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Abstract: This review investigates the convergence of nanotechnology and essential oils in advanced
dermocosmetic delivery. It outlines the pivotal role of inorganic and polymeric nanoparticles, such
as titanium dioxide, zinc oxide, and gold nanocarriers, in cosmeceutical applications, facilitating
slow release, deeper skin penetration, and increased retention of active compounds. Essential
oils, renowned for therapeutic benefits, face translation challenges due to volatility and low water
solubility. This review explores the potential use of plant nanovesicles as carriers, emphasizing safety,
stability, and scalability, offering a sustainable and cost-effective industrial application. Nanomaterial
integration in consumer products, particularly cosmetics, is prevalent, with nanocarriers enhancing
the permeation of bioactive compounds into deeper skin layers. The review emphasizes recent
nanotechnological advancements, covering nanoparticle penetration, experimental models, and
therapeutic applications in dermatology, ranging from non-invasive vaccination to transdermal
drug delivery. Additionally, the review delves into nanomaterials’ role in addressing skin aging,
focusing on tissue regeneration. Nanomaterials loaded with cosmeceuticals, such as phytochemicals
and vitamins, are explored as promising solutions to mitigate signs of aging, including wrinkles
and dry skin, providing innovative approaches to skin rejuvenation. Overall, the review offers
a comprehensive synthesis of essential oil–nanoparticle synergy, shedding light on the current
landscape and future potential of advanced dermocosmetic delivery systems.

Keywords: dermocosmetic delivery; nanotechnology; essential oils; nanoparticles; cosmeceutical
applications

1. Introduction

In recent years, dermocosmetic research has experienced a noteworthy convergence
of nanotechnology and essential oils, marking a transformative era in advanced delivery
systems [1–5]. This intersection offers a promising solution to enduring challenges faced
by essential oils in cosmetics, such as volatility and low water solubility [6–8]. Cutting-
edge advancements in cosmeceuticals heavily depend on polymeric nanoparticles and
inorganic substances such as titanium dioxide, zinc oxide, and gold nanocarriers. These
particles enable gradual release, enhanced skin penetration, and prolonged retention of
active compounds [7,9–13].

Essential oils, celebrated for therapeutic virtues, encounter challenges when incorpo-
rated into cosmetics due to volatility and limited water solubility [14]. Despite benefits
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like antioxidant and anti-inflammatory properties, translating essential oils to cosmeceuti-
cal prominence requires strategic solutions. Nanotechnology provides a transformative
platform, utilizing nanoparticles to augment the effectiveness of essential oils in dermato-
logical applications [15–18].

Titanium dioxide, known for broad-spectrum UV protection; zinc oxide with multi-
functional properties; and pliable gold nanocarriers represent pioneers in cosmeceutical
frontiers [19–22]. These nanoparticles bring functionalities like slow and sustained release
of active compounds, facilitated skin penetration, and prolonged retention within the skin
matrix, ensuring a targeted and enduring impact of bioactive components [23–25].

Essential oils play a pivotal role in the formulation of cosmetic products due to their
multifaceted benefits and complex composition of active compounds [14,17]. Derived from
various plant sources through methods such as steam distillation, expression, and solvent
extraction, these oils harbor a diverse array of chemical constituents that contribute to
their distinct aromatic properties and therapeutic potential [26,27]. In cosmetics, essential
oils serve as natural preservative agents, offering antimicrobial properties that safeguard
against bacterial and fungal contamination, thereby enhancing the shelf life and stability
of cosmetic formulations [28,29]. Additionally, their incorporation into skincare products
brings about a spectrum of dermatocosmetic benefits, including anti-acne, anti-aging,
skin lightening, and sun protection effects [30]. Furthermore, essential oils contribute to
the olfactory experience of cosmetic products, imparting pleasing fragrances that appeal
to consumers while also offering potential aromatherapeutic effects [31,32]. Despite the
widespread use of synthetic fragrances in the industry, the rising demand for natural
alternatives underscores the preference for essential oils due to their perceived safety
and numerous health benefits [14]. However, it is essential to acknowledge the potential
contraindications and allergic effects associated with their use, highlighting the importance
of cautious formulation and consumer education [33]. Moreover, sustainable sourcing and
cultivation practices are imperative to mitigate the environmental impact of large-scale
harvesting, ensuring the conservation of biodiversity and protection of endangered plant
species while meeting the growing demand for these valuable botanical ingredients in the
cosmetic industry [14].

