t2)− (0.2601 × W2)

3.1.2. Effect of the HTC Operating Conditions on Response Variables and Optimization of
Multiple Responses

In terms of MY, the analysis of variance revealed that reaction temperature was
the only statistically significant parameter reflecting a linear dependency. The negative
coefficient in the coded equation represents that MY decreases with HTC temperature,
which aligns with a previous study concerning the hydrothermal treatment of rice husk [33].
As expected, when hydrothermally treating lignocellulosic biomass at higher temperatures,
it is more likely to break down the intermolecular bonds of biomass components (i.e.,
hemicellulose, cellulose, and lignin starting at 180 ◦C, 200 ◦C, and 220 ◦C, respectively),
decreasing solid yields [9]. This means that the other factors, residence time and B/W
ratio, should be operated at those levels requiring less resource consumption. For example,
if no significant effect is observed between 60 and 120 min, as shown in Figure 2a, the
hydrothermal treatment might be carried out at 60 min so that less energy is required to
operate the reactor. Likewise, higher B/W values may reduce water consumption during
the HTC process.

On the other hand, the model selection for qe accounts for a quadratic behavior,
as indicated in Figure 2b. Again, reaction temperature resulted in the most significant
individual factor showing a minimum adsorption capacity at the middle of the design
space (i.e., near 225 ◦C and 90 min). In contrast, higher qe values were observed at extreme
design points, especially at 250 ◦C. Low HTC temperatures were reported to be beneficial
towards dye removal since a more significant fraction of non-dissolved lignin is present due
to partial biomass degradation at these temperatures (mainly hemicellulose and cellulose).
This lignin portion forms a primary hydrochar via solid–solid reactions, abundant in
oxygenated functional groups that promote dye adsorption [34]. On the other hand, for
the highest temperature values (~250 ◦C), high qe values can be attributed to the surface
area growth at these operating conditions. In other words, at higher HTC temperatures,
more significant fractions of biomass components are decomposed, producing a porous
structure and improving adsorption capacity [35]. In addition, there are still oxygenated
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functional groups in the hydrochar surface at high reaction temperatures. This means the
hydrochar adsorption capacity is influenced by a high surface area and adequate surface
functionalization [36].

Figure 2. RSM plots and desirability contours: (a) For MY: Temperature–Time, with B/W
ratio = 0.0375; (b) For qe: Temperature–Time, with B/W ratio = 0.0375; (c) For desirability:
Temperature–Time, with B/W ratio = 0.05.

Based on this background, there are two possibilities for optimizing the HTC process
for preparing adsorbent materials. The first alternative is for the rice rusk to undergo
hydrothermal treatment at the highest reaction temperature. For instance, at the highest
axial temperature (i.e., 267 ◦C), an experimental qe of 7.42 mg g−1 was reached; however,
a 31.05% hydrochar yield was attained at these operating conditions, which means the
implementation of this process at an industrial scale will be hardly possible because of
the low hydrochar yields. Therefore, the other alternative is to maximize the adsorption
capacity while maximizing mass yields, and considering that suitable qe values were
obtained at specific design points, including a 200 ◦C reaction temperature, reasonable MY
values can also be reached. The optimization of the multiple responses scheme applied
in this study allowed us to find a new optimal set of operating conditions (previously
indicated in Table 3) at a maximum desirability of 0.689, as shown in Figure 2c.
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3.2. Characterization of Optimal and Activated Hydrochars

A surface modification methodology was applied to the optimal hydrochars to investi-
gate if adsorption capacity could be further improved. In this sense, alkali activation using
KOH was performed on H1 and H2 hydrochars, namely, H1-K and H2-K (see Table 6 for
complete nomenclature details).

Table 6. The terminology used for optimal and activated hydrochars.

Sample Nomenclature

qe optimal hydrochar (HTC at 250 ◦C, 60 min, and B/W: 0.05) H1
H1 + KOH activation H1-K
MY and qe optimal hydrochar (HTC at 200 ◦C, 60 min, and B/W: 0.05) H2
H2 + KOH activation H2-K

A complete characterization was developed under optimized and treated materials
to obtain insights about their behavior. The morphological properties were developed via
SEM. As expected, the HTC process decomposes the organic material, producing a typical
porous surface (see Figure 3a). This pore formation can be enhanced at higher reaction
temperatures [37], following lower MY values, as shown in Table 3. This is also confirmed
with the ash contents after HTC. H1 and H2 showed an increment of ashes compared to
the raw biomass, being around 39, 29, and 20%, respectively. This increment is related to
the lower amount of organic compound in the materials after HTC.

Figure 3. SEM images of (a) H1, (b) H2, (c) H1-K, (d) H2-K; (e) EDS spectra of materials.

Moreover, it is well-known that alkali treatment might increase pore formation due
to removing silica and other remaining organic compounds in rice husks, as shown in
Figure 3c,d. The alkali treatment effect was confirmed by EDS spectra (Figure 3e). As shown,
silica content is considerably reduced from the hydrochar matrix after alkali treatment. This
porous formation is also related to the increased surface area after the chemical treatment,
as indicated in Table 7 where the BET surface area results are displayed. Notice that it was
improved from 19.82 to 110.67 m2 g−1 for H1 and H1-K, respectively, and from 1.40 to 12.40
for H2 and H2-K, respectively.
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Table 7. BET surface area and ash contents of the optimal and alkali-modified hydrochars.

Sample BET Surface Area (m2 g−1) Ash Content (wt.%, d.b.)

