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1 Modeling framework 
 

The modeling framework used in this research is a cohort-based dynamic flow-driven model. Figure S1 

presents a conceptual diagram of the model. In line with the Material Flows Analysis (MFA) perspective, 

stocks and flows can be tracked as either goods (in this case, vehicles) and materials/substances (in this 

case, critical materials) [1]. The material intensity (MI) coefficients – mass of material per a single unit of 

a good – enable conversion between goods and substances. In this sense, inflows refer to both new 

vehicle sales and their material demands. The vehicle fleet forms the in-use reservoir of these materials 

(“urban mine”), and the outflows of end-of-life vehicles are a stream of potential recyclable materials 

that can serve as a secondary supply source to augment primary supply from mining production. 

 

FIGURE S1: A CONCEPTUAL DIAGRAM OF THE MODEL FRAMEWORK. ADAPTED FROM FISHMAN ET AL. [2] 

 

 

2 Allocation of battery technologies to drive technologies 
 

The BLUE map does not describe the types of batteries used with each drive technology. We therefore 

dynamically assigned battery technologies to the four drive technologies as follows: PHEV and BEV 

vehicles have so far used lithium ion (Li-ion) batteries so we assume they will continue to do so. Most 

current HEV vehicles use NiMH batteries, but the shares of Li-ion and Li-polymer (Li-poly) batteries have 

been increasing. We extrapolate these apparent trends so that by 2050 the share of HEV batteries in 

new vehicles will be NiMH=10%, Li-ion=50%, and Li-poly=40%. For FCVs there are no historical battery 

data available, so we assume equal shares of Li-ion, Li-poly, and NiMH batteries.  
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3 Material intensity compilation (mass of materials in a single vehicle) 
 

3.1 Data and compilation methods 
 

Material intensity data for vehicles were compiled to represent the range of commercial light duty 

vehicles in the United States. These vehicles are internal combustion engine vehicles (ICEVs), hybrid 

electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel 

cell vehicles (FCVs) [3], each with allocated battery technologies as described above. These data were 

compiled independently in two ways. 

 

3.2 Method 1: compiling reported values for vehicle components 
 

In this method, MIs of various vehicle components were compiled from reported values for vehicle 

components to match standard model vehicle configurations for each type, ICEV, HEV, PHEV, BEV, and 

FCV. The material intensities of their components were then summed to create the MI of the entire 

vehicle. 

Calculations of vehicle material intensities employed the ICEV, HEV (parallel configuration with one 

electric motor and generator), PHEV (series configuration with two electric motors and generators), BEV 

(one electric motor and generator), and FCV configurations reported by Chan et al. [4]; the FCV and BEV 

configurations are similar but the former additionally contains a fuel cell. Vehicle models were selected 

from the U.S. Department of Energy’s Alternative Fuels Data Center (AFDC) [3]; model specifications 

were taken from the AFDC if available, or from manufacturer brochures otherwise [5–10]; battery data 

such as type, number of cells, and voltage were obtained from the U.S. Department of Energy [11]. Data 

for vehicle models manufactured between 2006 and 2017 were used, with an average model year of 

2013. 

The elemental composition of a Li-ion battery [12] was used to describe both Li-ion and Li-polymer 

battery models; this battery contains a Li(Ni1/3Co1/3Mn1/3)O2 cathode, a graphite anode, two parallel sub-

packs, a total weight of 253 kg of which 151.8 kg (60 mass%) is comprised of 360 cells in 12 modules, a 

capacity of 26.6 kWh, and a 95-96% efficiency. Elemental compositions for the NiMH battery were 

determined using a model NiMH battery with 190 cells of 1.2 V each, 55 Wh/kg, and a total mass of 32.7 

kg [13]. The mass of each model NiMH battery cell was assigned by dividing the 43.4 kg NiMH battery 

described in Yano et al. [14] by the number of cells (252), which was then scaled using the average 

number of NiMH battery cells in the sampled commercial vehicles (190 cells) to obtain the total NiMH 

battery mass of 32.7 kg. The average elemental compositions of each battery type in each manufactured 

vehicle model, i.e., Li-ion, Li-polymer, and NiMH in HEVs, PHEVs, BEVs, and FCVs, were determined by 

linearly scaling these battery data to match the manufacturer reported battery sizes.  

The other vehicle components used in calculations are a synchronous electric motor and a generator, a 

fuel cell, an ICEV engine and related parts, and the vehicle body excluding the powertrain (body and 

doors, brakes, chassis, final assembly, interior and exterior, and tires and wheels, which together are 

referred to as the glider in Hawkins et al. [15] ). We chose to use synchronous (rather than induction) 
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electric motors and generators because data for them are readily available [14,15] and because they 

presently occur in most alternative energy vehicles in the United States. We acknowledge that this 

preference for synchronous motors may change in the future, and also that these data represent upper 

estimates of permanent magnet use in electric motors and generators (due to the absence of including 

induction motors here). Dy, Nd, and Pr compositions in the model electric motor and generator were 

determined by averaging their reported contents in Yano et al. [14] due to the absence of Dy and Pr data 

in Hawkins et al. [15,16]. Data from Hawkins et al. [15,16] were otherwise taken. Elemental 

compositions for the ICEV engine and glider were obtained from Hawkins et al. [15,16]. The value of 2 g 

of platinum in catalytic converters (in ICEVs, HEVs, and PHEVs) was chosen based on ranges of 1-4 g [17–

19], acknowledging the fact that it can be substituted for palladium depending on market prices. Fuel 

cells were specified to contain 20 g Pt [20,21]. A steel composition of 98.5 mass% Fe, 1.3 mass% Mn, and 

0.2 mass% C was used in all vehicle models. 

MIs in the scale of kilograms and above were rounded to hundreds of grams. MIs in smaller scales were 

rounded to two significant digits. The masses of 20 elements in each component are summed in table 

S1. 

TABLE S1: MASSES OF MATERIALS IN COMPONENTS OF INTERNAL COMBUSTION AND ALTERNATIVE ENERGY VEHICLES. UNIT: 

GRAMS. 
 

