# **Supplementary Materials:**

# Characterizing the Urban Mine—Challenges of Simplified Chemical Analysis of Anthropogenic Mineral Residues

# Paul Martin Mählitz <sup>1,\*</sup>, Amund N. Løvik <sup>2</sup>, Renato Figi <sup>3</sup>, Claudia Schreiner <sup>3</sup>, Claudia Kuntz <sup>1</sup>, Nathalie Korf <sup>1</sup>, Matthias Rösslein <sup>4</sup>, Patrick Wäger <sup>2</sup>, and Vera Susanne Rotter <sup>1,\*</sup>

- <sup>1</sup> Chair of Circular Economy and Recycling Technology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; claudia.kuntz@tu-berlin.de (C.K.); nathalie.korf@tu-berlin.de (N.K.)
- <sup>2</sup> Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Empa, CH-9014 St. Gallen, Switzerland; amund.loevik@empa.ch (A.N.L.); patrick.waeger@empa.ch (P.W.)
- <sup>3</sup> Advanced Analytical Technologies, Swiss Federal Laboratories for Materials Science and Technology, Empa, CH-8600 Dübendorf, Switzerland; renato.figi@empa.ch (R.F.); claudia.schreiner@empa.ch (C.S.)
- <sup>4</sup> Particles-Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Empa, CH-9014 St. Gallen, Switzerland; matthias.roesslein@empa.ch
- \* Correspondence: p.maehlitz@tu-berlin.de (P.M.M.); vera.rotter@tu-berlin.de (V.S.R.); Tel.: +49-30-3142-2619 (V.S.R.)

This supplement contains:

11 Pages

3 Figures

8 Tables

# Contents

| 1. Method  | l description and validation                                  | 3  |
|------------|---------------------------------------------------------------|----|
| 1.1. Me    | thod description of halogen analysis in BATT sample           | 3  |
| 1.2. Ar    | senic mass fraction and element recovery                      | 3  |
| 1.3. Re    | covery rate of liquid standards (RRL) for the in-house method | 4  |
| 1.4. Sai   | nple homogeneity                                              | 4  |
| 2. Chemie  | cal analysis results of validated and in-house method         | 5  |
| 2.1. Res   | sults of the validated method                                 | 5  |
| 2.2. Res   | sults of the wet-chemical in-house method                     | 6  |
| 2.3. Res   | sults of in-house ED-XRF measurement                          | 7  |
| 3. Applica | ability of simplified in-house methods                        | 9  |
| 4. Matrix  | interferences in ED-XRF measurement                           | 11 |

# Figures

| Figure S1. Mass fraction and recovery of arsenic in BATT and MIN sample  | 3  |
|--------------------------------------------------------------------------|----|
| Figure S2. The ED-XRF energy spectrum (4–14 keV) of the BATT measurement | 11 |
| Figure S3. The ED-XRF energy spectrum (3–7 keV) of the BATT measurement  | 11 |

# Tables

| Table S1. Parameters of the validated method for the determination of total halogens F and Cl | 3  |
|-----------------------------------------------------------------------------------------------|----|
| Table S2. Recovery rates measured in liquid standard samples.                                 | 4  |
| Table S3. Homogeneity test results for BATT and MIN sample.                                   | 4  |
| Table S4. Element composition of BATT and MIN sample determined with the validated method     | 5  |
| Table S5. Chemical analysis results of the wet-chemical in-house method.                      | 6  |
| Table S6. Chemical analysis results of the XRF in-house method.                               | 7  |
| Table S7. Overview of applicability of in-house methods for MIN sample                        | 9  |
| Table S8. Overview of applicability of in-house methods for BATT sample                       | 10 |

#### 1. Method description and validation

#### 1.1. Method description of halogen analysis in BATT sample

A sample mass of 0.1-0.2 g (n = 5) was weighed in, and 5 ml 1M NaOH (MERCK p.a.) was used as an absorption reagent. The digestate was filled up to a final volume of 50 ml (Polypropylene volumetric flask) and prepared using an IC-H+-ion exchanger with a dilution of 1:10 followed by membrane filtration at 0.2 µm. Ion chromatography was applied for direct detection of F and Cl. The measurement setup comprised a Methrom IC 882 Compact Plus with Methrom ASUPP 475 Guard as precolumn and Methrom A-Supp 5-150 as a separation column. A mixture of 3.2 mM Na<sub>2</sub>CO<sub>3</sub> p.a. and 1.0 mM NaHCO<sub>3</sub> p.a. (MERCK p.a.) were used as eluent combined with an injection volume of 20 mL and flux of 0.7 ml/min.

| Materials and methods      | Specification of the validated method                                                         |
|----------------------------|-----------------------------------------------------------------------------------------------|
| Digestion method           | PARR <sup>*</sup> Oxygen digestion bomb (IKA)                                                 |
| Pressure                   | 30 bar                                                                                        |
| Number of digestions       | n=5                                                                                           |
| Weight of the sample taken | 0.1 – 0.2 Gramm                                                                               |
| Absorption reagents        | 5 mL 1M NaOH p.a.                                                                             |
| Final volume               | 50 mL                                                                                         |
| Quality of acids           | MERCK p.a.                                                                                    |
| Measurement method         | Ion chromatography (IC), direct detection                                                     |
| Sample preparation         | IC-H*-ion exchanger, dilution of samples: 1:10 dilution and membrane filtration (0.2 $\mu m)$ |
| Device type                | Methrom IC 882 Compact Plus                                                                   |
| Precolumn                  | Metrohm ASUPP 4/5 Guard                                                                       |
| Separation column          | Metrohm A-Supp 5-150                                                                          |
| Eluent                     | 3.2 mM Na <sub>2</sub> CO <sub>3</sub> p.a. + 1.0 mM NaHCO <sub>3</sub> p.a.                  |
| Injection volume           | 20 μL                                                                                         |
| Flux                       | 0.7 mL/min                                                                                    |
| Validation                 | Element spikes, added before digestion                                                        |

Table S1. Parameters of the validated method for the determination of total halogens F and Cl.

#### 1.2. Arsenic mass fraction and element recovery

**Figure S1** shows the results of the arsenic determination testing various digestion acids. The digestion with HNO<sub>3</sub>-H<sub>2</sub>O<sub>2</sub> performed badly in comparison to aqua regia and H<sub>2</sub>SO<sub>4</sub>-HNO<sub>3</sub> when comparing the recovery rates in the sample (RRS).



Figure S1. Mass fraction and recovery of arsenic in BATT and MIN sample.