In response to challenges faced by essential oils, a green revolution is unfolding
through the integration of plant nanovesicles into nanotechnological frameworks. Plant
nanovesicles, characterized by lipid bilayer structures, emerge as promising carriers for
essential oils, enhancing stability, safety, and efficacy. Derived from plant sources, these
nanovesicles align with the growing trend towards sustainable and eco-friendly cosmetic
formulations. Their ability to encapsulate and deliver essential oils in a controlled man-
ner addresses volatility and solubility issues, providing a foundation for sophisticated
dermocosmetic delivery systems [34–36].

The increasing integration of nanotechnology into consumer products, particularly
cosmetics, is shaping skincare innovations significantly [7,37]. Nanocarriers, capable of
penetrating deeper skin layers, enhance the bioavailability and efficacy of active com-
pounds. This integration has led to substantial advancements, ranging from understanding
nanoparticle penetration mechanisms to exploring experimental models and therapeutic
applications in dermatology [38–40]. Nanotechnological strides are evident in non-invasive
vaccination strategies and the facilitation of transdermal drug delivery, which are reshaping
contemporary skincare practices [41,42]. A critical aspect of the nanomaterial revolution
in dermocosmetics lies in its impact on addressing skin aging and promoting tissue re-
generation [43–45]. Nanomaterials, enriched with cosmeceuticals such as phytochemicals
and vitamins, offer innovative solutions to combat signs of aging, targeting concerns like
wrinkles and dry skin. Through the utilization of nanotechnology, these dermocosmetic
formulations present a multifaceted approach to skin rejuvenation, providing consumers
with innovative and effective strategies for maintaining healthy and youthful skin [46].

This review embarks on a comprehensive exploration of the synergistic convergence be-
tween essential oils and nanoparticles in advanced dermocosmetic delivery systems. From
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the challenges faced by essential oils to the transformative potential of plant nanovesicles,
and the dynamic role of nanoparticles in skincare innovations, this synthesis illuminates the
current landscape and future prospects of this intriguing intersection. Delving into realms
of nanotechnology and sustainable cosmetic formulations, the promise of safe, effective,
and environmentally conscious dermocosmetic solutions beckons, paving the way for a
new era in skincare science.

2. Nanoparticles in Dermocosmetic Applications

In recent years, the field of dermocosmetic applications has witnessed significant
advancements with the incorporation of nanoparticles, both inorganic and polymeric,
revolutionizing cosmeceutical formulations (see Figure 1) [46]. Among the inorganic
nanoparticles, titanium dioxide and zinc oxide have gained prominence for their multi-
faceted roles in sunscreen formulations. These nanoparticles serve as physical blockers,
forming a protective barrier on the skin surface that reflects and scatters harmful UV radia-
tion, thus preventing sun damage and premature aging. Titanium dioxide and zinc oxide
have demonstrated superior UV absorption capabilities, making them essential compo-
nents in sunscreens and photoprotective formulations [47–50]. Moreover, their nanoscale
dimensions offer advantages such as improved spreadability, reduced whitening effect,
and enhanced adherence to the skin, addressing some of the limitations associated with
conventional formulations [7,51].
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Reproduced with permission [46]. Copyright 2022, Multidisciplinary Digital Publishing Institute
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Gold nanocarriers represent another intriguing aspect of nanoparticle application in
dermocosmetics. These nanoparticles have garnered attention for their unique properties,
including biocompatibility and ease of functionalization [52,53]. Gold nanocarriers serve
as effective delivery systems, facilitating the controlled release of bioactive molecules [54].
The ability to encapsulate various active compounds, such as antioxidants and anti-aging
agents, within gold nanocarriers enhances their stability and bioavailability [36,55]. This
controlled release mechanism ensures a sustained and prolonged action of these active
ingredients, contributing to the overall efficacy of cosmeceutical products [56,57].

https://creativecommons.org/licenses/by/4.0/
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Lipidic nanoparticles, including liposomes, solid lipid nanoparticles (SLNs), and
nanostructured lipid carriers (NLCs), play a crucial role in cosmeceutical formulations by of-
fering versatile solutions for delivering bioactive molecules to the skin [57,58]. Resembling
cell membranes, liposomes act as reservoirs for bioactive molecules, enabling sustained
release and minimizing systemic absorption [59]. Encapsulation of various compounds,
such as benzophenone, glycolic acid, and curcumin, within liposomes has demonstrated
improved cutaneous penetration and prolonged efficacy, particularly in anti-aging and
antioxidant applications [57,60]. Additionally, SLNs and NLCs have emerged as effective
carriers for both organic and inorganic sunscreens, providing occlusive properties and en-
hancing hydration while effectively blocking UV light [61–64]. Studies have indicated that
these lipid nanoparticles exhibit superior UV absorption compared to conventional emul-
sions, thereby increasing the sun protection factor (SPF) of cosmeceutical products [65,66].

