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Abstract: A hybrid MPPT (maximum power point tracking) controller integrates FLC (fuzzy logic
controller) and P&O (Perturbation and Observation) method for MMPT of PV (Photovoltaic) under
dynamic weather conditions is proposed. An adaptive neuro-fuzzy inference system is used
to optimize parameters and membership functions of FLC. FLC is used to find the region of
MPP (maximum power point); then, P&O technique is employed to accurately track the MPP.
MATLAB/Simulink models are built to evaluate the performance of the proposed hybrid algorithm.
In order to validate the performance of the proposed algorithm, comparisons with standalone FLC
and P&O are carried out. The performance of the proposed algorithm is tested against dynamic
weather condition. The results showed that the proposed algorithm successfully improve the dynamic
and steady state responses of PV under severe dynamic weather condition. More specifically, the
proposed approach shows its capability to attain the MPP faster than P&O and provided higher
power than the standalone FLC. Finally, the proposed algorithm overcomes the limitations associated
with FLC and P&O.
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1. Introduction

In the presence of the global growing demand for energy, renewable energy sources provide the
most promising alternatives. Among all other renewable energy resources, solar energy is the most
plentiful and permanent [1]. The available solar power is 1.8 × 1011 MW, which is far larger than the
global energy consumption rate [2,3]. The photovoltaic technology is considered the most prominent
method of utilizing solar energy. The power generated from PV (Photovoltaic) system depends on
irradiance levels, temperature, shading, and other weather conditions. The MPP (maximum power
point) varies with the radiation, thus the maximum power point MPP tracking algorithm is crucial to
find and maintain maximum power levels. Using DC/DC convertors, PV generators are continuously
being driven to operate at the voltage proposed by the algorithm to supply the load with the maximum
available power.

Many algorithms were developed to drive PV generators to work at their MPP using the
so-called maximum power point tracking (MPPT). The tracking algorithms are classified based on
their functionality into direct and indirect methods. The indirect methods are based on experimentally
obtained databases. Examples of these methods are curve fitting, look-up tables, open-circuit voltage
method, short circuit current method, and the open-circuit voltage test cell method [4]. On the other
hand, the direct methods are based on true measurements of voltage and current. Examples of direct
methods are the conductance incremental method, differentiation methods, the perturbation and
observe method, parasitic capacitance method, and the artificial intelligent methods [4].
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It has been reported that P&O (Perturbation and Observation) is the most common method used
in commercial products [5]. However, the P&O method has several drawbacks. Oscillating around
maximum power point is the main drawback. Moreover, the conventional P&O techniques based
on the fixed step size perturbation have many disadvantages [5]. It has been shown that small
step size causes low oscillations during steady-state weather conditions but with slower response.
On the other hand, larger step size leads to faster response but with higher oscillations at steady-state
conditions. Moreover, the conventional P&O has two independent control loops, where it uses
proportional-integral (PI) controller in one loop [6]. The PV systems are nonlinear and the PI controller
is used for linear systems. The performance of such systems reduces significantly due to the random
nature of weather conditions [7].

The main disadvantages of conventional methods are inaccuracy, large oscillations, slow
convergence and getting trapped in local peaks. To overcome these problems, several modifications
were performed on these conventional methods [8–13]. The dynamic changes in weather conditions
(sudden changes in irradiations and partial shading) are considered a real challenge for MPPT
algorithms. Multiple peaks appear in the power curves of PV module when subjected to partial
shading conditions. To counter this phenomenon, many algorithms were proposed to distinguish the
global maxima from the rest of the local ones [13–15].

The artificial intelligent systems are becoming increasingly desirable in tracking the global MPP
due to their capability of dealing with the prominent nonlinearities in the I–V characteristics of PV
systems [16–19]. In fact, the artificial intelligent techniques, though being with the highest complexity
to employ, provide promising solutions and efficient flexible tracking algorithms capable of dealing
with dynamic weather conditions. The fuzzy logic controller (FLC) gives a good performance under
dynamic weather conditions. It showed better tracking under the partial shading conditions, faster
convergence and lower oscillation about the global maxima [20,21]. Further enhancements could be
achieved when employing the evolutionary algorithms (EA) such as genetic algorithms (GA), and
neural networks (NN) in optimizing the fuzzy controller’s parameters and membership functions
based on preselected training data [22–24].