## 1.3. Recovery rate of liquid standards (RRL) for the in-house method

**Table S2** shows the recovery rates in liquid standards (RRL) in HNO<sub>3</sub> measured with ICP-OES by laboratory 2 (L2).

| Recovery rate (RRL) |      | Element cond | centration in HN | D₃ acid [mg/L] |      |
|---------------------|------|--------------|------------------|----------------|------|
| Element             | 0    | 0.25         | 2                | 10             | 80   |
| Ag                  | n.d. | 1.00         | 1.00             | -              | -    |
| Al                  | n.d. | -            | -                | -              | 1.00 |
| As                  | n.d. | 1.01         | 1.04             | -              | -    |
| Ba                  | n.d. | 1.02         | -                | -              | -    |
| Cd                  | n.d. | 1.00         | -                | -              | -    |
| Со                  | n.d. | -            | 1.01             | -              | 0.99 |
| Cr                  | n.d. | -            | -                | 1.01           | -    |
| Cu                  | n.d. | -            | -                | -              | 1.00 |
| Fe                  | n.d. | -            | -                | -              | 1.00 |
| Li                  | n.d. | -            | 1.00             | -              | -    |
| Mg                  | n.d. | -            | 1.01             | -              | -    |
| Mn                  | n.d. | -            | -                | -              | 1.01 |
| Мо                  | n.d. | -            | 1.03             | -              | -    |
| Na                  | n.d. | -            | 0.99             | -              | -    |
| Ni                  | n.d. | -            | -                | -              | 1.00 |
| Pb                  | n.d. | -            | 1.05             | -              | 1.00 |
| Sb                  | n.d. | -            | 1.02             | 1.01           | -    |
| Sr                  | n.d. | -            | 1.00             | -              | -    |
| Ti                  | n.d. | 1.00         | -                | -              | -    |
| V                   | n.d. | 0.99         | -                | -              | -    |
| Zn                  | n.d. | -            | -                | 1.01           | 0.99 |

Table S2. Recovery rates measured in liquid standard samples.

n.d.: not determined.

## 1.4. Sample homogeneity

Sample homogeneity was tested with an ANOVA *F* test using the ED-XRF results of laboratory L2.

| Element |            | Ag   | Al    | As   | Au    | Ba    | Bi   | Br   | Ca   | Cd   | Ce   | C1   | Со   | Cr   | Cu   | Fe   |
|---------|------------|------|-------|------|-------|-------|------|------|------|------|------|------|------|------|------|------|
| BATT    | F (α=0.01) | 0.89 | 0.6   | 0.74 | n.d.  | 0.6   | n.d. | 0.61 | 0.88 | 1.54 | n.d. | 0.64 | n.d. | 1.33 | 0.59 | 0.79 |
|         | f = 3.53   | h.   | h.    | h.   | n.d.  | h.    | n.d. | h.   | h.   | h.   | n.d. | h.   | n.d. | h.   | h.   | h.   |
| MIN     | F (α=0.01) | n.d. | 7.63  | n.d. | n.d.  | 2.3   | n.d. | n.d. | 1.33 | n.d. | 0.85 | 1.45 | 2.92 | n.d. | n.d. | 4.05 |
|         | f = 4.03   | n.d. | n. h. | n.d. | n.d.  | h.    | n.d. | n.d. | h.   | n.d. | h.   | h.   | h.   | n.d. | n.d. | n.h. |
| Element |            | Ga   | Ge    | In   | К     | La    | Mg   | Mn   | Мо   | Nb   | Nd   | Ni   | Р    | Pb   | Pd   | Pr   |
| BATT    | F (α=0.01) | n.d. | n.d.  | n.d. | 0.88  | n.d.  | n.d. | 0.72 | 1.55 | 0.4  | 0.27 | 0.54 | 0.82 | 1.35 | n.d. | 0.39 |
|         | f = 3.53   | n.d. | n.d.  | n.d. | h.    | n.d.  | n.d. | h.   | n.d. | h.   |
| MIN     | F (α=0.01) | 0.62 | n.d.  | n.d. | 16.59 | 0.77  | 4.2  | n.d. | n.d. | 1.1  | 1.7  | n.d. | 0.22 | n.d. | n.d. | 1.0  |
|         | f = 4.03   | h.   | n.d.  | n.d. | n.h.  | h.    | n.h. | n.d. | n.d. | h.   | h.   | n.d. | h.   | n.d. | n.d. | h.   |
| Element |            | Pt   | Rb    | S    | Sb    | Si    | Sn   | Sr   | Th   | Ti   | U    | V    | W    | Y    | Zn   | Zr   |
| BATT    | F (α=0.01) | n.d. | n.d.  | 0.81 | 0.58  | 0.6   | 0.7  | 0.84 | n.d. | 0.13 | n.d. | n.d. | n.d. | n.d. | 0.81 | 0.89 |
|         | f = 3.53   | n.d. | n.d.  | h.   | h.    | h.    | h.   | h.   | n.d. | h.   | n.d. | n.d. | n.d. | n.d. | h.   | h.   |
| MIN     | F (α=0.01) | n.d. | 4.64  | n.d. | n.d.  | 13.99 | 1.0  | 5.93 | n.d. | n.d. | n.d. | n.d. | 2.88 | 1.71 | 2.83 | 0.22 |
|         | f = 4.03   | n.d. | n. h. | n.d. | n.d.  | n. h. | h.   | n.h. | n.d. | n.d. | n.d. | n.d. | h.   | h.   | h.   | h.   |

Table S3. Homogeneity test results for BATT and MIN sample.

n.d.: not determined due to invalid or too few measurement results with ED-XRF, n.h.: not homogeneous, h.: homogeneous.

# 2. Chemical analysis results of validated and in-house method

# 2.1. Results of the validated method

\_

**Table S4** shows the elemental composition of both battery and mining sample with the respective (relative) standard deviation (R)SD, recovery rates in the sample (RRS), and method specifications, such as measurement device, isotope/measurement line, gas mode, and digestion acid.