Polymeric nanoparticles also contribute to skin hydration and permeability, making
them valuable in the prevention and treatment of wrinkles [67]. NLCs, in particular, have
demonstrated their capability to promote skin hydration, attributed to their occlusive effect
and the formation of a dense film upon application [68]. The nanometric size of particles en-
sures better coverage and uniformity on the skin, leading to improved hydration effects [47].
Additionally, the adhesive properties of NLCs make them suitable for incorporation into
various pharmaceutical forms, including gels, creams, and lotions, further expanding their
applications in dermocosmetics [57,65].

Table 1 offers a comprehensive summary of various nanomaterials utilized in dermo-
cosmetic applications, showcasing their sizes, characteristics, and respective uses. Examples
include gallic acid-coated gold nanoparticles (GA–AuNPs) renowned for antioxidant prop-
erties, zinc oxide nanoparticles in sunscreens for UV protection, and silver nanoparticles
for antimicrobial activity in antidandruff shampoo. Moreover, niosomal carriers enhance
drug permeation, copper oxide nanoparticles exhibit antimicrobial effects, and the rhein–
phospholipid complex enhances solubility and skin permeability, all aiming to treat skin
disorders effectively. Additionally, nanostructured lipid carriers loaded with curcumin
improve skin permeation for conditions like psoriasis and acne, while solid lipid nanopar-
ticles loaded with halobetasol propionate promise targeted drug delivery to minimize
adverse effects.

Table 1. Examples of nanomaterials in dermocosmetic applications.

Type of Nanomaterial Size (nm) Characteristics Application Ref.

Gallic Acid/Au NPs 30.30 ± 3.98
GA–AuNPs exhibit antioxidant
properties, as they are evaluated as
an anti-aging antioxidant

An ingredient with anti-aging
properties aimed at
rejuvenating and repairing
the skin

[69]

Zinc oxide NPs <30

Zinc oxide nanoparticles primarily
remain on the skin’s surface,
releasing zinc ions that penetrate
superficial layers without
significant cytotoxicity concerns,
aligning with recent FDA
safety guidelines

Application in sunscreens,
providing effective UV
protection while minimizing
skin penetration and
cytotoxicity risks

[70]

Silver NPS ~40 nm and 13

Silver nanoparticles demonstrated
enhanced suspension stability
against microbial contamination,
suggesting their potential as an
active ingredient in antidandruff
shampoo formulations

Anti-Malassezia furfur activity [71,72]
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Table 1. Cont.

Type of Nanomaterial Size (nm) Characteristics Application Ref.

Niosomal carriers 460

Vesicle size depended on the
surfactant mixture’s
hydrophile–lipophile balance,
with drug incorporation
influencing size and niosomes
acting as effective enhancers for
diclofenac sodium permeation
across rabbit skin

Drug compartmentalization [73]

Silica NPs 291 ± 9 to 42 ± 3

These particles demonstrated
size-dependent uptake by skin
cells, with positively charged
particles showing enhanced
cellular internalization, especially
the smallest ones

Pharmaceutics and cosmetics
applications [74]

Copper oxide NPs 61 to 69

CuONPs exhibit potent
antimicrobial properties against
skin infection-causing microbes
when combined with Thespesia
populnea aqueous bark extract

Antimicrobial activity against
skin-infection causing
microbes

[75]

Rhein-phospholipid
complex 196.6 ± 1.6

The rhein–phospholipid complex
exhibit nano-sized particles and
possess a high negatively charged
surface. These nanoparticles show
enhanced solubility, significantly
improved skin permeability, and
deep penetration into the skin

Topical formulation for
treating skin disorders. [76]

ZnO@CeO2
nanostructures 15 to 70

One-dimensional rod-like
ZnO@CeO2 core@shell structures,
synthesized with fine-tuned shell
thicknesses with excellent optical
absorption across both UV and
visible regions

Optical stimuli-responsive in
sunscreen cream [77]

Lysine-Dendrimer -

Unique three-dimensional
structure that significantly reduces
inflammation linked to acne
without affecting non-acneic
Cutibacterium acnes or
commensal skin bacteria

Restore the microbiota balance
in skin prone to acne [78]