Partial shading condition occurs because of trees, buildings, cloudy conditions, and
self-shading. A PV system generates low power output due to the mismatch at these conditions.
Several improvements on the conventional P&O algorithm have been proposed to enhance its
performance under dynamic weather conditions [25,26]. An artificial neural network (ANN) was used
to improve the performance of P&O technique in [25]. Fuzzy logic is used to improve the performance
of P&O technique in [26] and increment of conductance in [27]. Radjai et al. modified the P&O (MPPT)
method with an adaptive duty cycle step size using the fuzzy logic controller to enhance the response
under dynamic weather condition [28]. However, their developed algorithms do not take into account
the partial shading of PV arrays. D’Souza et al. used fuzzy logic and nonswitching zone schemes
for implementing variable size perturbations to improve transient and steady-state responses [29].
Salah and Ouali compared the fuzzy logic and a neural network controller used for maximum power
point tracking for PV systems [30]. Their results showed that the fuzzy logic controller can deliver more
power than the neural network controller and can give more power than other different methods in the
literature. Algarín et al. evaluated the performance of the FLC controller with under sudden changes
in operating temperature and solar irradiance [31]. The results showed that the fuzzy controller has
an excellent performance under sudden changes in the operating temperature of the PV module, in
contrast with P&O control that is considerably affected, presenting significant power losses.

Although fuzzy control has good ability dealing with the nonlinear system, but its main drawback
is the generated a cumulative error due to continuous integral calculus [32]. Most FLC-based MPPT
techniques take the error (e(t)), and the change in error (de(t)/dt) as inputs. However, the requirement
of differentiation not only increases the complexity of calculation, but also may induce large amounts
of errors from merely small amounts of measurement noise [33]. Various techniques are proposed
to further improve the conventional FLC’s performance [34–36]. For example, ANN is applied to
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assist FLC in with solar irradiance and cell temperature as the input variables. However, ANN
technique needs a great amount of training data to acquire reasonable results, which could limit its
application [33]. Moreover, methods which were proposed to enhance the tracking speed of FLC,
hard to be to realize using low-cost microcontrollers compared with conventional FLC. On the other
hand, Algarín et al. presented a low-cost MPPT system based on neural network inverse model
controller [37]. Simulation results demonstrated the superiority of a neural controller over the P&O.

Several hybrid MPPT algorithms have been proposed by many researchers recently [38–44] to
deal with partial shading conditions. A hybrid controller combines the advantages of fuzzy logic and
conventional PID control is proposed by [38,39]. Jiang et al. proposed a hybrid MPPT controller that
combines ANN and P&O without irradiance sensor [40]. ANN, which is used to train several partial
shading cases offline, is used to predict the region of MPP, then the P&O technique is employed to
accurately track the MPP. Seyedmahmoudian et al. proposed a MPPT technique that employs a hybrid
evolutionary algorithm, which combines particle swarm optimization (PSO) and differential evolution
(DE) [41]. The proposed technique shows several advantages in the MPP tracking under partial
shading conditions. Daraban et al. proposed an MPPT technique that embeds the P&O algorithm in
genetic algorithms structure [42]. Each individual carrying an information of the reference voltage,
the direction and the step value. Lian et al. presented a hybrid MPPT algorithm that combines P&O
and the PSO method [43]. Initially, the P&O method is employed to locate the nearest local maximum.
Then, the PSO method is employed to locate the MPP starting from that point. Sundareswaran et al.
combined PSO and P&O MPPT algorithm [44]. In the first stage, PSO is used to locate the MPP. Then,
the MPP tracking is performed using P&O method.

The main objective of this study is to develop an efficient MPPT algorithm that overcomes
the problems with conventional methods under sudden changes and partial shading conditions.
The developed algorithm should have higher efficiency, faster convergence and lower oscillation about
the global MPP under severe weather conditions. The proposed algorithm is a hybrid combination
between the fuzzy logic controller (FLC) and the conventional perturb and observe (P&O) method.
It finds the MPP using P&O algorithm with a small step size initialized with a duty cycle obtained
from FLC algorithm. Utilizing FLC rapidly brings the system to the vicinity of the MPP and
allows the use of a small step size in the P&O algorithm for higher accuracy and lower oscillations.
The performance of the proposed algorithm is investigated by building MATLAB/Simulink models
consisting of the photovoltaic system, boost converter, and controllers. Fuzzy controller’s parameters
and membership functions are optimized employing the adaptive neuro-fuzzy inference system
(ANFIS). Comparisons against standalone FLC and P&O controllers are performed to assess the
performance of the proposed hybrid algorithm.