| Element | Detector | ICP-OES [nm] | Gas  | Acid                                            |         | BA    | TT  |     |   |         | Μ     | IN  |     |   |
|---------|----------|--------------|------|-------------------------------------------------|---------|-------|-----|-----|---|---------|-------|-----|-----|---|
|         |          | ICP-MS       | mode |                                                 | Mean    | SD    | RSD | RRS | n | Mean    | SD    | RSD | RRS | n |
|         |          | [isotope]    |      |                                                 | [ppm]   | [ppm] | [%] | [%] |   | [ppm]   | [ppm] | [%] | [%] |   |
| Al      | ICP-OES  | 396.2        | -    | HNO3-H2O2                                       | 70,600  | 1,030 | 1   | 108 | 5 | -       | -     | -   | -   | - |
| Al      | WD-XRF   | -            | -    | -                                               | -       | -     | -   | -   | - | 30,700  | 432   | 1   | -   | 5 |
| As      | ICP-MS   | 75As         | He   | Aqua regia                                      | -       | -     | -   | -   | - | 13      | 1     | 8   | 101 | 4 |
| As      |          | 75As         | He   | H2SO4-HNO3                                      | -       | -     | -   | -   | - | 13      | -     | -   | 103 | 4 |
| As      | ICP-OES  | 189.0        | -    | H2SO4-HNO3                                      | 759     | 7     | 1   | 101 | 5 | -       | -     | -   | -   | - |
| Au      | ICP-MS   | 197 -> 197Au | O2   | Aqua regia                                      | 3       | 1     | 33  | 98  | 4 | -       | -     | -   | -   | - |
| Ba      | ICP-MS   | 138 -> 138Ba | O2   | HNO3-HCl-HF                                     | -       | -     | -   | -   | - | 82      | 2     | 2   | 93  | 3 |
| С       | LECO     | -            | -    | -                                               | 9,000   | -     | -   | -   | - | 500     | -     | -   | -   | - |
| Ca      | WD-XRF   | -            | -    | -                                               | -       | -     | -   | -   | - | 22,100  | 217   | 1   | -   | 5 |
| Cd      | ICP-MS   | 111Cd        | He   | HNO <sub>3</sub> -H <sub>2</sub> O <sub>2</sub> | 46      | 2     | 4   | 104 | 5 | -       | -     | -   | -   | - |
| Ce      | ICP-MS   | 140 -> 156Ce | O2   | Aqua regia                                      | 27      | 2     | 7   | 100 | 5 | -       | -     | -   | -   | - |
| Ce      | ICP-OES  | 418.7        | -    | Aqua regia                                      | -       | -     | -   | -   | - | 646     | 15    | 2   | 96  | 4 |
| Cl*     | O2IC     | -            | -    | -                                               | 5,690   | 395   | 7   | -   | - | -       | -     | -   | -   | - |
| Co      | ICP-MS   | 59 -> 75Co   | O2   | HNO3-HCl-HF                                     | -       | -     | -   | -   | - | 16      | 1     | 6   | 83  | 3 |
| Co      | ICP-OES  | 238.9        | -    | HNO3-H2O2                                       | 6,520   | 61    | 1   | 100 | 5 | -       | -     | -   | -   | - |
| Cr      | ICP-MS   | 52Cr         | He   | HNO3-HCl-HF                                     | -       | -     | -   | -   | - | 28      | 2     |     | 100 | 3 |
| Cu      | ICP-OES  | 324.8        | -    | HNO3-H2O2                                       | 39,100  | 892   | 2   | 101 | 5 | -       | -     | -   | -   | - |
| Dy      | ICP-MS   | 163 -> 179Dy | O2   | Aqua regia                                      | -       | -     | -   | -   | - | 12      | 1     | 8   | 92  | 3 |
| F*      | O2IC     | -            | -    | -                                               | 21,300  | 6,070 | 28  | -   | - | -       | -     | -   | -   | - |
| Fe      | ICP-OES  | 238.2        | -    | HNO3-H2O2                                       | 78,500  | 712   | 1   | 97  | 5 | -       | -     | -   | -   | - |
| Fe      | WD-XRF   | -            | -    | -                                               | -       | -     | -   | -   | - | 362,000 | 2,340 | 1   | -   | - |
| Ga      | ICP-MS   | 69 -> 69Ga   | O2   | HNO3-HCl-HF                                     | -       | -     | -   | -   | - | 16      | 0     | 0   | 97  | 3 |
| Gd      | ICP-MS   | 157 -> 173Gd | O2   | Aqua regia                                      | -       | -     | -   | -   | - | 19      | 1     | 6   | 94  | 3 |
| К       | WD-XRF   | -            | -    | -                                               | -       | -     | -   | -   | - | 13.700  | 305   | 2   | -   | 5 |
| La      | ICP-MS   | 139 -> 155La | O2   | Agua regia                                      | 46      | 3     | 7   | 97  | 5 | -       | -     | -   | -   | - |
| La      | ICP-OES  | 408.7        | _    | Aqua regia                                      | _       | _     | -   | _   | _ | 354     | 9     | 3   | 98  | 4 |
| Li      | ICP-MS   | 7            | He   | Aqua regia                                      | -       | -     | -   | -   | - | 33      | 1     | 3   | 83  | 3 |
| Li      | ICP-OES  | 610.4        | -    | HNO <sub>3</sub> -H <sub>2</sub> O <sub>2</sub> | 26.800  | 459   | 2   | 102 | 5 | -       | -     | -   | -   | - |
| Mg      | WD-XRF   | -            | -    | -                                               | -       | -     | -   | -   | - | 29,400  | 409   | 1   | -   | 5 |
| Mn      | ICP-OES  | 257.6        | -    | HNO3-H2O2                                       | 167,000 | 2,470 | 1   | 101 | 5 | -       | -     | -   | -   | - |
| Mn      | WD-XRF   | -            | -    | -                                               | -       | -     | -   | -   | - | 740     | 89    | 12  | -   | 5 |
| Na      | WD-XRF   | -            | -    | -                                               | -       | -     | -   | -   | - | 10,400  | 363   | 3   | -   | - |
| Nb      | ICP-MS   | 93 -> 109Nb  | O2   | HNO₃-HCl-HF                                     | -       | -     | -   | -   | - | 19      | 2     | 11  | 102 | 3 |
| Nd      | ICP-MS   | 146Nd        | He   | Aqua regia                                      | -       | -     | -   | -   | - | 216     | 5     | 2   | 99  | 3 |
| Ni      | ICP-MS   | 60Ni         | He   | HNO₃-HCl-HF                                     | -       | -     | -   | -   | - | 27      | 1     | 4   | 100 | 3 |
| Ni      | ICP-OES  | 231.6        | _    | HNO <sub>3</sub> -H <sub>2</sub> O <sub>2</sub> | 21.800  | 556   | 3   | 97  | 5 | -       | -     | -   | _   | _ |
| Р       | ICP-OES  | 213.6        | -    | Aqua regia                                      | 4.100   | 52    |     | 98  | 5 | -       | -     | -   | -   | - |
| Р       | WD-XRF   |              | -    |                                                 | -,      | -     | -   | -   | - | 2.820   | 84    | 3   | -   | 5 |
| Pb      | ICP-OES  | 220.4        | -    | HNO3-H2O2                                       | 642     | 21    | 3   | 100 | 5 | -       | _     | -   | -   | - |
| Pd      | ICP-MS   | 108Pd        | He   | HNO <sub>3</sub> -H <sub>2</sub> O <sub>2</sub> | 1       | 0     | 0   | 108 | 5 | -       | -     | -   | -   | - |
| Pr      | ICP-MS   | 141 -> 157Pr | O2   | Aqua regia                                      | -       | -     | -   | -   | - | 57      | 1     | 2   | 92  | 3 |
| Rb      | WD-XRF   | -            | -    | -                                               | -       | -     | -   | -   | - | 300     | 0     | 0   | -   | 4 |

Table S4. Element composition of BATT and MIN sample determined with the validated method.