Curcumin loaded
nanostructured
lipid carriers

96.2

Curcumin-NLC are
nanostructured lipid carriers
(NLC) designed for topical
delivery of curcumin, high
entrapment efficiency
(70.5 ± 1.65%), and significant
improvement in skin permeation
and retention compared to free
curcumin formulations

Addressing persistent
inflammatory conditions such
as psoriasis and acne vulgaris
caused by microbial activity

[79]

Halobetasol
propionate-loaded
solid lipid NPs

200

The solid lipid nanoparticles
loaded with halobetasol
propionate (HP-SLN) demonstrate
promise as a delivery system for
controlled drug release and
targeted administration to the skin

Carrier for controlled drug
release and targeted delivery
to the skin, aiming to minimize
adverse effects associated with
clinical use, such as irritation,
pruritus, and stinging

[80]
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Nanotechnological advancements stand out for their profound influence on the trans-
formative landscape of dermocosmetic products. Delving into how these innovations
have reshaped the skincare industry [57], dermocosmetic formulations incorporating nano-
technology have garnered considerable attention due to their ability to overcome traditional
limitations, revolutionizing the way skincare and cosmetic products are developed and
perceived. Nanoparticles, typically ranging from 1 to 100 nanometers in size, provide a
platform for the controlled release of bioactive compounds, improved skin penetration, and
enhanced stability of active ingredients [46,47,81]. Nanotechnological advancements have
ushered in a new era for dermocosmetic products, offering solutions to traditional chal-
lenges and opening avenues for unprecedented formulations. From improving the stability
and delivery of bioactive compounds to enhancing skin penetration and revolutionizing
sunscreen formulations, nanotechnology has become a driving force in the evolution of
skincare and cosmetics [82,83].

One of the key contributions of nanotechnology to dermocosmetics is the improved
delivery of bioactive substances, such as antioxidants, vitamins, and peptides. Nanoparti-
cles enable the encapsulation of these compounds, protecting them from degradation and
promoting sustained release upon application. This controlled release mechanism not only
enhances the stability of sensitive ingredients but also prolongs their interaction with the
skin, maximizing therapeutic effects [57,84]. For example, encapsulating vitamins like C
and E in nanocarriers protects them from oxidation, ensuring their potency and efficacy in
combating oxidative stress and promoting skin health [85,86].

Liposomes, spherical vesicles composed of lipid bilayers, have been extensively ex-
plored in dermocosmetics for their ability to encapsulate a wide range of compounds,
including both water-soluble and lipid-soluble ingredients [87–89]. Solid lipid nanopar-
ticles, composed of lipids in a solid state, provide stability to incorporated actives and
facilitate sustained release [90]. Polymeric nanoparticles, formed from biocompatible poly-
mers, offer customization of release profiles and improved adherence to the skin [91].
Beyond enhancing stability and delivery, nanotechnology facilitates improved skin pene-
tration, addressing the challenge of transporting active ingredients to deeper skin layers.
Nanoparticles possess the capacity to overcome the skin’s natural barrier, allowing efficient
delivery of therapeutic compounds to targeted cells. This property is particularly beneficial
for addressing skin conditions that require penetration beyond the superficial layers, such
as in the case of anti-aging or dermatological treatments. Moreover, the nanoscale size of
these carriers enhances their interaction with skin cells, ensuring optimal absorption and
utilization of the encapsulated actives actives [57,92–96].

Traditional sunscreens often leave a white cast on the skin due to the larger particle size
of these minerals [97,98]. Reducing the size of these particles not only removes the white
residue but also enhances the even distribution of UV-blocking agents on the skin, thereby
improving the overall effectiveness of sun protection [99]. However, it is crucial to address
safety concerns associated with nanoparticle penetration through the skin, necessitating
rigorous testing and regulation [51].

As research progresses, continued emphasis on safety and regulatory standards will
be paramount to realizing the full potential of nanocosmetic innovations and ensuring
consumer confidence in these transformative products.