2. PV Modeling and Characteristics

PV cells have p–n junction generating electrical power by using photons. It generates electricity
when absorbing solar irradiance. When a load is connected to the PV cell, a direct current is generated
until the irradiance gets stop. The PV cell is modelled using the single diode model. The model
comprises a current source, a diode, a series resistance, and a shunt resistance. The characteristic
equations of PV cell are found in [45,46]. Typically, the generated voltage from one cell varies from
0.5 to 0.8 V depending on the manufacturing technology. To boost this low voltage and make it more
useful, dozens of PV cells are connected in series forming the PV module [47]. Based on the single
diode model, the output current of the photovoltaic module Ipvm is [46]:

IPVM = Iph − IDS

[
e

q(IPV Rs+VPV )
NsKb AT − 1

]
− VPV + IPV RsNs

RshNs
(1)

where, IPV is the current generated by the cell, Iph is the solar generated current, Ish is the shunt
resistance current and ID is the diode current, q is an electron charge (1.6 × 10−19 C), T is the cell’s
operating temperature, Kb is the Boltzmann’s constant (1.38 × 10−23 J/K), A is the diode ideality factor,
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Rs is the series resistance, VPV and IPV are the photovoltaic operating voltage and current respectively,
IDS is the diode saturation current. Equation (1) is modeled in MATLAB/Simulink employing 72 cells
connected in series based on the electrical specifications provided by SUNTECH STP270-24/Vd PV
module datasheet shown in Table 1.

MATLAB and Simulink have been successfully used for modelling and simulations of PV systems.
The simulations models for I–V and P–V curves are in a good agreement with experimental tests for
different operating conditions and array setup configurations [48]. The typical P–V and I–V nonlinear
characteristics of the PV module are shown in Figure 1. As can be seen from the curves in Figure 1,
maximum power occurs at a unique point called maximum power point MPP. MPPT is used to
make the system operate at this specific point. The partial shading occurs when a part of the system
experiences some shadowing. Multiple peaks appear in the PV characteristic when the system is
subjected to partial shading conditions as shown in Figure 1c,d. The existence of multiple peaks
provides a real challenge for MPPT algorithms.
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Figure 1. Characteristics of STP270-24/Vd module under different radiation levels, (a) P–V uniform;
(b) I–V characteristics, uniform; (c) P–V, partial shading; (d) I–V, partial shading.

Table 1. Electrical specifications the STP 270-24/Vd PV module [49].

Electrical Characteristic STP270-24/Vd

Optimum Operating Voltage (Vmp) 35.0 V
Optimum Operating Current (Imp) 7.71 A

Open-Circuit Voltage (Voc) 44.5 V
Short-Circuit Current (Isc) 8.20 A

Maximum Power at STC (Pmax) 270 W
Temperature Coefficient of Voc −0.34%/◦C
Temperature Coefficient of Isc 0.045%/◦C
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As shown in the P–V characteristic of the PV array, it’s clear that any change of the voltage
delivered to the load results in a change of the power produced by the PV module. To track the
maximum power point, an electronic device called boost convertor is usually inserted between the PV
generator and the loads to control the voltage extracted by module without the need of continuously
changing the load. The output voltage of the boost convertor is controlled using a train of pulses
produced by a pulse generator. The duty cycle D of the generated pulse width modulated signal relates
the output voltage Vo to the input voltage Vi as:

Vi
Vo

=
1

1 − D
(2)

3. MPPT Algorithms

MPPT algorithms are implemented to find the optimal duty cycle to maintain the maximum
power levels of PV systems.

3.1. P&O Algorithm

The detailed description of P&O can be found in [4]. The flow chart of the P&O algorithm can be
summarized as follows; after recording the present power levels produced by the system, the algorithm
performs a perturbation to the operating point by means of changing the duty cycle and measures the
resulting power accordingly. If there is an increase in the power levels, iteration is performed in the
same direction. Otherwise, iteration in the reverse direction is carried out. The peak is detected when
the power oscillates about a certain value, i.e., increasing and decreasing the duty cycle result in less
power levels.