| Element | Detector | ICP-OES [nm] | Gas  | Acid        | BATT   |       |     |     |   | _       | MIN   |     |     |   |  |  |
|---------|----------|--------------|------|-------------|--------|-------|-----|-----|---|---------|-------|-----|-----|---|--|--|
|         |          | ICP-MS       | mode |             | Mean   | SD    | RSD | RRS | n | Mean    | SD    | RSD | RRS | n |  |  |
|         |          | [isotope]    |      |             | [ppm]  | [ppm] | [%] | [%] |   | [ppm]   | [ppm] | [%] | [%] |   |  |  |
| Sb      | ICP-OES  | 206.8        | -    | Aqua regia  | 937    | 10    | 1   | 96  | 5 | -       | -     | -   | -   | - |  |  |
| Si      | WD-XRF   | -            | -    | -           | -      | -     | -   | -   | - | 139,000 | 709   | 1   | -   | 5 |  |  |
| Sm      | ICP-MS   | 147Sm        | He   | Aqua regia  | -      | -     | -   | -   | - | 27      | 1     | 4   | 90  | 3 |  |  |
| Sn      | ICP-MS   | 118Sn        | He   | HNO3-HCI-HF | -      | -     | -   | -   | - | 113     | 1     | 1   | 100 | 3 |  |  |
| Sr      | ICP-MS   | 88 -> 88Sr   | O2   | HNO3-HCI-HF | -      | -     | -   | -   | - | 26      | 2     | 8   | 107 | 3 |  |  |
| Th      | ICP-MS   | 232 -> 248Th | O2   | Aqua regia  | -      | -     | -   | -   | - | 11      | 1     |     | 88  | - |  |  |
| Ti      | ICP-OES  | 334.1        | -    | Aqua regia  | 8,890  | 338   | 4   | 96  | 5 | -       | -     | -   | -   | - |  |  |
| Ti      | WD-XRF   | -            | -    | -           | -      | -     | -   | -   | - | 2,440   | 114   |     | -   | 5 |  |  |
| V       | ICP-MS   | 51 -> 67 V   | O2   | HNO3-H2O2   | 65     | 2     | 3   | 98  | 5 | -       | -     | -   | -   | - |  |  |
| V       | WD-XRF   | -            | -    | -           | -      | -     | -   | -   | - | 840     | 55    | 7   | -   | 5 |  |  |
| W       | ICP-MS   | 182W         | He   | HNO3-HCI-HF | -      | -     | -   | -   | - | 56      | 1     | 2   | 98  | 3 |  |  |
| Y       | WD-XRF   | -            | -    | -           | -      | -     | -   | -   | - | 100     | 16    | 16  | -   | 4 |  |  |
| Yb      | ICP-MS   | 172Yb        | He   | Aqua regia  | -      | -     | -   | -   | - | 6       | 1     | 17  | 86  | 3 |  |  |
| Zn      | ICP-OES  | 206.2        | -    | HNO3-H2O2   | 15,000 | 162   | 1   | 103 | 5 | -       | -     | -   | -   | - |  |  |
| Zn      | WD-XRF   | -            | -    | -           | -      | -     | -   | -   | - | 95      | 17    | 18  | -   | 4 |  |  |
| Zr      | ICP-MS   | 90Zr         | He   | HNO3-HCl-HF | -      | -     | -   | -   | - | 47      | 2     | 4   | 102 | 3 |  |  |

SD: standard deviation, RSD: relative standard deviation, RRS: recovery rate sample, n: number of measurements, O2IC: oxygen digestion bomb with ion chromatography, bold font: exceedance of deviation +/- 20%.

## 2.2. Results of the wet-chemical in-house method

The method specification and results of the wet-chemical in-house analysis is shown in **Table S5**. All results are given with (relative) standard deviation (R)SD and recovery rates (RRB, RRS). Data are compared to the results of the validated method and are expressed as an absolute difference to the mean (mean diff. abs.), the relative difference to the mean (mean diff. rel.) and significant difference between both methods (signif. diff. (*t*-test)).

| Element |     | Procedure ir             | 1-house method |        |               | In-ł        | nouse me   | thod       |            |   | Comparison               |                        |                                    |  |
|---------|-----|--------------------------|----------------|--------|---------------|-------------|------------|------------|------------|---|--------------------------|------------------------|------------------------------------|--|
|         | det | OES [nm]<br>MS [isotope] | prep           | sample | Mean<br>[ppm] | SD<br>[ppm] | RSD<br>[%] | RRB<br>[%] | RRS<br>[%] | n | mean diff.<br>abs. [ppm] | mean diff.<br>rel. [%] | Signif.<br>diff. ( <i>t</i> -test) |  |
| Al      | OES | 396.2                    | HNO3-H2O2      | BATT   | 55,900        | 4,980       | 9          | 93         | 85         | 6 | -14,700                  | -21                    | Yes                                |  |
| As      | MS  | 75As                     | Aqua regia     | BATT   | 635           | 32          | 5          | 100        | 83         | 6 | -124                     | -16                    | Yes                                |  |
| As      | OES | 189.0                    | Aqua regia     | BATT   | 624           | 29          | 5          | 96         | 88         | 6 | -135                     | -18                    | Yes                                |  |
| As      | OES | 189.0                    | Aqua regia     | MIN    | 17            | 1           | 6          | 99         | 86         | 3 | +4                       | +31                    | No                                 |  |
| Au      | MS  | 197Au                    | Aqua regia     | BATT   | 2             | 1           | 5          | 110        | 91         | 6 | -1                       | -33                    | No                                 |  |
| Ва      | OES | 455.4                    | Aqua regia     | MIN    | 40            | 6           | 15         | 108        | 101        | 3 | -42                      | -51                    | Yes                                |  |
| Cd      | MS  | 111Cd                    | HNO3-H2O2      | BATT   | 12            | 1           | 8          | 113        | 245        | 6 | -34                      | -74                    | Yes                                |  |
| Cd      | OES | 214.4                    | HNO3-H2O2      | BATT   | 36            | 2           | 6          | 89         | 86         | 6 | -10                      | -22                    | Yes                                |  |
| Ce      | MS  | 140Ce                    | Aqua regia     | BATT   | 13            | 1           | 8          | 100        | 142        | 6 | -14                      | -52                    | Yes                                |  |
| Ce      | OES | 404.0                    | Aqua regia     | MIN    | 379           | 26          | 7          | 102        | 103        | 3 | -267                     | -41                    | Yes                                |  |
| Co      | OES | 238.8                    | HNO3-H2O2      | BATT   | 4,970         | 441         | 9          | 96         | 98         | 2 | -1,560                   | -24                    | No                                 |  |
| Co      | OES | 228.6                    | Aqua regia     | MIN    | 19            | 0           | 0          | 99         | 88         | 3 | +3                       | +19                    | No                                 |  |
| Cr      | OES | 267.7                    | Aqua regia     | MIN    | 18            | 2           | 11         | 99         | 86         | 3 | -9                       | -33                    | Yes                                |  |
| Cu      | OES | 324.8                    | HNO3-H2O2      | BATT   | 35,600        | 2,330       | 7          | 93         | 92         | 6 | -3,480                   | -9                     | No                                 |  |
| Dy      | OES | 353.1                    | Aqua regia     | MIN    | 8             | 0           | 0          | 97         | 121        | 3 | -4                       | -33                    | No                                 |  |
| Fe      | OES | 238.2                    | HNO3-H2O2      | BATT   | 71,800        | 4,790       | 7          | 90         | 85         | 6 | -6,620                   | -8                     | No                                 |  |
| Ga      | OES | 294.3                    | Aqua regia     | MIN    | 49            | 4           | 8          | 108        | 120        | 3 | +33                      | +206                   | Yes                                |  |
| Gd      | OES | 336.2                    | Aqua regia     | MIN    | 28            | 1           | 4          | 102        | 98         | 3 | +10                      | +56                    | Yes                                |  |
| La      | MS  | 139La                    | Aqua regia     | BATT   | 16            | 2           | 12         | 101        | 160        | 6 | -30                      | -65                    | Yes                                |  |