3. Challenges of Essential Oils and Potential Solutions

In addition to their utilization in food, agriculture, and textiles, essential oils find
applications across an array of industries, highlighting their versatility and efficacy (see
Figure 2) [100]. Dermocosmetic applications particularly stand out, as essential oils are
increasingly incorporated into skincare products for their multifaceted benefits, including
soothing sensitive skin, combating acne, and promoting overall skin health. These oils serve
as natural alternatives, offering consumers a holistic approach to skincare that aligns with
growing preferences for organic and sustainable ingredients [5,101–103]. One major chal-
lenge lies in the volatility of essential oils, which refers to their tendency to evaporate easily
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at room temperature. This characteristic can compromise the longevity of the fragrance
and therapeutic effects of essential oils in cosmetic applications [104,105]. Essential oils are
complex mixtures of volatile compounds, predominantly terpenoids, with varying boiling
points. As a result, these volatile components can be lost through evaporation during the
formulation process or upon application to the skin. This volatility not only affects the
olfactory profile of the product but also hinders the maintenance of consistent concen-
trations of bioactive compounds required for therapeutic efficacy [101,106–109]. The low
water solubility of essential oils constitutes another significant challenge in dermocosmetic
formulations [110]. Most essential oils are hydrophobic, composed of lipophilic terpenes
and aromatic compounds, making them poorly soluble in water. This poses obstacles in
achieving homogenous dispersion within aqueous cosmetic formulations, as essential oils
tend to separate from the water phase, leading to issues of poor stability and inconsistent
delivery of bioactive components [111,112]. Moreover, the low water solubility limits the
ease of incorporating essential oils into various cosmetic products, as their homogeneous
distribution becomes a critical factor in ensuring uniform application and efficacy [113,114].
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In addressing the challenges posed by essential oils’ hydrophobicity and volatility, vari-
ous strategies, including nanoencapsulation, become imperative. Among these, a promising
approach involves harnessing plant nanovesicles for encapsulating and delivering essen-
tial oils, particularly in dermocosmetic applications [110,115–117]. Numerous techniques
exist for nanoencapsulating essential oils into various systems, including emulsification,
extrusion, nanoprecipitation, and complex coacervation (see Figure 3) [100,115,118]. This
avenue signifies a significant advancement, aligning with the quest for enhanced stability
and efficacy in diverse industrial applications. Plant nanovesicles, such as exosomes or
extracellular vesicles, exhibit a hydrophobic character, mimicking the lipid composition
of essential oils. This similarity facilitates their integration into cosmetic formulations,
ensuring compatibility and reducing the risk of phase separation [116,119,120]. Moreover,
the nanometric size of plant nanovesicles enhances their interaction with the skin, allowing
for improved absorption and retention of essential oil components. This not only addresses
the volatility concern by providing a reservoir for sustained release, but also contributes to
a more efficient and controlled delivery of bioactive compounds [121].

https://creativecommons.org/licenses/by/4.0/
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In addition to the protective benefits provided by plant nanovesicles in dermocos-
metic formulations, various essential oils offer valuable properties for skin health and
wellness. Table 2 provides examples of essential oils commonly used in dermocosmetic
applications, highlighting their distinct properties and versatile applications in cosmetic
and pharmaceutical formulations.

The encapsulation of essential oils within plant nanovesicles serves as a protective
barrier against the detrimental effects of environmental factors, such as light, oxygen, and
temperature [116,117]. Essential oils are prone to degradation when exposed to these
elements, leading to a loss of therapeutic efficacy [104]. Plant nanovesicles act as shields,
preserving the integrity of the encapsulated essential oils and extending their stability. This
is particularly crucial in dermocosmetic applications, where the maintenance of bioactivity
over time is paramount for product effectiveness [122,123].

The lipid layers of these vesicles provide an ideal environment for incorporating
lipophilic compounds, including the hydrophobic constituents of essential oils [124,125].
Passive and active loading techniques can be employed to enhance the encapsulation
efficiency, ensuring that a higher percentage of essential oil components are successfully
entrapped within the nanovesicles. This not only improves the homogeneity of essential
oil dispersion but also facilitates their incorporation into various cosmetic formulations, ex-
panding the range of dermocosmetic products that can benefit from the bioactive properties
of essential oils [58,116].

The plant nanovesicles also present opportunities for targeted delivery in dermocos-
metic applications [126]. They can be functionalized or modified to enhance their targeting
abilities, allowing for specific delivery of essential oil components to distinct skin layers
or cell types [58,116]. This targeted approach not only improves therapeutic outcomes but
also reduces the risk of adverse effects, as the bioactive compounds are directed to their
intended sites of action [127,128].

Despite the potential advantages of plant nanovesicles in dermocosmetic applications,
several considerations need attention [110]. Standardized procedures for isolation, physico-
chemical characterization, and stability evaluation are essential to ensure the reproducibility
and scalability of the process [129]. Additionally, further research is needed to optimize

https://creativecommons.org/licenses/by/4.0/
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loading efficiency, particularly when dealing with the encapsulation of essential oils with
varying chemical compositions [112,124,130]. Regulatory aspects, including sterility for
intravenous administration, must be addressed to facilitate the regulatory approval of these
innovative bionanosystems in the cosmetic industry [116,131].