3.2. Fuzzy Logic Controller (FLC)

The fuzzy logic deals with partially true variables ranging between fully false and the fully true.
The fuzzy based controllers can effectively deal with the nonlinearity in the I–V characteristics of
PV systems. It forms an approximation that maps input values to their predicted outputs based on
IF-THEN rules. The fuzzy logic controller is operated using membership functions instead of the
mathematical model. It consists of three stages: fuzzification, inference mechanism, rule-based table
look-up and defuzzification. It has two inputs (power and ∆V) and one output (D). As shown in
Figure 2, the generated inference system consists of two inputs (open circuit voltage and short circuit
current) and one output (the desired duty cycle). Each input comprises five Gaussian type membership
functions as shown in Figure 3. Figure 4 shows the surface generated for the fuzzy controller.Resources 2018, 7, x FOR PEER REVIEW  6 of 17 
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The fuzzy controller proposed in this paper is built using an adaptive neural network for
a Sugeno-type fuzzy model. We choose this model because it is less time consuming and more
transparent than other fuzzy models. The adaptive neuro-fuzzy inference system (ANFIS) generates
rules and membership function parameters and tune them based on a given input–output data set.
In order to train the neural network and tune the fuzzy controller parameters, a set of input-output
data is obtained manually using MATLAB/Simulink models. Two models were used; the first one
not shown was used to record the maximum available power at each insolation level ranging from
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100 to 1000 (W/m2) in partial and full shading conditions. The second one not shown was used to
seek the optimum duty cycle manually in an iterative manner and to record the corresponding open
circuit voltage and the short circuit current. Fifty-five input–output data sets are finally produced. It is
worth mentioning that these types of modelling work well if there are a large number of data to be
used for training.

Adaptive neuro-fuzzy inference system (ANFIS) integrates fuzzy logic and neural networks.
It has the potential to capture the benefits of both methods in a single framework. The neural networks
NN algorithm is operated based on internal data training, while external data training is used for
fuzzy logic algorithm operation. The tracking error and change in error are fed as input to the neural
network while the NN output is fed as an input to the fuzzy system. The parameters used to train the
FLC using ANFIS are listed in Table 2.

Table 2. ANFIS-Editor training parameters.

Fuzzy Logic Type Sugeno

Number of inputs 2
Number of membership function 10

No of TRAINING a epochs 3000
Input membership function type Gaussian

output membership function type Linear
Algorithm used Grid partitioning

Optimization method Hybrid

3.3. Proposed Hybrid MPPT Algorithm

The main idea of the hybrid proposed algorithm is to take the advantages of the strength of both
FLC and P&O algorithm in a single frame work. FLC can work under dynamic weather conditions
with limited accuracy, while P&O algorithm can achieve high accuracy when using small step size.
A high performance algorithm can be developed by using FLC to provide the P&O with initial guess
in region of maximum power point. Therefore, the proposed hybrid algorithm combines the quickness
of approximation from the fuzzy system with the accuracy of P&O method. Schematic diagram of PV
system with hybrid MPPT used to build MATLAB/Simulink model is showing in Figure 5.
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4. Results and Discussion

In order to validate the performance of proposed hybrid algorithm, a comparison between its
performance with classical P&O method alone, and FLC alone is presented. To accurately investigate
the performance of the FLC, tracking error, and tracking efficiency are defined [2]:

E f f iciency =
PPV

PMPP
× 100% (3)

Error =
PMPP − PPV

PMPP
× 100% (4)

4.1. Performance of FLC Alone

Fuzzy controller’s parameters and membership functions developed in this study are optimized
by employing the adaptive neuro-fuzzy inference system (ANFIS). A training set of 55 data points are
used. In order to evaluate the robustness of FLC algorithm under random weather conditions, two
cases are simulated; (1) Assessing the performance at the same training data points; (2) Assessing at
different points. Figure 6a,b show that the fuzzy controller was able to produce more than 97% of the
available power when PV modules are tested at the same data point. On the other hand, testing far
from trained data points, the FLC was able to harvest only 85% of the available power (see Figure 6c,d).
This demonstrates that FLC is always capable of placing the system to the region of the MPP. It is
worth mentioning that using large number of data for training is not practical to enhance the accuracy
of FLC, because this required large number of membership functions that consume higher processing
time. Table 3 further illustrates that FLC is efficient in harvesting power when weather conditions are
the same trained data points and its efficiency decreases as weather conditions deviates from these
points. Finally, the curves presented in Figure 6 show that the FLC has fast convergence around the
desired MPP, i.e., it reaches the MPP in less than 0.25 s in all cases.