Electric 
motor + 

generator 

Fuel 
cell 

Internal 
combustion 

engine + 
powertrain 

"Glider" (body and 
doors, brakes, 
chassis, final 

assembly, interior 
and exterior, and 
tires and wheels) 

Li-ion 
battery 
(HEV, 
FCV) 

Li-ion 
battery 
(PHEV) 

Li-ion 
battery 
(BEV) 

Li-poly 
battery 
(HEV, 
FCV) 

NiMH 
battery 
(HEV, 
FCV) 

Li - - - - 206 2571 7466 354 17 
Mg - - - 200 - - - - - 
Al 43210 - 49500 21800 376 4686 13607 645 - 
Cr - - - - - - - - 559 
Mn 2095 - 1130 10022 526 6562 19054 902 - 
Fe 131968 - 144406 777537 - - - - 2300 
Co - - - - 564 7039 20439 968 - 
Ni - - - - 562 7011 20356 964 9492 
Cu 14000 - 6500 15800 1731 21604 62729 2971 - 
Zn - - - 100 - - - - - 
La - - - - - - - - 536 
Ce - - - - - - - - 740 
Pr 0.5 - - - - - - - 74 
Nd 497 - - - - - - - 234 
Gd - - - - - - - - 5 
Tb - - - - - - - - 0.24 
Dy 34 - - - - - - - 0.12 
Er - - - - - - - - 0.25 
Pt - 20 2 - - - - - - 
Pb 10 - - 300 - - - - - 

 

The total masses of the model ICEV, HEV, PHEV, and AEV that were obtained by summing their 

component masses are ~200-400 kg below the specified curb weights of similar vehicles (table S3). This 

range is consistent with the 266 and 282 kg total mass of glass, plastic, rubber, paint and other non-

metallic materials in the BEV and ICEV, respectively, investigated in Hawkins et al. [15,16]. The model 
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FCV is ~800 kg below the specified curb weight of the 2017 Toyota Mirai [9] (a commercially available 

FCV); this missing mass is related both to non-metallic materials and also to the fuel cell, for which only 

Pt was included here due to lack of data for other elements. 

As mentioned in the main text, smaller components with high variability between vehicle models, such 

as motors for automatic windows or navigation and audio systems are not included even though they 

may include small amounts of materials which could be of interest [22,23] because of their high 

variability and challenge of plausible assumptions about their future trends. 

Method 1 includes 20 elements and more reliably accounts for differences in battery size and type, and 

vehicle configuration, both of which vary substantially depending on the model vehicle, and is the 

dataset used in this study. Table S2 presents the MI values obtained with method 1 for ICEV and the 

eight AEV technologies.  

 

TABLE S2: MATERIAL INTENSITY VALUES FOR THE MASS OF MATERIALS IN THE VARIOUS VEHICLE DRIVE TECHNOLOGY AND 

BATTERY COMBINATIONS OBTAINED USING METHOD 1. THE RARE EARTH ARE MARKED IN BOLD, AND THE FOUR MATERIALS 

WHOSE INTENSITIES ARE MODIFIED IN THE FE SUBSTITUTION SCENARIO SET AND AL SUBSTITUTION SCENARIO SET ARE IN 

ITALICS. NOTE THAT CERIUM IS BOTH BOLD AND ITALIC. UNIT: GRAMS. 
 

ICEV HEV  
NiMH 

HEV  
Li-ion 

HEV  
Li-polymer 

PHEV  
Li-ion 

BEV  
Li-ion 

FCV  
NiMH 

FCV  
Li-ion 

FCV  
Li-polymer 

Li  - 17 210 350 2600 7500 17 210 350 
Mg  200 200 200 200 200 200 200 200 200 
Al  71300 114500 114900 115200 162400 78600 65000 65400 65700 
Cr  - 560 - - - - 560 - - 
Mn  11200 13200 13800 14100 21900 31200 12100 12600 13000 
Fe 921900 1056200 1053900 1053900 1185900 909500 911800 909500 909500 
Co  - - 560 970 7000 20400 - 560 970 
Ni  - 9500 560 970 7000 20400 9500 560 960 
Cu 22300 36300 38000 39300 71900 92500 29800 31500 32800 
Zn  100 100 100 100 100 100 100 100 100 
La  - 540 - - - - 540 - - 
Ce - 740 - - - - 740 - - 
Pr - 74 0.5 0.5 1 0.5 74 0.5 0.5 
Nd - 730 500 500 1000 500 730 500 500 
Gd - 5 - - - - 5 - - 
Tb - 0.24 - - - - 0.24 - - 
Dy - 34.1 34 34 68 34 34.1 34 34 
Er - 0.25 - - - - 0.25 - - 
Pt 2 2 2 2 2 - 20 20 20 
Pb 300 310 310 310 320 310 310 310 310 

Sum 1027302 1233013 1223077 1225937 1460391 1161245 1031531 1021495 1024445 

 

 

3.3 Method 2: averaging reported values for whole vehicles. 
 

In this method MIs were obtained by averaging reported values for whole vehicles [15,16,22,24–27]. MIs 

in the scale of kilograms and above were rounded to hundreds of grams. MIs in smaller scales were 

rounded to two significant digits. Method 2 resulted in MIs for 41 elements of which 7 are only reported 
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for ICEVs which are not part of this study. This method also did not provide data for the FCV drive 

technology and Li-polymer battery technology. Moreover, it does not differentiate vehicle components, 

required for the Fe substitution scenario, and so was only used for benchmarking and confirmation of 

the numbers obtained with method 1, and is included here for reference. Table S3 presents the values 

obtained with method 2, and Table S4 compares the two methods with the specified curb weight of 

vehicle models, as reported by their makers. 

TABLE S3: MI VALUES OBTAINED WITH METHOD 2, BY AVERAGING REPORTED VALUES FOR WHOLE VEHICLES. UNIT: GRAMS. 

ELEMENTS WITH AN ASTERISK (*) DO NOT APPEAR IN THE MI TABLE OBTAINED WITH METHOD 2 (TABLE S2). 