Table S5. Chemical analysis results of the wet-chemical in-house method.

| Element |     | Procedure ir | 1-house method |        |         | In-    | house me | ethod |     |   |            | Comparison |                |
|---------|-----|--------------|----------------|--------|---------|--------|----------|-------|-----|---|------------|------------|----------------|
|         | • . | OES [nm]     |                |        | Mean    | SD     | RSD      | RRB   | RRS | n | mean diff. | mean diff. | Signif.        |
|         | det | MS [isotope] | prep           | sample | [ppm]   | [ppm]  | [%]      | [%]   | [%] |   | abs. [ppm] | rel. [%]   | diff. (t-test) |
| La      | OES | 333.7        | Aqua regia     | MIN    | 305     | 7      | 2        | 103   | 95  | 3 | -49        | -14        | Yes            |
| Li      | OES | 670.7        | Aqua regia     | MIN    | 53      | 2      | 4        | 101   | 97  | 3 | +20        | +61        | Yes            |
| Mn      | OES | 257.6        | HNO3-H2O2      | BATT   | 151,000 | 10,300 | 7        | 97    | 88  | 6 | -16,600    | -1         | Yes            |
| Nb      | OES | 390.4        | Aqua regia     | MIN    | 103     | 1      | 1        | 103   | 104 | 3 | +84        | +442       | Yes            |
| Nd      | OES | 430.3        | Aqua regia     | MIN    | 199     | 15     | 8        | 95    | 88  | 3 | -17        | 8          | No             |
| Ni      | OES | 231.6        | HNO3-H2O2      | BATT   | 18,000  | 2,220  | 12       | 98    | 97  | 2 | -3,710     | -17        | No             |
| Ni      | OES | 231.6        | Aqua regia     | MIN    | 25      | 1      | 4        | 113   | 96  | 3 | -2         | -7         | No             |
| Р       | MS  | 31P          | Aqua regia     | BATT   | 3,020   | 152    | 5        | 96    | 88  | 6 | -1,070     | -26        | Yes            |
| Р       | OES | 213.6        | Aqua regia     | BATT   | 3,200   | 69     | 2        | 92    | 88  | 6 | -899       | -22        | Yes            |
| Pb      | MS  | 208Pb        | HNO3-H2O2      | BATT   | 432     | 28     | 6        | 83    | 92  | 6 | -210       | -33        | Yes            |
| Pb      | OES | 220.4        | HNO3-H2O2      | BATT   | 510     | 31     | 6        | 92    | 103 | 6 | -132       | -21        | Yes            |
| Pd      | MS  | 108Pd        | HNO3-H2O2      | BATT   | 1       | 0      | 0        | 90    | 103 | 6 | 0          | 0          | No             |
| Pr      | OES | 417.9        | Aqua regia     | MIN    | 71      | 5      | 7        | 97    | 85  | 3 | +14        | +25        | No             |
| Sb      | MS  | 121Sb        | Aqua regia     | BATT   | 877     | 56     | 6        | 101   | 95  | 6 | -60        | -6         | No             |
| Sb      | OES | 206.8        | Aqua regia     | BATT   | 820     | 51     | 6        | 94    | 91  | 6 | -117       | -12        | Yes            |
| Sm      | OES | 359.2        | Aqua regia     | MIN    | 47      | 2      | 4        | NA    | NA  | 3 | +20        | +74        | Yes            |
| Sn      | OES | 189.9        | Aqua regia     | MIN    | 109     | 4      | 4        | 111   | 94  | 3 | -4         | -4         | No             |
| Sr      | OES | 421.5        | Aqua regia     | MIN    | 10      | 0      | 0        | 102   | 92  | 3 | -16        | -62        | Yes            |
| V       | MS  | 51V          | HNO3-H2O2      | BATT   | 29      | 2      | 7        | NA    | NA  | 6 | -36        | -55        | Yes            |
| V       | OES | 292.4        | Aqua regia     | MIN    | 871     | 1      | 0        | 94    | 91  | 3 | +31        | +4         | No             |
| Y       | OES | 360.0        | Aqua regia     | MIN    | 64      | 3      | 5        | 101   | 93  | 3 | -36        | -36        | No             |
| Yb      | OES | 328.9        | Aqua regia     | MIN    | 13      | 0      | 0        | 97    | 91  | 3 | +7         | +117       | Yes            |
| Zn      | MS  | 66Zn         | HNO3-H2O2      | BATT   | 18,200  | 1,440  | 8        | 77    | 71  | 6 | +3,150     | +21        | Yes            |
| Zn      | OES | 206.2        | HNO3-H2O2      | BATT   | 12,700  | 658    | 5        | 90    | 101 | 6 | -2,370     | -16        | Yes            |
| Zn      | OES | 206.2        | Aqua regia     | MIN    | 65      | 12     | 18       | 113   | 86  | 3 | -30        | -32        | No             |
| 7r      | OFS | 339.1        | A qua regia    | MIN    | 257     | 17     | 7        | 93    | 92  | з | +210       | +447       | Ves            |

Mean: arithmetic mean, SD: standard deviation, RSD: relative SD, RRB: recovery rate blind, RRS: recovery rate sample, n: number of measurements (n), mean diff.: absolute difference between the means, mean diff. rel.: relative differences, signif. diff.: Welch's *t*-test results of significant differences between the means, det: determination method, OES: ICP-OES, MS: ICP-MS, prep: preparation method (acid mixture), BATT: battery sample, MIN: mining waste sample, bold font: an exceedance of deviation +/- 20%.