Table 3. Performance of fuzzy controller under partial shading conditions at points not utilized
in training.

Case No. Weather Condition Ir1
(Watt/m2)

Ir2
(Watt/m2)

Nominal Power
(Watt)

Power after
Fuzzy (Watt) Efficiency

1

Uniform Irradiation

1000 1000 258 258 100%
2 900 900 232 232 100%
3 800 800 207 206 99.6%
4 700 700 181 179.1 99%
5 600 600 155 154.2 99.5%
6 500 500 128.5 127.6 99.3%
7 400 400 103.2 102.6 99.6%
8 740 740 190.3 163.4 85.7
9 585 585 150.63 139.2 92.4

10 597 597 153.8 151.6 98.5

11

Partial Shading

1000 300 128.1 122.5 96%
12 800 300 101.4 99.3 98%
13 500 200 58.1 56.2 96.7%
14 400 100 46.3 44.8 96.5%
15 700 300 48.7 47.5 99%
16 892 407 126.3 106.8 84.4%
17 644 596 103.7 92.3 89.0%
18 400 100 46.3 38 82.1%
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4.2. Performance of P&O Alone

The step size of the P&O method affects the performance greatly due to its iterative nature.
During iterations, the current duty cycle changes either up or down. To illustrate the effect of step
size on the performance of P&O algorithm, two step sizes were simulated under uniform shading
conditions. It can been see in Figure 7a that increasing the step size leads to faster convergence, but on
the other hand leads to wider oscillations. On the other hand, using small step size enhances power
output and reduces oscillations. This behavior can be explained as follows; using large step size can
cause overstepping local maxima, hence, less efficiency and wider oscillations about the peak power
comparing to the case of using small step size.

Partial shading occurs when some portions of the PV array experience different irradiation levels,
more than one peak appear in the P–V characteristics and many local maximum power points exist.
Among these power points, only one is the maximum power point, i.e., global peak. Due to the nature
of P&O method, searching starts for the closest peak by changing the duty cycle that is originally
set to zero. Therefore, the algorithm recognizes the maximum power point associated with the least
duty cycle even if it is not the global peak. On other words, the algorithm might get trapped in the
local peak. It continuously oscillates around the first peak found which is not necessarily the global.
To demonstrate this phenomenon, partial shading conditions are applied to the PV system by dividing
the PV panel into two portions each with different radiation level. Figure 7b,c shows that P&O got
trapped in a local maximum under partial shading conditions of (1000, 300) W/m2.
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4.3. Performance of the Hybrid Proposed Algorithm

The performance of the proposed hybrid algorithm under three weather conditions is assessed.
These conditions are (a) uniform condition; (b) partial shading; (c) sudden changes. The performance
of the hybrid algorithm is compared against FLC alone, and P&O alone. Several uniform conditions
are simulated and the results are presented in Figure 8. It can be seen in Figure 8 that all algorithms
approach MPP under uniform conditions. Moreover, the hybrid algorithm has faster response and has
the ability to deliver more power than P&O. P&O can deliver higher power if decreasing the step, size
which is unavoidably accompanied by a slower response.
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Figure 8. Simulation results under uniform shading conditions, (a) insolation level of 800 W/m2;
(b) insolation level of 1000 W/m2; (c) insolation level of 600 W/m2; (d) insolation level of 400 W/m2.

To further evaluate the performance of the proposed algorithm, several partial shading cases are
simulated. Figure 9 shows the performance of the hybrid controller under several partial shading
conditions. For all simulation cases studied, the hybrid controller successfully finds the global
maximum power point while the P&O got trapped in the local MPP. As mentioned earlier, the
fuzzy controller always finds the duty cycle that brings the system to the vicinity of the global MPP.
The P&O part of the hybrid controller uses this duty cycle as an initial guess to further increase the
power obtained by the PV module.
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The P&O algorithm has a relatively long recovery time when exposed to sudden changes in
radiation levels. To assess the proposed algorithm under this condition, several simulations are
conducted by replacing the constant irradiation input of the PV model with a step signal. The results
showed in Figure 10 show that the proposed algorithm rapidly finds the new MPP. For example,
Figure 10a shows the performance when the radiation changes from 1000 W/m2 to 700 W/m2, the
power obtained from P&O controller changed from 259 W to 70 W in 0.4 s while it took only 0.15 s for
the proposed controller to change the power from 267 W to 72 W. Table 4 lists comparisons between
P&O with different step sizes, Fuzzy and the proposed hybrid controllers. It is clear from simulation
results listed in Table 4 that the proposed hybrid controller successfully outcome the shortages of fuzzy
and P&O algorithm alone.
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Figure 10. Simulation results under sudden changes in radiation levels. (a) Dropping from 1000 to
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Table 4. Comparison between P&O with different step sizes, fuzzy and the proposed hybrid controllers.