 ICEV HEV HEV PHEV BEV 
  NiMH Li-ion Li-ion Li-ion 

Li  5.5 - - 6300 5700 
Mg  5300 - - 9100 200 
Al  102000 75000 80000 160000 217000 
Ar * 0.01 - - - - 
Sc * 1.1 - 1.05 - - 
V * 59 - - - - 
Cr 6500 - - - - 
Mn 8700 14600 14400 14600 25200 
Fe 1036300 1217300 1207400 1266500 803700 
Co 64 - - 70 15700 
Ni 1800 - - - 15600 
Cu 26700 105000 100000 88500 173900 
Zn 100 - - - 100 
Ga * 0.29 - - 0.57 - 
Sr * 190 - - - - 
Y * 0.26 - 0.60 0.23 - 
Zr * 8 - - - - 
Nb * 93 - - 110 - 
Mo * 470 - - 630 - 
Rh * 0.01 0.01 - 0.01 - 
Pd * 3.5 1.8 - 1.8 - 
Ag * 19 - - 50 - 
In * 0.15 - - 0.08 - 
Sb * 46 - - - - 
La 2.8 738 8.1 6.7 - 
Ce 27 1100 82 36 - 
Pr 9.9 - 30 4 - 
Nd 120 980 520 490 790 
Sm * 1 - 3.3 1.4 - 
Eu * 0.12 - 0.46 0.01 - 
Gd 0.10 - 0.35 0.01 - 
Tb 0.007 - 0.001 20 - 
Dy 12 260 160 190 370 
Er 0.18 - - 0.18 - 
Yb * 0.11 - 0.0017 0.16 - 
Ta * 6.4 - - 11 - 
W * 0.17 - - - - 
Pt 5.4 5.5 - 5.5 - 
Au * 6 - - 5.8 - 
Hg * 0.01 - - - - 
Pb 280 - - - 300 

Sum 1188831 1414985 1402606 1546633 1258560 
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TABLE S3: COMPARISONS OF THE TOTAL MASS OF VEHICLES OBTAINED WITH METHODS 1 & 2 (ROUNDED TO KG), AND 

REPORTED SPECIFIED CURB WEIGHTS OF VEHICLES. 

 

ICEV 
HEV 

NiMH 
HEV 

Li-ion 
HEV 

Li-polymer 
PHEV 
Li-ion 

BEV 
Li-ion 

FCV 
NiMH 

FCV 
Li-ion 

FCV 
Li-polymer 

Method 1 1030 1230 1220 1230 1460 1160 1030 1020 1020 

Method 2 1188 1415 1402 n.a. 1546 1259 n.a. n.a. n.a. 

Specified 
curb weight 
(model) 

1470 
(Toyota 
Camry) 

[5] 

1380 
(Toyota 

Prius) [6] 

1380 
(Toyota 

Prius) [6] 

1380 
(Toyota 

Prius) [6] 

1718 
(Kia Optima 

PHEV) [7] 

1500 
(Nissan 
Leaf) [8] 

1848 
(Toyota 

Mirai) [9] 

1848 
(Toyota 

Mirai) [9] 

1848 
(Toyota 

Mirai) [9] 
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4 AEV Inflow growth curve 

 

4.1 Selection of the top asymptote value 

 
The objective of the statistical analysis in this section is to rule out patterns of growth or decline in this 

time series, to corroborate the use of the average as the top asymptote of the AEV sales growth curve. 

Inflow time series of total light duty vehicles (ICEVs and non-ICEVs) in the USA 1992-2014 was obtained 

from the U.S. Department of Transportation [28]. The average in this period is 7.76 million per year.  

We analyzed the time series to determine whether it is stationary, i.e. “one whose properties do not 

depend on the time at which the series is observed.” [29]. We conducted this analysis using standard 

time-series analysis procedures [29] with R’s forecast package. The Autocorrelation Function (ACF) plot 

of the total light duty vehicle sales time series indicated non-stationarity, supported by both the 

Adjusted Dickey-fuller (ADF) test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests which indicated a 

unit root in the time series.  

The differenced series (𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡 − 1)) was found to have no unit root using the same 

tests. Analysis of the differenced series indicated that it is stationary with a mean of zero, i.e. this series 

has no constant, and thus the original time series exhibits no deterministic “drift” –no systematic growth 

or decline trends. Although this means that random shocks may have permanent effects on the level of 

the series, we found no impediment to using the simple average of 7.76 as the total yearly inflow 

towards which AEV inflows approach. 

Note: the ARIMA model selection procedure [29] suggests that the time series is not a random walk but 

rather follows an ARIMA(0,1,3) pattern which results in a constant point forecast of 7.53 million. 

However, obtaining a more accurate forecast of the series is beyond the aims and needs of this study, 

and in any case does not change the finding that there is no growth or decline trend in the time series.  

 

4.2 Logistic curve fitting 

 
A logistic curve was fitted using Stata 14’s NL command [30]. The general logistic curve formula is 

𝑦(𝑡) =
𝑎

(1 + 𝑒−𝐵(𝑡−𝑀))1/𝑣
 

where, as described above and in the Methods and Data section of the main text, a is the top asymptote 

set to a value of 7.76 million, M is the point in time with the highest growth (inflection), B affects the 

rapidness of growth (the slope), t is the year, y(t) is inflow(t), and v affects the symmetry of the curve.  

v was set to 1, symmetrical growth rate. The historical data series was found to be too short (and small 

in comparison to the top asymptote) to provide information that would help choose a value for v: the 

AIC and BIC statistics, were nearly identical even with extremely asymmetrical values of v (i.e. 0.5, 2) 

(Figure S2), suggesting that any value of v, at least within this range, is plausible. A value of v = 1 was 

chosen for considerations of parsimony. 
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 •   ICEV+AEV inflow (historical)        --- Top asymptote 

•   AEV inflow (historical) 
 Fitted logistic curve AIC BIC 
 v = 1 (symmetric) 575.4223 577.6933 
 v = 2 (slow start, fast end) 575.8709 578.1419 

 v = 0.5 (fast start, slow end) 574.2699 576.5409 

FIGURE S2: COMPARISON OF THREE LOGISTIC CURVES FITTED TO THE HISTORICAL AEV INFLOW DATA AND 7.76X106 TOP 

ASYMPTOTE, WITH DIFFERENT VALUES OF V. ALSO SHOWN ARE THE AIC AND BIC STATISTICS OF THE THREE FITTED CURVES. 
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5 Inflows and outflows results of further rare earth elements and other 

metals not discussed in the article 

 
Figures S3-S4 present the inflow and outflow curves obtained for Tb, Er, Gd, Pr, and Dy; and Pt, Cr, Zn, 

Mg, Pb, Li, Co, Ni, Mn, Cu, Al, and Fe, respectively, in the baseline scenario.  

Several observations can be made from these figures, as noted for each element below. 