# 2.3. Results of in-house ED-XRF measurement

|         | Procedure | in-hous | e method | in          | -house m | ethod |    |            | comparison |                         |
|---------|-----------|---------|----------|-------------|----------|-------|----|------------|------------|-------------------------|
| Element | dat       | nron    | sample   | mean SD RSD |          | RSD   | n  | mean diff. | mean diff. | Signif.                 |
|         | uei       | prep    | sample   | [ppm]       | [ppm]    | [%]   |    | abs. [ppm] | rel. [%]   | diff. ( <i>t</i> -test) |
| Al      | ED-XRF    | -       | BATT     | 84,700      | 12,800   | 15    | 36 | +14,100    | +20        | Yes                     |
| Al~     | ED-XRF    | -       | MIN      | 39,200      | 3,060    | 8     | 24 | +8,490     | +28        | Yes                     |
| As      | ED-XRF    | -       | BATT     | 735         | 130      | 18    | 36 | -24        | -3         | No                      |
| As      | ED-XRF    | -       | MIN      | 24          | 6        | 25    | 16 | +11        | +85        | Yes                     |
| Ba      | ED-XRF    | -       | MIN      | 214         | 42       | 2     | 24 | +132       | +161       | Yes                     |
| Ca      | ED-XRF    | -       | MIN      | 21,600      | 1,060    | 5     | 24 | -457       | -2         | No                      |
| Cd      | ED-XRF    | -       | BATT     | 51          | 7        | 14    | 36 | +5         | +11        | Yes                     |
| Ce      | ED-XRF    | -       | BATT     | 206         | 18       | 9     | 4  | +179       | +663       | Yes                     |
| Ce      | ED-XRF    | -       | MIN      | 689         | 67       | 1     | 24 | +43        | +7         | No                      |
| Co      | ED-XRF    | -       | BATT     | 505         | 132      | 26    | 7  | -6,020     | -92        | Yes                     |
| Co      | ED-XRF    | -       | MIN      | 1,490       | 286      | 19    | 24 | +1,470     | +9,210     | Yes                     |
| Cu      | ED-XRF    | -       | BATT     | 35,700      | 5,790    | 16    | 36 | -3,420     | -9         | Yes                     |
| Fe      | ED-XRF    | -       | BATT     | 81,600      | 10,400   | 13    | 36 | +3,180     | +4         | No                      |

|         | Procedure | in-hous | e method | in-house method |            |     |    | comparison |            |                         |  |  |
|---------|-----------|---------|----------|-----------------|------------|-----|----|------------|------------|-------------------------|--|--|
| Element | 1.        |         |          | mean            | SD         | RSD |    | mean diff. | mean diff. | Signif.                 |  |  |
|         | det       | prep    | sample   | [ppm]           | [ppm]      | [%] | n  | abs. [ppm] | rel. [%]   | diff. ( <i>t</i> -test) |  |  |
| Fe~     | ED-XRF    | -       | MIN      | 314,000         | 21,300     | 7   | 24 | -48,200    | -13        | Yes                     |  |  |
| Ga      | ED-XRF    | -       | MIN      | 33              | 11         | 33  | 24 | +17        | +106       | Yes                     |  |  |
| K~      | ED-XRF    | -       | MIN      | 21,900          | ,900 2,660 |     | 24 | +8,170     | +59        | Yes                     |  |  |
| La      | ED-XRF    | -       | BATT     | 186             | 40         | 22  | 32 | +140       | +304       | Yes                     |  |  |
| La      | ED-XRF    | -       | MIN      | 440             | 43         | 1   | 24 | +86        | +24        | Yes                     |  |  |
| Mg~     | ED-XRF    | -       | MIN      | 49,000          | 7,370      | 15  | 24 | +19,600    | +67        | Yes                     |  |  |
| Mn      | ED-XRF    | -       | BATT     | 165,000         | 20,300     | 12  | 36 | -2,540     | -2         | No                      |  |  |
| Mn      | ED-XRF    | -       | MIN      | 1,120           | 42         | 4   | 3  | +384       | +52        | Yes                     |  |  |
| Nb      | ED-XRF    | -       | MIN      | 20              | 2          | 1   | 24 | +1         | +5         | No                      |  |  |
| Nd      | ED-XRF    | -       | MIN      | 1,140           | 132        | 12  | 24 | +923       | +427       | Yes                     |  |  |
| Ni      | ED-XRF    | -       | BATT     | 19,500          | 3,370      | 17  | 36 | -2,210     | -10        | Yes                     |  |  |
| Р       | ED-XRF    | -       | BATT     | 3,120           | 320        | 1   | 36 | -977       | -24        | Yes                     |  |  |
| Р       | ED-XRF    | -       | MIN      | 2,540           | 223        | 9   | 24 | -279       | -10        | Yes                     |  |  |
| Pb      | ED-XRF    | -       | BATT     | 541             | 100        | 18  | 36 | -101       | -16        | Yes                     |  |  |
| Pr      | ED-XRF    | -       | MIN      | 518             | 61         | 12  | 24 | +461       | +809       | Yes                     |  |  |
| Rb~     | ED-XRF    | -       | MIN      | 322             | 33         | 1   | 24 | +22        | +7         | Yes                     |  |  |
| Sb      | ED-XRF    | -       | BATT     | 1,980           | 350        | 18  | 36 | +1,050     | +112       | Yes                     |  |  |
| Si~     | ED-XRF    | -       | MIN      | 160,000         | 10,200     | 6   | 24 | +21,100    | +15        | Yes                     |  |  |
| Sn      | ED-XRF    | -       | MIN      | 536             | 60         | 11  | 24 | +423       | +374       | Yes                     |  |  |
| Sr~     | ED-XRF    | -       | MIN      | 43              | 4          | 9   | 24 | +17        | +65        | Yes                     |  |  |
| Ti      | ED-XRF    | -       | BATT     | 12,300          | 1,730      | 14  | 36 | +3,410     | +38        | Yes                     |  |  |
| W       | ED-XRF    | -       | MIN      | 154             | 32         | 21  | 24 | +98        | +175       | Yes                     |  |  |
| Y       | ED-XRF    | -       | MIN      | 111             | 43         | 39  | 24 | +11        | +11        | No                      |  |  |
| Zn      | ED-XRF    | -       | BATT     | 18,800          | 3,150      | 17  | 36 | +3,780     | +25        | Yes                     |  |  |
| Zn      | ED-XRF    | -       | MIN      | 159             | 18         | 11  | 24 | +64        | +67        | Yes                     |  |  |
| Zr      | ED-XRF    | -       | MIN      | 72              | 13         | 18  | 24 | +25        | +53        | Yes                     |  |  |

Mean: arithmetic mean, SD: standard deviation, RSD: relative SD, n: number of measurements (n), mean diff. abs.: absolute difference between the means, mean diff. rel.: relative differences, signif. diff.: Welch's *t*-test results of significant differences between the means, det: determination method, prep: preparation method (acid mixture), BATT: battery sample, MIN: mining waste sample, bold font: an exceedance of deviation +/- 20%, ~: inhomogeneous distribution in a sample according to ANOVA *F* test.

**Table S7** and **Table S8** show the applicability of simplified in-house methods for MIN and BATT, respectively. The elemental compositions determined with the validated method are compared to the simplified method expressed as the relative difference (mean diff. rel.) and significance test results of the t-test and the specific element recovery in the blind sample (RRB) and the sample matrix (RRS) as a dimensionless factor.