H1 19.82 39.52
H1-K 110.67 44.72
H2 1.40 29.32
H2-K 12.40 8.11

For H2, the silica content decrease is related to the reduction in the ash content after
alkali treatment, as shown in Table 7 (from 29 to 8%). Interestingly, as also shown in the
BET surface area, it seems that alkali treatment under H1 is more effective for both silica
and organic material extraction, obtaining higher values of ash content on H1-K.

FTIR spectra of the prepared materials are shown in Figure 4. All materials show
the typical peaks for rice husk after carbonization [38,39]. The peaks around 3400 and
1625 cm−1 represent the different vibrations of the hydroxyl group. The band at 2930 cm−1

can be assigned to the asymmetrical vibration of methylene (-CH2-). The peak at 1710 cm−1

is generated by C=O vibration from the carboxyl group in cellulose, which seems to disap-
pear after alkali treatment under materials carbonized at 250 ◦C. The peak at 1450 cm−1

can be assigned to the presence of carboxyl group.

Figure 4. FTIR spectra (left) and XRD patterns (right) of the optimal and modified samples.

As the previous characterization does not completely explain the higher surface area
of H1-K, all materials’ XRD patterns were developed and shown in Figure 4. According to
XRD analysis, the patterns for H2 are typical for rice husk hydrochars with a low degree of
organic matter degradation. Characteristic peaks at 2θ = 15, 22.5, and 35◦ are commonly
related to the still presence of crystalline cellulose. Interestingly, sharper diffraction peaks
are observed for the treated material (H2-K). As stated by several authors [39,40], hydrochar
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crystallinity can increase after carbonization and alkali treatment due to the removal of
amorphous components such as hemicellulose, fats, waxes, silica, and lignin. Moreover, as
expected, the peaks of cellulose are less intense after HTC at 250 ◦C (H1) due to a higher
degree of carbonization. This is also related to the formation of micropores, as shown in in
the N2 isotherm (see Figure S7 in Supplementary Materials). Subsequently, alkali treatment
under H1 seems to be more effective for materials further degradation. H1-K XRD spectra
shows almost not observable peaks, showing a higher degree of degradation of the organic
material, resulting in a hydrochar that resembles a highly amorphous carbon, thus with a
higher surface area.

3.3. Adsorption Behavior of Optimal and Activated Hydrochars

Figure 5 indicates the qe values for the optimal and modified hydrochars used in MB
adsorption. From Table 3, the hydrochar optimized based on qe values (H1) showed a
predicted qe of 7.11 mg g−1, while on validation, the experimental qe was 6.82 mg g−1,
which means a 4% error. On the other hand, the MY-qe-optimized hydrochar (H2) had
prediction and validation qe values of 6.22 and 5.65 mg g−1, respectively, namely, an error of
9.2%. These error percentages demonstrate the proposed models are suitable for prediction
within the design space, as literature reports models with acceptable prediction capability
when error ranges of ±10% are usually reached [30].

Figure 5. Adsorption capacity at equilibrium (qe) and pseudo-second-order constant (k2) values of
the optimal and modified samples. Those values showing different letters are significantly different,
p ≤ 0.05 (by a Tukey test).

Comparing the adsorption capacity of the modified materials, they indicate some
statistical differences. As mentioned above, H1 shows a higher MB adsorption than H2,
probably attributed to the carbonization temperature, which is higher for H1. Concerning
alkali-activated hydrochars, a slight but still insignificant increment in the qe is observed
compared to the pristine counterparts. However, in terms of kinetics, a significant difference
is noticeable (please refer to the blue line in Figure 5), especially for the H1-K sample,
which shows an eight-times higher pseudo-second-order constant (k2) than H1 (0.4166 to
0.0252 g mg−1 min−1, respectively). A minor but still considerable difference was observed
for the H2 materials, showing that alkali treatment might be more efficient on hydrochars
carbonized at higher temperatures. This behavior can also be associated with the measured
surface areas, which are far higher in H1-K when compared to H2-K. Concerning k2,
although there is no statistical difference in the amount of MB removed at the equilibrium,
the alkali-treated hydrochars allow for reaching the equilibrium faster; thus, adsorption
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times can be considerably reduced. The largest surface area shown by the H1-K sample
was also related to the highest k2 coefficient.

4. Conclusions

The individual optimization of qe and MY resulted in a dominant effect by the reaction
temperature, increasing the hydrochar adsorption capacity at the equilibrium while lower-
ing the hydrochar mass yields. At first, it was intended to produce hydrochars showing
higher adsorption capacities; however, to keep reasonable hydrochar yields, it is essential to
perform the HTC process at lower temperature levels. Therefore, the simultaneous MY-qe
maximization scheme (HTC process at 200 ◦C) allowed for keeping high qe values with
MY > 60%. Notice that no statistical difference was found in terms of qe values regarding
H1 and H2 adsorbents, which validates the feasibility of applying this optimization scheme.

Moreover, alkali activation was also tested in H1 and H2 hydrochars to identify fur-
ther improvements in the adsorption capacity. In this sense, even though no statistical
differences were observed for qe values, a remarkable enhancement was found for the
second-order kinetic constant, especially in the H1-K adsorbent, which means the adsorp-
tion time can be significantly reduced in this case, probably due to the larger surface area
measured in this activated hydrochar.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/resources12120145/s1, Figure S1: Normal plot of residuals for MY;
Figure S2: Residuals versus predicted plot for MY; Figure S3: Normal plot of residuals for qe;
Figure S4: Residuals versus predicted plot for qe. Figure S5: Reactor for hydrothermal carbonization
experiments. Figure S6: Rice husk used as raw material. Figure S7: Exemplary N2 adsorption and
desorption isotherm for H1.
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