Table 2. Examples of essential oils in dermocosmetic applications.

Essential Oil Properties Application Ref.

Lavender, tea tree, and lemon Antimicrobial activity Cosmetic preservative systems [132]

Menthol

Menthol exhibits various biological
activities, including antibacterial,
antifungal, antipruritic, anticancer, and
analgesic effects, as well as acting as an
effective fumigant

Medicinal products for its cooling and
biological effects [133]

Thymus vulgaris L. (Thyme)

Hepatoprotective properties and to have
effectiveness as expectorant agent,
anti-acne agent, and as fungicidal and
antiviral drug

Dermocosmetic and
pharmaceuticals products [134–136]

Citronella

Various activities such as antimicrobial,
anthelmintic, antioxidant, anticonvulsant,
antitrypanosomal, and wound healing
properties, in addition to its mosquito
repellent action

Pharmaceuticals, biomedical
applications, cosmetics,
food, veterinary, and
agriculture applications

[137,138]

Rosemary (Rosmarinus officinalis L.)

Antioxidant, anti-inflammatory,
antimicrobial, memory enhancement,
digestive aid, hair and scalp health,
pain relief, etc.

Gels, shampoos, soaps, rosemary water,
cleansing milk, deodorant, anti-wrinkle
cream, aftershave lotion, hydrating
facial cream, cream for the eye
contour area, etc.

[139–142]

Lavender (Lavandula angustifolia L.)
Antimicrobial, anti-inflammatory, healing,
relaxing and calming, antioxidant, and
analgesic properties

Dermocosmetic and
pharmaceuticals products [143,144]

Tagetes minuta, Euphorbia granulata and
Galinsoga parviflora

Anti-inflammatory, antimicrobial,
antiviral, and antioxidant properties

Dermocosmetic and
pharmaceuticals products [145]

Argan oil nanocapsules
containing naproxen

Moisturizing, anti-aging, nourishing,
anti-inflammatory, wound healing, hair
care, UV protection, and
antimicrobial properties

Cosmetic and transdermal
local applications [146–148]

4. Addressing Skin Aging with Nanomaterials and Essential Oils

The integration of nanomaterials into the therapeutic efficacy of essential oils introduces
innovative solutions for addressing skin aging and promoting tissue rejuvenation within
dermocosmetics. Their inherent properties work synergistically, offering cutting-edge ap-
proaches to alleviate visible signs of aging [57,149]. Skin aging, marked by a decline in vitality,
structural integrity, and moisture retention, encounters formidable resistance through this
collaboration, marking a transformative phase in skincare innovation [150–152].

One notable application of this synergy involves integrating nanomaterials into for-
mulations infused with essential oils, capitalizing on their combined potential to target
specific skin layers effectively [153,154]. Nanocarriers, ranging from liposomes to solid lipid
nanoparticles, act as efficient vessels for encapsulating bioactive compounds present in
essential oils, ensuring their potency while facilitating precise delivery to the skin [155,156].
When encapsulated within these nanocarriers alongside essential oils, peptides renowned
for stimulating collagen synthesis penetrate deeper skin layers, initiating a rejuvenating
cascade that enhances skin elasticity and resilience [57,67].

Wrinkles, which symbolize the aging process of the skin, succumb to the therapeutic
abilities of nanomaterials and essential oils, which work together to deliver agents that boost
collagen and antioxidants [18,57,157]. Peptides like palmitoyl pentapeptide-4, encapsulated
within nanocarriers combined with essential oils, penetrate deep into the skin, stimulating
collagen synthesis and reducing oxidative stress, which is a key factor in premature aging.
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Through meticulous release mechanisms, these compounds synergistically combat wrinkle
formation, presenting a holistic anti-aging approach [158]. Moreover, dry skin, which is com-
mon in aging, encounters a significant challenge addressed by nanomaterials enriched with
essential oils. These formulations encapsulate moisturizing agents such as hyaluronic acid,
leveraging nanotechnology to improve their penetration and retention in the skin [37,56,57].
Expertly formulated through the application of nanotechnology, these emulsions create a deli-
cate, moisturizing barrier atop the skin, alleviating dryness and delivering revitalization [81].
Moreover, the synergy of nanomaterials and essential oils introduces adaptive skincare for-
mulations tailored to the evolving needs of aging skin [8,81]. pH-responsive nanocarriers, for
example, regulate the gradual release of active ingredients according to changes in the skin’s
pH levels, thereby maximizing effectiveness. This adaptability proves crucial in navigating the
multifaceted terrain of aging skin, where various factors converge to shape its ever-evolving
landscape [159,160]. However, it is essential to acknowledge the challenges surrounding
the utilization of nanomaterials in skincare. Rigorous safety assessments and transparent
communication regarding their incorporation are imperative to foster consumer trust and
responsible innovation [161,162].