 

 

FIGURE S3: THE DEMANDS BY AEV INFLOWS AND POTENTIAL SECONDARY SUPPLIES FROM END-OF-LIFE AEV OUTFLOWS OF 

THE RARE EARTH ELEMENTS TB, ER, GD, PR, AND DY IN THE USA, 2000-2050, AND HISTORICAL (2012-2015) AVERAGE 

DOMESTIC PRIMARY PRODUCTION (GD AND PR ONLY) SUPERIMPOSED. NOTE THE DIFFERENT ORDINAL SCALES. 
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FIGURE S4: THE DEMANDS BY AEV INFLOWS AND POTENTIAL SECONDARY SUPPLIES FROM END-OF-LIFE AEV OUTFLOWS OF 

PT, CR, ZN, MG, PB, NI, MN, CU, AL, IN THE USA, 2000-2050. NOTE THE DIFFERENT ORDINAL SCALES. 

Observations from Figures S3-S4 (referencing information from the USGS 2017 Mineral Commodities 

Summaries [31]): 

a. Terbium, Erbium, Dysprosium, Chromium, and Manganese have no primary production in the 
USA.  

b. Gadolinium and Praseodymium currently have no primary production in the USA, but were 
mined from 2012-2015 at the Mountain Pass mine with other rare earth metals. See the main 
text for discussion. 

c. Platinum, Zinc, Magnesium, Lead, Lithium, Cobalt, Nickel, Copper, Aluminum, and Iron have 
primary production in the USA. Magnesium’s primary production figures are withheld. 

d. Platinum, Lithium, and Cobalt demands by AEVs and eventual ond-of-life availability from AEVs 
in our scenarios exceed historical US average production levels by orders of magnitude, 
resembling neodymium trends discussed in the main text. 
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e. Chromium, Zinc, Magnesium, Lead, Nickel, and Iron’s current (2012-2017) overall apparent 
consumption levels (consisting of imports, recycling, and primary production) are orders of 
magnitude higher than the demands and supply of the AEV sector in our scenarios. 

f. Manganese, Copper, and Aluminum in our scenarios reach maximum demands that would equal 
about 20% (Mn), 28% (Cu), and 17% (Al) of current consumption levels. It should be noted that 
currently 19% of copper consumption and 41% of aluminum consumption in the USA are already 
by transportation applications (which include light duty vehicles).  

 

It would seem that, beside the materials discussed in the main text, Pt, Li, Co, and Mn could be of some 

concern and warrant further study. 
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6 Uncertainty and Monte Carlo simulations 

 
This model is deterministic: the initial values of the exogenous variables fully determine the results 

through the set of equations. Any uncertainties inherit in these variables would propagate through the 

model to the endogenous variables (the results). The explorative nature of the model, which focuses on 

potential futures, lends itself to an approach of Monte Carlo simulations. This approach has been 

commonly used in dynamic flow-stock models [32–34]. In this method the value of each exogenous 

variable is stochastically drawn from a probability distribution in which the original point estimate is the 

median value. This action creates a new model-run with somewhat different starting points and 

therefore new results. This process is repeated numerous times. The resulting endogenous variables of 

all runs are statistically analyzed to derive uncertainty ranges in the results, identify the sensitivity of 

results to variance and uncertainty in each exogenous variable, track these changes through the model 

time steps, and compare variables’ relative influence on results. For further description of the method, 

the reader is referred to textbooks on the subject of uncertainty [35]. We executed a series of Monte 

Carlo simulations with 103 runs, which were found to be sufficient for values to converge and produce 

uncertainty bands to be analyzed. The following sections detail the steps taken. 

 

6.1 Causes of uncertainty in the model variables 

 
Laner et al. [33] suggested seven types of sources of uncertainty in material flow analysis: (1) statistical 

variation, (2) variability, (3) inherent randomness and unpredictability, (4) subjective judgment, (5) 

disagreement, (6) linguistic imprecision, and (7) approximation. We use these definitions to characterize 

the sources of uncertainty in our variables. 

The objective of this study is the future, and as such all variables have an inherent level of uncertainty 

directly related to the fact that the future has yet to happen. However, the exogenous variables can be 

split into two groups. The first group are scenario variables, which are set to specific “what-if” values as 

part of the storylines we wish to analyze in this study. These include 𝑣𝑖,𝑡 and 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) for the future 

(2015 ≤ 𝑡 ≤ 2050) as well as the parameters used to create the 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) time series (the top 

asymptote and logistic curve parameters). These variables are based on the premises of our scenarios 

and not on forecasts, in part because forecasts of AEV adoption in the USA seem to be inconclusive [36] 

and lack systematic uncertainty analyses. The main cause of uncertainty for these variables is inherent 

randomness and unpredictability – they are fundamentally uncertain because they haven’t happened 

yet. The main question is rather whether the assumptions and scenario premises we chose to use are 

likely storylines, which relate to the causes that Laner et al. [33] refer to as subjective judgement 

involved in the scenario set-up and approximation involved in the simplification of the variables.  

On the other hand, the second group of exogenous variables are estimates of current and past trends. 

These include 𝑀𝐼𝑖,𝑗 in scenario 1 and the Weibull survival curve parameters. These variables were 

assembled from multiple sources as described in the main text and sections 1 and 2 of the supporting 

information document. Some uncertainty assessments for certain materials exists. For example, Du et al. 

[27] discussed the discrepancy of MIs of several critical materials as reported in different publications, 

but did not provide distribution statistics that could inform an empirical uncertainty analysis. The 



 S-14 

heterogeneous methods employed in the original sources, and the varying level of uncertainty analyses 

– if any – supplied with the original data make reconciliation of the causes of uncertainty very difficult. 

We are not aware of a single integrated assessment that covers all the variables as they are used in our 

study. As a group, it would seem safe to conclude that all seven types of uncertainty may be evident to 

some extent in each of these variables. Our processing of these data, such as the synthesis of the MI 

coefficients, are characterized mainly by a process of approximation, in which the simplification of a 

single coefficient per vehicle technology removed any variance that existed between different models. 

 

6.2 Functional forms of the uncertainty distributions of the exogenous variables 

 
In the case of both groups of variables, the existing information on reliability was insufficient to describe 

empirically the range of uncertainty, let alone answer whether this uncertainty can be described by any 

probability distribution. The lack of readily-available uncertainty distributions in the literature led us to 

choose normal distributions to describe the potential variance and uncertainty in the values of the 

variables. Normal distributions have several favorable characteristics that make them preferable over 

other distributions in this case:  

1. Their form is a function of only two variables (the mean and standard deviation, SD) and 
because we set the point estimates to be the mean there is only one parameter (SD) left to 
define. 

2. They are symmetrical (the probability of a negative deviation from the mean is equal to the 
probability of positive deviation). 