Table S7. Overview of applicability of in-house methods for MIN sample.

| Sample        |         |           |         |             | Ν                                                                                    | MIN                |          |                |      |      |
|---------------|---------|-----------|---------|-------------|--------------------------------------------------------------------------------------|--------------------|----------|----------------|------|------|
| Preparation   |         |           |         |             |                                                                                      |                    |          | Aqua Regia     |      |      |
| Detection     |         | validated | methods | Homogeneity | eity ED-XRF (L2)                                                                     |                    |          | OES            |      |      |
| Element group | Element | mean      | SD      | ANOVA F     | mean diff.                                                                           | mean diff. Signif. |          | Signif.        | RRS  | RRB  |
|               |         | [ppm]     | [ppm]   |             | rel. [%]                                                                             | diff. (t-test)     | rel. [%] | diff. (t-test) |      |      |
| Ferrous       | Cr      | 27        | 2       | n.d.        | <lod< td=""><td>-</td><td>-0.33</td><td colspan="2">.33 Yes</td><td>0.99</td></lod<> | -                  | -0.33    | .33 Yes        |      | 0.99 |
| metals        | Fe      | 362,000   | 2,340   | n.h.        | -0.13                                                                                | Yes                | -        | -              | -    | -    |
|               | Mn      | 740       | 89      | n.d.        | 0.52                                                                                 | Yes                | -        | -              | -    | -    |
|               | Nb      | 19        | 2       | h           | 0.05                                                                                 | No                 | 4.42     | Yes            | 1.04 | 1.03 |
|               | Ni      | 27        | 1       | n.d.        | <lod< td=""><td>-</td><td>-0.07</td><td>No</td><td>0.96</td><td>1.13</td></lod<>     | -                  | -0.07    | No             | 0.96 | 1.13 |
|               | V       | 840       | 55      | n.d.        | <lod< td=""><td>-</td><td>0.04</td><td>No</td><td>0.91</td><td>0.94</td></lod<>      | -                  | 0.04     | No             | 0.91 | 0.94 |
| Non-ferrous   | Al      | 30,700    | 432     | n.h.        | 0.28                                                                                 | Yes                | -        | -              | -    | -    |
| metals        | Co      | 16        | 1       | h           | 92.12                                                                                | Yes                | 0.19     | No             | 0.88 | 0.99 |
|               | Mg      | 29,400    | 409     | n.h.        | 0.67                                                                                 | Yes                | -        | -              | -    | -    |
|               | Sn      | 113       | 1       | h           | 3.74                                                                                 | Yes                | -0.04    | No             | 0.94 | 1.11 |
|               | Zn      | 95        | 17      | h           | 0.67                                                                                 | Yes                | -0.32    | No             | 0.86 | 1.13 |
| Others        | Ca      | 22,100    | 217     | h           | -0.02                                                                                | No                 | -        | -              | -    | -    |
|               | K       | 13,700    | 305     | n.h.        | 0.59                                                                                 | Yes                | -        | -              | -    | -    |
|               | Р       | 2,820     | 84      | h           | -0.10                                                                                | Yes                | -        | -              | -    | -    |
|               | Rb      | 300       | -       | n.h.        | 0.07                                                                                 | Yes                | -        | -              | -    | -    |
|               | Si      | 139,000   | 709     | n.h.        | 0.15                                                                                 | Yes                | -        | -              | -    | -    |
| Specialty     | As      | 13        | 1       | n.d.        | 0.85                                                                                 | Yes                | 0.31     | No             | 0.86 | 0.99 |
| metals        | Ba      | 82        | 2       | h           | 1.61                                                                                 | Yes                | -0.51    | Yes            | 1.01 | 1.08 |
|               | Ga      | 16        | -       | h           | 1.06                                                                                 | Yes                | 2.06     | Yes            | 1.20 | 1.08 |
|               | Li      | 33        | 1       | n.d.        | n.d.                                                                                 | -                  | 0.61     | Yes            | 0.97 | 1.01 |
|               | Sr      | 26        | 2       | n.h.        | 0.65                                                                                 | Yes                | -0.62    | Yes            | 0.92 | 1.02 |
|               | W       | 56        | 1       | h           | 1.75                                                                                 | Yes                | -        | -              | -    | -    |
|               | Zr      | 47        | 2       | h           | 0.53                                                                                 | Yes                | 4.47     | Yes            | 0.92 | 0.93 |
| Specialty     | Ce      | 646       | 15      | h           | 0.07                                                                                 | No                 | -0.41    | Yes            | 1.03 | 1.02 |
| metals (REE)  | Dy      | 12        | 1       | n.d.        | n.d.                                                                                 | -                  | -0.33    | No             | 1.21 | 0.97 |
|               | Gd      | 18        | 1       | n.d.        | n.d.                                                                                 | -                  | 0.56     | Yes            | 0.98 | 1.02 |
|               | La      | 354       | 9       | h           | 0.24                                                                                 | Yes                | -0.14    | Yes            | 0.95 | 1.03 |
|               | Nd      | 216       | 5       | h           | 4.27                                                                                 | Yes                | -0.08    | No             | 0.88 | 0.95 |
|               | Pr      | 57        | 1       | h           | 8.09                                                                                 | Yes                | 0.25     | No             | 0.85 | 0.97 |
|               | Sm      | 27        | 1       | n.d.        | n.d.                                                                                 | -                  | 0.74     | Yes            | -    | -    |
|               | Y       | 100       | 16      | h           | 0.11                                                                                 | No                 | -0.36    | No             | 0.93 | 1.01 |
|               | Yb      | 6         | 1       | n.d.        | n.d.                                                                                 | -                  | 1.17     | Yes            | 0.91 | 0.97 |

n.d.: not determined due to invalid or too few measurement results with ED-XRF, n.h.: not homogeneous, h.: homogeneous, green: values are within the acceptance range of 100 % +/- 20 %, red: values exceed the acceptance range of deviation 100 % +/- 20 %.