In conclusion, the synergy of nanomaterials with essential oils represents a paradigm
shift in dermocosmetics, offering multifaceted strategies to combat skin aging and promote
tissue rejuvenation. From targeted delivery of collagen-boosting peptides to encapsulation
of hydrating agents for dryness relief, this symbiotic alliance epitomizes skincare innovation.
As understanding of nanotechnology advances, so too does its potential to redefine anti-
aging skincare, promising healthier, more resilient, and youthful skin in the future.

5. Essential Oils and Nanoparticles for Advanced Dermocosmetic Delivery Systems

The transformation in dermocosmetic formulations occurs at the intersection of essen-
tial oils (EOs) and nanoparticles, providing insight into their intricate collaboration [18,47].
Nanoemulsions, characterized by droplets at the nanometer scale, emerge as essential carri-
ers, showcasing enhanced stability, minimal toxicity, and outstanding compatibility with
biological systems [59,163]. This synthesis delves into the scientific complexities, encapsu-
lating significant discoveries and outlining both the present status and future prospects of
essential oil–nanoparticle cooperation for advanced dermocosmetic delivery systems [57].

5.1. Precision Delivery Enabled by Nanoemulsions

Nanoemulsions serve as precision vehicles for synergizing essential oils with nanopar-
ticles, offering a robust platform for encapsulating both hydrophilic and lipophilic active
compounds [112,164]. This encapsulation tackles solubility challenges, enhances stability,
and ensures optimal bioavailability. They act as guardians, mitigating the volatility of
essential oils, thereby ensuring sustained efficacy [114,165,166].

The encapsulation process within nanoparticles involves a meticulous interplay of
physicochemical properties, enabling controlled release mechanisms. These mechanisms
extend the shelf life of essential oils and facilitate their controlled and targeted deliv-
ery [167,168]. Nanoemulsions emerge as avant-garde carriers in advanced dermocosmetic
formulations due to their ability to deliver active compounds precisely.

The diminutive size of nanoparticles enables targeted delivery precision, navigating
the intricate layers of the skin with unparalleled accuracy [169,170]. Essential oil com-
pounds encapsulated within nanoparticles exhibit specific tropism towards distinct skin
layers, optimizing therapeutic outcomes. Rigorous scientific investigations substantiate
this targeted approach, providing evidence of enhanced permeation and efficacy [171–173].

Scientific literature abounds with examples illustrating the prowess of essential oil–
nanoparticle formulations in specific dermocosmetic applications. Nanostructured carriers
laden with essential oils like peppermint and rosemary showcase heightened efficacy in
stimulating hair growth, attributing this phenomenon to the precision enabled by nanopar-
ticles in traversing the skin layers [5,36,101,110,174].
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5.2. Sustained Release Dynamics

Sustained release dynamics embedded in nanoparticles constitute a cornerstone in es-
sential oil–nanoparticle synergy. These dynamics yield prolonged and controlled release of
active ingredients, ensuring enduring skincare benefits [18,175,176]. Rigorous scientific studies
elucidate how sustained release mechanisms optimize therapeutic effects while minimizing
potential side effects, aligning seamlessly with the stringent safety demands of skincare prod-
ucts [177–179]. Scientific exploration into sustained release benefits extends to diverse essential
oil–nanoparticle formulations [156]. Controlled release becomes imperative in addressing
specific dermatological concerns comprehensively, presenting a transformative avenue for
mitigating various skin-related challenges with precision and efficacy [153].

5.3. Current Scientific Landscape and Futuristic Trajectories

The current scientific landscape in dermocosmetics reflects a combination of natural active
compounds from plants, into nanoemulsions. Scientific insights underscore the moisturizing
and photoprotective properties of these formulations [180]. The trajectory, guided by scientific
rigor, seeks to refine the synergy between essential oils and nanoparticles, unveiling optimized
combinations and novel nanostructures tailored to specific skin needs [181,182].