3. They are relatively simple to compute and interpret. 
4. The multiplication of a normal distribution by a constant results in another normal distribution, 

an attribute we use in several instances. 
5. This assumption of normal distribution for the uncertainty of the variables conforms to the 

central limit theorem.  
Uncertainty was introduced to a total of 12 exogenous variables as described below. Each of the 

variables has its own normal distribution function independent of the others. However, there are some 

commonalities between them. The functional forms of all the normal distributions is 𝑋 ~ 𝒩(𝜇, (0.1𝜇)2), 

i.e. X is randomly drawn from a normal distribution with a mean 𝜇 and standard distribution(𝜎) which is 

a tenth of the mean. Time-variant variable series (e.g. 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) and 𝑣𝑖,𝑡) were multiplied by an X 

drawn once per model run, which scales the entire time series. This was done rather than having a new 

random X drawn for each time step t because the latter option would only introduce “noise” to the time 

series. The overall time series would still closely resemble the original point estimates resulting in very 

narrow confidence intervals that do not describe the uncertainty of the time series appropriately.  

We proceed to detail the uncertainty distributions modeled for each exogenous variable. 

 

6.2.1 Inflow of vehicles 

 
Future 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) data (2015 ≤ 𝑡 ≤ 2050) is based on a logistic curve as explained in the methods 

section of the main text and section 2 of the supporting information. The fitting algorithm used to create 
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the curve provides statistics (e.g. standard errors and confidence intervals) which can be used to 

describe the uncertainty of the value of 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) for any 𝑡. However, the fitting algorithm accepts the 

top asymptote (maximum yearly vehicle inputs) as a fixed number and thus the fitting results’ 

confidence intervals converge and become smaller starting from the inflection point as the curve gets 

closer to this value (i.e. as 𝑡 increases), as seen in figure S5. We reason that the uncertainty should 

increase over time rather than decrease, and that there is a certain level of uncertainty inherent in the 

choice of the top asymptote which is not captured by the fitting algorithm. This was achieved by scaling 

the point estimate series 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) by a value obtained from a normal distribution once per model run: 

𝑖𝑛𝑓𝑙𝑜𝑤(𝑡)𝑀𝐶 = 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡)  ×  𝑆  

𝑆 ~ 𝒩(1, 0.12) 

Where 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡)𝑀𝐶  is the value of the inflow time series in run number MC of the Monte-Carlo 

simulation and S is a random value drawn from a normal distribution with a mean of 1 and variance of 

0.01 (SD=0.1). The 95% confidence bands obtained with these parameters are slightly narrower those of 

the fitting algorithm in the growth period but continue to increase with time rather than decrease when 

the series stabilizes.  

 

FIGURE S5: THE TOTAL AEV INFLOW (CF. FIGURE 1 IN THE ARTICLE) AND CONFIDENCE BANDS OBTAINED BY THE CURVE 

FITTING ALGORITHM OVERLAID BY THOSE OBTAINED BY THE MONTE CARLO SIMULATIONS, WHICH ARE THE ONES WE USE IN 

OUR UNCERTAINTY ANALYSIS. 

 

6.2.2 Drive and battery technology share coefficients 

 
The variable set 𝑣𝑖,𝑡 includes the share of 8 drive and battery technology combinations. As described in 

the article, these shares were calculated in two steps. First, the shares of the four drive technologies 

(HEV, PHEV, BEV, and FCV) were derived from the IEA BLUE map. Then the battery shares of HEV and 

FCV were appraised based on the assumptions described in the methods section.  

𝑣𝑖,𝑡 = 𝑑𝑘,𝑡  ×  𝑏𝑘,𝑙,𝑡 

Where 𝑑 is the share of drive technology 𝑘 = {𝐻𝐸𝑉, 𝑃𝐻𝐸𝑉, 𝐵𝐸𝑉, 𝐹𝐶𝑉}, originally derived from the IEA 

BLUE map, and 𝑏 is the share of battery technology within each drive technology category 𝑙 =

{𝑁𝑖𝑀𝐻, 𝐿𝑖 − 𝑖𝑜𝑛, 𝐿𝑖 − 𝑝𝑜𝑙𝑦}.  
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We deemed that the drive technologies and battery technologies have underlying uncertainties which 

are independent of each other and introduce stochasticity in both calculation steps.  

 

6.2.2.1 Drive technology shares 

 

Randomness related to the uncertainty in the share of technologies was introduced in the following 

manner: 

𝑑𝑘,𝑡,𝑀𝐶 =
𝑑𝑘,𝑡  ×  𝑋𝑘

∑ (𝑑𝑘,𝑡  ×  𝑋𝑘)𝑘
 

𝑋𝑘  ~ 𝒩(1, 0.12) 

Where 𝑑𝑘,𝑡,𝑀𝐶  is the value of the inflow time series in run number mc of the Monte-Carlo simulation, 

rescaled to ensure that ∑ 𝑑𝑘,𝑡,𝑀𝐶𝑘 = 1. For PHEV and BEV, 𝑏𝑃𝐻𝐸𝑉 𝑎𝑛𝑑 𝐵𝐸𝑉,𝐿𝑖−𝑖𝑜𝑛,𝑡 = 1 and so no further 

calculation is done for these two battery technologies. 

6.2.2.2 FCV Battery technology shares 

 

For FCV, uncertainty to the assumption of equal shares (1/3, invariant over time) of the three battery 

types is introduced in the following manner:  

𝑏𝐹𝐶𝑉,𝑙,𝑀𝐶~ 𝒩 (
1

3
,

1

302) for 𝑙 battery types NiMH and Li-ion (each drawn independently of the other) and 

for all 𝑡 time steps. 

And 𝑏𝐹𝐶𝑉,𝐿𝑖−𝑝𝑜𝑙𝑦,𝑀𝐶 = 1 −  (𝑏𝐹𝐶𝑉,𝑁𝑖𝑀𝐻,𝑀𝐶 + 𝑏𝐹𝐶𝑉,𝐿𝑖−𝑖𝑜𝑛,𝑀𝐶) to ensure that battery shares sum to 1. 

Note that 𝑏𝐹𝐶𝑉,𝐿𝑖−𝑝𝑜𝑙𝑦,𝑀𝐶 is also normally distributed due to the summing properties of normal 

distributions. 