| Sample        |         |           |         |         |                                                                                                                                                                                                                               |          |            |          |      |      | BATT                                                                                                                                 |          |      |      |            |          |      |      |                                                     |          |      |      |
|---------------|---------|-----------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|------|------|--------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|------------|----------|------|------|-----------------------------------------------------|----------|------|------|
| Preparation   |         | validated | methods | Homo-   |                                                                                                                                                                                                                               |          |            |          |      | Aqua | Regia                                                                                                                                |          |      |      | _          |          |      | HNO  | 3-H2O2                                              |          |      |      |
| Detection     |         |           |         | geneity | ED-XF                                                                                                                                                                                                                         | RF (L2)  | _          | MS       |      |      |                                                                                                                                      | OES      |      |      | _          | MS       |      |      |                                                     | OES      |      | _    |
| Element group | Element | mean      | SD      | ANOVA F | mean                                                                                                                                                                                                                          | Signif.  | mean diff. | Signif.  | RRS  | RRB  | mean diff.                                                                                                                           | Signif.  | RRS  | RRB  | mean diff. | Signif.  | RRS  | RRB  | mean diff.                                          | Signif.  | RRS  | RRB  |
|               |         | [ppm]     | [ppm]   |         | diff.                                                                                                                                                                                                                         | diff.    | rel. [%].  | diff.    |      |      | rel. [%]                                                                                                                             | diff.    |      |      | rel. [%]   | diff.    |      |      | rel. [%]                                            | diff.    |      |      |
|               |         |           |         |         | rel. [%]                                                                                                                                                                                                                      | (t-test) |            | (t-test) |      |      |                                                                                                                                      | (t-test) |      |      |            | (t-test) |      |      |                                                     | (t-test) |      |      |
| Ferrous       | Fe      | 78,500    | 712     | h       | 0.04                                                                                                                                                                                                                          | No       | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | >LOQ       | -        | -    | -    | -0.08                                               | No       | 0.85 | 0.90 |
| metals        | Mn      | 167,000   | 2,470   | h       | -0.02                                                                                                                                                                                                                         | No       | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | >LOQ       | -        | -    | -    | -0.10                                               | Yes      | 0.88 | 0.97 |
|               | Ni      | 21,800    | 556     | h       | -0.10                                                                                                                                                                                                                         | Yes      | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | >LOQ       | -        | -    | -    | -0.17                                               | No       | 0.97 | 0.98 |
|               | V       | 65        | 2       | n.d.    | <lod< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-0.55</td><td>Yes</td><td>-</td><td>-</td><td><loq< td=""><td>-</td><td>NA</td><td>NA</td></loq<></td></lod<>       | -        | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | -0.55      | Yes      | -    | -    | <loq< td=""><td>-</td><td>NA</td><td>NA</td></loq<> | -        | NA   | NA   |
| Non-ferrous   | Al      | 70,600    | 1,030   | h       | 0.20                                                                                                                                                                                                                          | Yes      | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | >LOQ       | -        | -    | -    | -0.21                                               | Yes      | 0.85 | 0.93 |
| metals        | Co      | 6,520     | 61      | n.d.    | -0.92                                                                                                                                                                                                                         | Yes      | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | >LOQ       | -        | -    | -    | -0.24                                               | No       | 0.98 | 0.96 |
|               | Cu      | 39,100    | 892     | h       | -0.09                                                                                                                                                                                                                         | Yes      | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | >LOQ       | -        | -    | -    | -0.09                                               | No       | 0.92 | 0.93 |
|               | Pb      | 642       | 20      | h       | -0.16                                                                                                                                                                                                                         | Yes      | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | -0.33      | Yes      | 0.92 | 0.83 | -0.21                                               | Yes      | 1.03 | 0.92 |
|               | Ti      | 8,890     | 338     | h       | 0.38                                                                                                                                                                                                                          | Yes      | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | -          | -        | -    | -    | -                                                   | -        | -    | -    |
| _             | Zn      | 15,000    | 162     | h       | 0.25                                                                                                                                                                                                                          | Yes      | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | 0.21       | Yes      | 0.71 | 0.77 | -0.16                                               | Yes      | 1.01 | 0.90 |
| Others        | Cl      | 5,690     | 395     | h       | -0.21                                                                                                                                                                                                                         | Yes      | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | -          | -        | -    | -    | -                                                   | -        | -    | -    |
|               | Р       | 4,100     | 52      | h       | -0.24                                                                                                                                                                                                                         | Yes      | -0.26      | Yes      | 0.88 | 0.96 | -0.22                                                                                                                                | Yes      | 0.88 | 0.92 | -          | -        | -    | -    | -                                                   | -        | -    | -    |
| Precious      | Au      | 3         | 1       | n.d.    | <lod< td=""><td>-</td><td>-0.33</td><td>No</td><td>0.91</td><td>1.10</td><td><loq< td=""><td>-</td><td>-</td><td>1.05</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></loq<></td></lod<> | -        | -0.33      | No       | 0.91 | 1.10 | <loq< td=""><td>-</td><td>-</td><td>1.05</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></loq<> | -        | -    | 1.05 | -          | -        | -    | -    | -                                                   | -        | -    | -    |
| metals        | Pd      | 1         | -       | n.d.    | <lod< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.00</td><td>No</td><td>1.03</td><td>0.90</td><td><loq< td=""><td>-</td><td>-</td><td>-</td></loq<></td></lod<>     | -        | -          | -        | -    | -    | -                                                                                                                                    | -        | -    | -    | 0.00       | No       | 1.03 | 0.90 | <loq< td=""><td>-</td><td>-</td><td>-</td></loq<>   | -        | -    | -    |
| Specialty     | As      | 759       | 7       | h       | -0.03                                                                                                                                                                                                                         | No       | -0.16      | Yes      | 0.83 | 1.00 | -0.18                                                                                                                                | Yes      | 0.88 | 0.96 | -          | -        | -    | -    | -                                                   | -        | -    | -    |
| metals        | Cd      | 46        | 2       | h       | 0.11                                                                                                                                                                                                                          | Yes      | -          |          | -    | -    | -                                                                                                                                    | -        | -    | -    | -0.74      | Yes      | 2.45 | 1.13 | -0.22                                               | Yes      | 0.86 | 0.89 |
|               | Sb      | 937       | 10      | h       | 1.12                                                                                                                                                                                                                          | Yes      | -0.06      | No       | 0.95 | 1.01 | -0.12                                                                                                                                | Yes      | 0.91 | 0.94 |            | -        | -    | -    | -                                                   | -        | -    | -    |
| Specialty     | Ce      | 27        | 2       | n.d.    | 6.63                                                                                                                                                                                                                          | Yes      | -0.52      | Yes      | 1.42 | 1.00 | <loq< td=""><td>-</td><td>-</td><td>0.97</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></loq<> | -        | -    | 0.97 | -          | -        | -    | -    | -                                                   | -        | -    | -    |
| metals (REE)  | La      | 46        | 3       | n.d.    | 3.04                                                                                                                                                                                                                          | Yes      | -0.65      | Yes      | 1.60 | 1.01 | <1.00                                                                                                                                | -        | -    | 0.99 |            | -        | -    | -    | -                                                   | -        | -    | -    |

| Table S8. Overviev | v of applicability of in-house | e methods for BATT sample. |
|--------------------|--------------------------------|----------------------------|
|--------------------|--------------------------------|----------------------------|

n.d.: not determined due to invalid or too few measurement results with ED-XRF, n.h.: not homogeneous, h.: homogeneous, green: values are within the acceptance range of 100 % +/- 20 %, red: values exceed the acceptance range of deviation 100 % +/- 20 %, </> LOD: below or above limit of detection, </> LOQ: below or above limit of quantification.

## 4. Matrix interferences in ED-XRF measurement

Overlapping of spectra causes false readings and over-/underestimations, as shown below for Co and La in the BATT sample. **Figure S2** shows how Fe and Ni partially overlap the spectra of cobalt (Co-K $\alpha$  and Co-K $\beta$ ). **Figure S3** shows the spectra of lanthanum (La-L $\alpha$  and La-L $\beta$ ), which are partially overlapped by Ti and Cr.



Figure S2. The ED-XRF energy spectrum (4-14 keV) of the BATT measurement.



Figure S3. The ED-XRF energy spectrum (3-7 keV) of the BATT measurement.