Controller Accuracy Convergence Oscillations Trapping

Fuzzy Moderate Fast Low No
P&O/large step size Low Fast High Yes
P&O/small step size High Slow Moderate Yes

Hybrid High Fast Moderate No

4.4. Testing the Performance at Random Weather Conditions

FLC requires large number of training data points to work well. Fuzzy controller generated using
adaptive neuro-fuzzy inference system is found highly accurate when tested at the same data points
that were used for training it. Otherwise, its accuracy decreases significantly when tested far from
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those points. It is worth mentioning that using large numbers of data for training is not practical
to enhance the accuracy of FLC, because this required large number of membership functions that
consume higher processing time. To clarify this point, we simulated partial shading case where the
amount of solar radiation is far from those implemented to train the fuzzy controller. Figure 11 shows
the performance of the three algorithms when 36 cells of PV is subjected to 985 W/m2 and the other
36 cells are exposed to 317 W/m2. These weather conditions points were not utilized for training. It can
be seeing in Figure 11 that that P&O got trapped in the local maximum i.e., local maximum power
point is 89 W, where the global maximums power point for this weather condition is 118 W. Moreover,
the accuracy of FLC was extremely low. i.e., FLC alone was only able to deliver only 84.5% of the
maximum available power. Finally, the proposed hybrid controller skipped the fake maxima because
of the initial guess generated from fuzzy controller and improved this interpolation and successfully
reached the maximum available power of 118 W. Finally, Table 5 compares between the performance
of the proposed hybrid algorithm with FLC alone for several cases at weather conditions not utilized
for training. It is clear that the hybrid algorithm was successfully able to harvest over 99% of the
maximums power available for all random weather conditions, while the FLC efficiency decreases
significantly when conditions points are far from those used for training.
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(b) P–V characteristics of STP270 PV module with the power levels obtained by the three controllers.

Table 5. Performance of hybrid algorithm under partial shading conditions at points not utilized
in training.

Case No. Ir1
(Watt/m2) Ir2 (Watt/m2)

Nominal
Power (Watt)

FLC Alone
(Watt)

Hybrid Proposed
Algorithm (Watt)

1 1000 300 128.1 122.5 127.9
2 800 300 101.4 99.3 101.2
3 500 200 58.1 56.2 57.9
4 400 100 46.3 44.8 46.2
5 700 300 48.7 47.5 48.5
6 892 407 126.3 106.8 126.2
7 644 596 103.7 92.3 103.5
8 400 100 46.3 38 46.1

5. Conclusions

An efficient and highly accurate hybrid MPPT controller combines FLC and the P&O method
for MMPT of PV under dynamic weather conditions is proposed. ANFIS is employed to optimized
parameters and membership functions of FLC. FLC is used to predict the region of MPP, then, P&O
technique with a small step size is employed to accurately track the MPP. It utilizes the strength of
both the conventional P&O and FLC in a single work frame. MATLAB/Simulink models are built to
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validate the performance of the proposed algorithm under dynamic weather conditions. Simulations
results show that the conventional P&O algorithm has slow rate of convergence when using a small
step size, and has a large inaccuracy when using a large step size. Moreover, it fails under sudden
changes of weather conditions and under partial shading conditions. On the other hand, although FLC
has a fast response under dynamic weather conditions, but was found to lack the accuracy in some
operating conditions (i.e., when weather conditions are far from those used for training). The proposed
method was able to improve the steady and dynamic states performance, prevent the conventional
P&O algorithm from being trapped in a local maximum under fast-changing irradiation and partial
shading conditions. Simulation results illustrate the robustness and effectiveness of the proposed
algorithm under severe dynamic weather conditions, even at points not utilized in training data.
More specifically, the computational time is reduced, the accuracy is higher, and the efficiency is
improved. For future work, the performance of the proposed algorithm will be compared against
recently developed improved controllers. Furthermore, a low-cost, easily implemented stable efficient
controller will be investigated.
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