 

6.2.2.3 HEV Battery technology shares 

 

HEV battery shares vary over time, and were originally set to a ratio of 5:4:1 in 2050 for Li-ion, Li-poly, 

and NiMH respectively. Uncertainty was introduced in the following manner: 

𝑏𝐻𝐸𝑉,𝐿𝑖−𝑖𝑜𝑛,2050,𝑀𝐶~ 𝒩 (
1

2
,

1

202
) 

𝑏𝐻𝐸𝑉,𝑁𝑖𝑀𝐻,2050,𝑀𝐶~ 𝒩 (
1

10
,

1

1002
) 

𝑏𝐻𝐸𝑉,𝐿𝑖−𝑝𝑜𝑙𝑦,2050,𝑀𝐶 = 1 − (𝑏𝐻𝐸𝑉,𝑁𝑖𝑀𝐻,2050,𝑀𝐶 + 𝑏𝐻𝐸𝑉,𝐿𝑖−𝑖𝑜𝑛,2050,𝑀𝐶)  

The latter to ensure that battery shares sum to 1. Note that 𝑏𝐻𝐸𝑉,𝐿𝑖−𝑝𝑜𝑙𝑦,𝑀𝐶 is also normally distributed 

due to the summing properties of normal distributions . 

In each Monte Carlo run, the time series was filled from the historical 2014 data to 2050 using linear 

extrapolation, same as described in the methods section of the main text. 
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6.2.3 Cohort survival curve 

 
The survival curves of all vehicle types and all cohorts is a Weibull distribution. Uncertainties related to 

survival curves in dynamic inflow-driven stock-flow models were discussed in detail in several 

publications [34,37,38]. 

The Weibull function we use is a synthesis of Weibull functions obtained from Yano et al. [14] for hybrid 

vehicles in Japan and Weibull functions fitted by us to the general light-duty vehicles survivability of the 

American passenger car fleet [39], which is mostly composed of ICEVs. Yano et al. provide Weibull 

functions fitted for each production year of the Toyota Prius in Japan, and we truncated newer years 

(which suggest longer-lasting vehicles with median lifespans of 18 years or more) because we believe 

there are not enough data points yet to produce good fits. Unfortunately, Yano et al. did not provide any 

supplementary statistics to inform about the uncertainties in their calculations. Because of good fit, the 

uncertainty statistics accompanying the fitted Weibull function were deemed to be too conservative to 

account for the uncertainties that should be expected of the lifetime distribution of an emerging 

technology like AEVs. To account for the high expected uncertainties, we introduced a stochastic factor 

to the two parameters (the shape parameter 𝑎1and scale parameter 𝑎2) of the Weibull function. The 

uncertainties of the parameters were drawn from normal distributions: 

𝑎1,𝑀𝐶~𝒩(2.43, 0.2432) 

𝑎2,𝑀𝐶~𝒩(16.94, 0.16942) 

Each of the parameters influences the curve of the Weibull function in a non-linear fashion, and are also 

quite sensitive to changes in each other. Randomizing both parameters results in an extensive variety of 

survival curves with different acceleration and deceleration patterns and different medians. For 

example, the point estimate’s median is 14.5 years, and the medians of the 95% intervals range from 12 

to over 17 years. Because two parameters are randomized, the results are a two-dimensional 

uncertainty gradient which we visualize as two confidence bands in figure S6.  

 

FIGURE S6: 95% CONFIDENCE BANDS FOR THE SURVIVAL CURVE OBTAINED USING MONTE CARLO SIMULATIONS. TWO 

CONFIDENCE BANDS ARE SHOWN TO REPRESENT THE POSSIBLE COMBINATIONS OF THE TWO RANDOMIZED PARAMETERS. IN 

OTHER WORDS, THE FOUR UNCERTAINTY BOUNDS PRESENTED HERE (TWO FOR EACH BAND) HAVE EQUAL PROBABILITY.  
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6.2.4 Material intensities 

 
As explained in the methods section of the main text and section 1 of the supporting information, the 

material intensity (MI) coefficients are based on the components of a typical vehicle of each technology. 

Because of the multiple compilation and synthesis steps undertaken, the expectation that there should 

be inherent uncertainties at every step of the compilation, the lack of usable uncertainty analyses in our 

data sources, and for the sake of simplicity we decided not to introduce uncertainty at the prior 

calculation steps but rather to introduce uncertainty in the resulting MI coefficients (compare to the 

drive and battery technology shares coefficients described in section 4.2.2, in which uncertainties were 

introduced in the underlying calculation steps). Our decision is corroborated by the fact most materials 

of interest are dominant in one specific component (e.g. Nd in permanent magnets of electric motors), 

so the MI coefficient’s uncertainty distribution should be virtually equal to that of the component. The 

uncertainties of the MI coefficients were drawn from normal distributions: 

𝑀𝐼𝑖,𝑗,𝑀𝐶  ~ 𝒩(𝑀𝐼𝑖,𝑗, (0.1𝑀𝐼𝑖,𝑗)
2

) 

No uncertainties were introduced to the alternative MI figures of the two scenarios in which the AlCeMg 

alloy is introduced. 

 

6.3 Uncertainty results 

 
The uncertainties of the results obtained with the Monte Carlo simulations are complex functions of the 

underlying uncertainties introduced in the exogenous variables. Uncertainty in the exogenous variable 

results was found to vary over time, but some commonalities were found. In general, the distribution of 

the uncertainty in the endogenous variables is wider than in the exogenous variables. As detailed in SI 

section 4.2, the standard deviations of the normal distributions used to model uncertainty in the 

exogenous variables were set to be 
1

10
𝜇, i.e. 10% of their means 𝜇. In comparison, the materials inflow 

and stocks results (endogenous variables) have standard deviations of 
1

6
𝜇 on average, and outflows 

uncertainty bands are even wider, 
1

4
𝜇 on average. The uncertainty ranges for all results are 

asymmetrically distributed with a positive skew and their median values are smaller than their means, 

supporting the observation that the uncertainties of the endogenous variables do not follow normal 

distributions.  

Figures S7 and S8 present a full range of confidence bands (1%, 5%, 10%, 25%, 50%, 75%, 90%, 95% and 

99%) obtained with the Monte Carlo simulations, using neodymium (Figure S6) as an example of a 

continuously growing stock and cerium (Figure S7) as an example of a material with a peak and decline. 

Below and in the main text and we discuss the 5% and 95% bands. The values of the confidence bands 

for vehicle results vary over time but are on average in the range of [-23%, 26%] for inflows and stocks 

and [-30%, 45%] for outflows (the expected range of corresponding normal distributions would be 

[25%] and [40%] respectively). 5% and 95% confidence bands for the inflow and outflow results of the 
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eight vehicle technologies are presented in Figure 1 of the main text. The next section describes the 

sensitivity of these results to the uncertainty in the endogenous variables. 

 

FIGURE S7: UNCERTAINTY IN THE RESULTS OF NEODYMIUM OBTAINED THROUGH MONTE CARLO SIMULATIONS. 

 

FIGURE S8: UNCERTAINTY IN THE RESULTS OF CERIUM OBTAINED THROUGH MONTE CARLO SIMULATIONS. 
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7 Global sensitivity analysis and attribution of uncertainty 

 

7.1 Methods 

 
The 12 exogenous variables for which stochasticity was introduced using Monte-Carlo simulations are 

expected to yield different influence on the results, depending on the relations between specific 

exogenous variables and endogenous variables (for example, lanthanum is only found in NiMH batteries, 

and the values and uncertainty of its results should therefore be independent of BEV related variables). 

We conducted a global sensitivity analysis using the method of normalized squares of Spearman’s rank-

correlation coefficients [40,41] to attribute the relative influence of each exogenous variable on the 

material mass results, and to also check whether these influences change over the time.  

For each endogenous variable, twelve Spearman’s rank-correlation coefficient 𝜌 values were calculated 

using the sets of 10,000 results obtained with the Monte Carlo simulations, and for each time-step of 

the future portion of the model (2015-2050). 

𝜌𝐸𝑁,𝐸𝑋,𝑡 = 1 −
6 ∑ (𝑟𝑎𝑛𝑘 𝐸𝑁𝑀𝐶,𝑡 − 𝑟𝑎𝑛𝑘 𝐸𝑋𝑀𝐶,𝑡)

2𝑛
𝑀𝐶=1

𝑛(𝑛2 − 1)
 

Where 𝑟𝑎𝑛𝑘 𝐸𝑁𝑀𝐶,𝑡 and 𝑟𝑎𝑛𝑘 𝐸𝑋𝑀𝐶,𝑡 are the ordinal rankings of the 𝑛 Monte Carlo results of the 

endogenous variable 𝐸𝑁 and exogenous variable 𝐸𝑋, respectively, at model time step 𝑡, and 𝑛 =

10,000 Monte Carlo model runs. 

The resulting 12 𝜌 values for each endogenous variable were then normalized in the following fashion: 

 𝐶𝐸𝑁,𝐸𝑋,𝑡 =
(𝜌𝐸𝑁,𝐸𝑋,𝑡)

2

∑ (𝜌𝐸𝑁,𝐸𝑋,𝑡)
212

𝐸𝑋=1

 

Where 𝐶𝐸𝑁,𝐸𝑋,𝑡 is the normalized square of Spearman’s rank-correlation coefficients, which allow 

comparisons and attribution of uncertainty in the exogenous variables to the uncertainty of the 

endogenous variable. The sum of 𝐶𝐸𝑁,𝐸𝑋,𝑡 for any given endogenous variable 𝐸𝑁 at model time step 𝑡 is 

equal to 1. 

 

7.2 Sensitivity analysis results 

 

7.2.1 Common findings 

 
Using the normalized squares of Spearman’s rank-correlation coefficients, we find that most of the 

variance in the results can be attributed to only a handful of variables. In general, material inflow results 

are most sensitive to two variables: 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) (through 𝑠, the inflow variable’s scaling factor described 

in SI section 4.2.1) and 𝑀𝐼𝑖,𝑗. Uncertainty in these two variables contribute almost equal shares to the 

variance in the inflow results of all materials at any point in time. The sensitivity of the results to the 

values of drive 𝑑𝑘,𝑡  and battery technology 𝑏𝑘,𝑙,𝑡 shares that make up 𝑣𝑖,𝑡 are small, although their 
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specific influences tend to change over time and vary between materials depending on the specific 

technologies they are associated with (see details for each material below). 

Uncertainty in the stock results of all materials can be attributed mostly to 𝑀𝐼𝑖,𝑗 in 2015, but by 2025 

the contribution of  𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) grows to 30%-40% depending on the material. Variation in the Weibull 

survival curve’s scale parameter 𝑎2 grows in influence as time progresses, and contributes up to 10% of 

the uncertainty of the stocks results in 2050. 

The outflow results are most sensitive to the characteristics of the survival curve, defined using shape 

parameter 𝑎1 and scale parameter 𝑎2. The outflow results are more sensitive to changes in the value of 

the scale parameter than the shape parameter (cf. figure S4). The influence of the curve on the outflow 

results is stronger in the earlier modeling period and diminishes over time, as the stock gets “built up” 

with more cohorts. As time progresses, the outflow results become more sensitive to uncertainty in 

 𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) and 𝑀𝐼𝑖,𝑗. 

Figures S9-S14 present the contribution of uncertainty in each of the 12 exogenous variables to the 

variance in the results, and how these change over time.  

The results of several exemplary materials are presented: the rare earth elements neodymium, cerium 

(lanthanum, terbium, erbium, and gadolinium’s results are virtually identical), and dysprosium, as well 

as cobalt, lithium, and platinum to showcase how the sensitivity results of materials related to other 

technologies (li-ion and li-polymer batteries for cobalt and lithium, and fuel cells for platinum) compare 

to the rare earth elements. 

For each material, figures for the inflow, stock, and outflow results 2015-2050 are presented. The 

horizontal axis is time 𝑡, and vertical axis is the values of 𝐶𝐸𝑁,𝐸𝑋in time 𝑡. The 12 𝐸𝑋 variables are color 

coded in the following figures: 

𝐸𝑋 Description Uncertainty details 

 𝑀𝐼  Material intensity  SI section 4.2.4 

 𝑏𝐻𝐸𝑉,𝑁𝑖𝑀𝐻   Share of NiMH batteries in the inflow of HEV vehicles  SI section 4.2.2.3 

 𝑏𝐻𝐸𝑉,𝐿𝑖−𝑖𝑜𝑛  Share of Li-ion batteries in the inflow of HEV vehicles  SI section 4.2.2.3 

 𝑏𝐹𝐶𝑉,𝑁𝑖𝑀𝐻  Share of NiMH batteries in the inflow of FCV vehicles  SI section 4.2.2.2 

 𝑏𝐹𝐶𝑉,𝐿𝑖−𝑖𝑜𝑛  Share of Li-ion batteries in the inflow of FCV vehicles  SI section 4.2.2.2 

 𝑑𝐹𝐶𝑉  Share of FCV in vehicle inflows  SI section 4.2.2.1 

 𝑑𝐵𝐸𝑉  Share of BEV in vehicle inflows  SI section 4.2.2.1 

 𝑑𝑃𝐻𝐸𝑉 Share of PHEV in vehicle inflows  SI section 4.2.2.1 

 𝑑𝐻𝐸𝑉  Share of HEV in vehicle inflows  SI section 4.2.2.1 

 𝑎2  Weibull survival curve scale parameter  SI section 4.2.3 

 𝑎1  Weibull survival curve shape parameter  SI section 4.2.3 

 𝐼𝑛𝑓𝑙𝑜𝑤 Scaling of the inflow curve  SI section 4.2.1 
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7.2.2 Neodymium 

 
The results of neodymium have only a minute (~1%) sensitivity to variance in the relative shares of the 

various drive technologies and are not influenced by the shares of battery technologies, because 

neodymium’s primary usage is in permanent magnets in electric motors. 

  

 

 

 𝑀𝐼  
 𝑏𝐻𝐸𝑉,𝑁𝑖𝑀𝐻   

 𝑏𝐻𝐸𝑉,𝐿𝑖−𝑖𝑜𝑛  

 𝑏𝐹𝐶𝑉,𝑁𝑖𝑀𝐻  

 𝑏𝐹𝐶𝑉,𝐿𝑖−𝑖𝑜𝑛  

 𝑑𝐹𝐶𝑉  
 𝑑𝐵𝐸𝑉  
 𝑑𝑃𝐻𝐸𝑉 
 𝑑𝐻𝐸𝑉  
 𝑎2  
 𝑎1  
 𝐼𝑛𝑓𝑙𝑜𝑤 

FIGURE S9: THE SHARE OF UNCERTAINTY IN THE INFLOWS, OUTFLOWS, AND STOCKS RESULTS OF NEODYMIUM ATTRIBUTED 

TO EACH RANDOMIZED EXOGENOUS VARIABLE IN EACH TIMESTEP. CALCULATED USING NORMALIZED SQUARE OF 

SPEARMAN’S RANK-CORRELATION COEFFICIENTS (SEE SI SECTION 5.1) OF THE MONTE CARLO SIMULATION RESULTS (SEE SI 

SECTION 4). 
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7.2.3 Cerium 

 
Cerium’s main usage (in the baseline scenario) is in NiMH batteries. Its results’ sensitivity to 

uncertainties in the shares of the battery technologies 𝑏𝐻𝐸𝑉,𝑁𝑖𝑀𝐻 and 𝑏𝐹𝐶𝑉,𝑁𝑖𝑀𝐻 is high, as well as to the 

mix of drive technologies which utilize these battery types (HEV and FCV). The phasing out of HEV-NiMH 

and late growth of the FCV technologies can be seen in the changes of the influencing factors over time. 

The sensitivity analysis of the other rare earths found as mischmetal in NiMH (La, Pr, Gd, Er, and Tb) is 

the same as Ce. 
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FIGURE S10: THE SHARE OF UNCERTAINTY IN THE INFLOWS, OUTFLOWS, AND STOCKS RESULTS OF CERIUM ATTRIBUTED TO 

EACH RANDOMIZED EXOGENOUS VARIABLE IN EACH TIMESTEP. CALCULATED USING NORMALIZED SQUARE OF SPEARMAN’S 

RANK-CORRELATION COEFFICIENTS (SEE SI SECTION 5.1) OF THE MONTE CARLO SIMULATION RESULTS (SEE SI SECTION 4). 
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7.2.4 Dysprosium 

 
Dysprosium is used in all drive technologies, in permanent magnets in electric motors (as a companion 

to neodymium). However, it is also found is small amounts in mischmetal in NiMH batteries. For this 

reason, its results are somewhat more sensitive to uncertainty in the shares of vehicle technologies 

compared to neodymium.  
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FIGURE S11: THE SHARE OF UNCERTAINTY IN THE INFLOWS, OUTFLOWS, AND STOCKS RESULTS OF DYSPROSIUM ATTRIBUTED 

TO EACH RANDOMIZED EXOGENOUS VARIABLE IN EACH TIMESTEP. CALCULATED USING NORMALIZED SQUARE OF 

SPEARMAN’S RANK-CORRELATION COEFFICIENTS (SEE SI SECTION 5.1) OF THE MONTE CARLO SIMULATION RESULTS (SEE SI 
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7.2.5 Cobalt 

 
The results for cobalt are sensitive to the shares of HEV and BEV in the inflows. As HEV vehicle inflows 

are overtaken by other technologies, its influence on cobalt inflows and stocks results diminishes. 

Interestingly, the shares of the different battery technology types have no influence on the results, 

perhaps because the two major drive technologies by vehicle numbers, PHEV and BEV, use solely the Li-

ion battery technology. 
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FIGURE S12: THE SHARE OF UNCERTAINTY IN THE INFLOWS, OUTFLOWS, AND STOCKS RESULTS OF COBALT ATTRIBUTED TO 

EACH RANDOMIZED EXOGENOUS VARIABLE IN EACH TIMESTEP. CALCULATED USING NORMALIZED SQUARE OF SPEARMAN’S 
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7.2.6 Lithium 

 
The sensitivity of lithium results to uncertainties in the exogenous variables is remarkably similar to 

cobalt, underscoring the companionship of these two materials in their end-uses in AEVs, in Li-ion and 

Li-polymer batteries. 
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FIGURE S13: THE SHARE OF UNCERTAINTY IN THE INFLOWS, OUTFLOWS, AND STOCKS RESULTS OF LITHIUM ATTRIBUTED TO 

EACH RANDOMIZED EXOGENOUS VARIABLE IN EACH TIMESTEP. CALCULATED USING NORMALIZED SQUARE OF SPEARMAN’S 
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7.2.7 Platinum 

 
Although platinum is found in catalytic converters in HEVs and PHEVs, it is used in higher intensities in 

FCVs. The sensitivity of the platinum results to the share of FCVs in the inflows grows over time. 
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FIGURE S14: THE SHARE OF UNCERTAINTY IN THE INFLOWS, OUTFLOWS, AND STOCKS RESULTS OF PLATINUM ATTRIBUTED 

TO EACH RANDOMIZED EXOGENOUS VARIABLE IN EACH TIMESTEP. CALCULATED USING NORMALIZED SQUARE OF 
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