Future trajectories in dermocosmetics pivot on scientific exploration, emphasizing
new formulations and advanced delivery systems. Ongoing scientific research endeavors
to unravel the intricacies of essential oil–nanoparticle interactions, aiming for heightened
efficacy, safety, and multifunctionality. Scientific literature anticipates a new era in skin-
care, where meticulously crafted formulations offer targeted, sustained, and scientifically
enriched benefits. The synthesis of essential oil–nanoparticle synergy represents a scientific
milestone in dermocosmetic delivery systems. The integration of essential oils’ nuanced
properties with the precision of nanoparticles has given rise to scientifically validated
formulations meeting modern consumer demands. As the industry pivots towards this
transformative synergy, scientific exploration propels the current trajectory and future
potential, promising a new era in skincare rooted in advanced formulations backed by
robust scientific evidence.

To illustrate the advantages and limitations of plant nanovesicles compared to more
classical nanoparticle systems such as liposomes and nanoemulsions, Table 3 is provided in
this review. This table summarizes key characteristics including biocompatibility, targeting
and delivery capabilities, stability, scalability, sustainability, complexity of production, cost,
drug loading capacity, and stability. This comparison highlights the unique attributes of
plant nanovesicles and provides insights into their potential applications in dermocosmetic
delivery systems.

Table 3. Comparative analysis of plant nanovesicles, liposomes, and nanoemulsions in dermocos-
metic delivery.

Characteristic Plant Nanovesicles Liposomes Nanoemulsions Ref.

Biocompatibility High High Variable [183]

Targeting and delivery Yes Yes Yes [184]

Stability Moderate Variable Variable [185]

Scalability Yes Yes Yes [186]

Sustainability Yes Depending on their source Depending on their source [187–189]

Complexity of production High Moderate Moderate [190]

Cost Moderate High Moderate [191]

Drug loading capacity Moderate High High [192–194]

Storage stability Variable Moderate Moderate [195]
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6. Sustainability Considerations in Nanotechnology-Based
Dermocosmetic Formulations

In navigating the landscape of nanotechnology-enabled dermocosmetic formulations,
a profound emphasis on sustainability becomes imperative, transcending mere techno-
logical advancements [8,162]. While the realms of nanotechnology offer unprecedented
avenues for enhancing skincare efficacy, the pursuit of sustainability within this domain
remains integral for fostering safe, effective, and environmentally conscious dermocos-
metic solutions [196,197].

Within the tapestry of nanotechnology, the utilization of sustainable practices emerges
as a cornerstone of progressive skincare science. This paradigm shift encompasses a
holistic approach, encompassing the entire lifecycle of dermocosmetic products—from
formulation to disposal [198,199]. Key considerations encompass the judicious selection of
raw materials, eco-friendly manufacturing processes, and the reduction of environmental
footprints throughout production [200,201].

Central to this discourse is the integration of biodegradable materials into nanotech-
nological frameworks, encapsulating the essence of sustainability within cosmetic for-
mulations [6,8]. By leveraging natural compounds and renewable resources, such as
plant-derived nanovesicles, the cosmetic industry embarks on a transformative journey
towards ecological harmony [191]. These biocompatible carriers not only enhance the
efficacy and stability of dermocosmetic products but also epitomize a commitment to
environmental stewardship [116,191,202].

Furthermore, the ethos of sustainability extends beyond the laboratory confines to en-
compass broader societal and ecological dimensions. It encompasses ethical considerations,
such as fair trade practices and biodiversity preservation, ensuring that skincare formu-
lations resonate with principles of social responsibility and ecological integrity [203–205].
Moreover, the promotion of circular economy principles encourages the repurposing and
recycling of packaging materials, minimizing waste and fostering a regenerative skin-
care ecosystem [206,207].

As the cosmetic industry traverses the precipice of innovation, the integration of
sustainability and nanotechnology heralds a new era in skincare science. It beckons a future
where skincare products not only nurture the skin but also nurture the planet, embodying
a harmonious synergy between human well-being and environmental preservation [8,208].

The journey towards sustainable cosmetic formulations underscores a transformative
shift in skincare paradigms. By infusing nanotechnology with principles of sustainability,
the cosmetic industry forges a path towards safe, effective, and environmentally conscious
dermocosmetic solutions, catalyzing a renaissance in skincare science.

7. Conclusions

In the dynamic realm of dermocosmetic formulations, the convergence of essential
oils (EOs) and nanoparticles represents a groundbreaking synergy that has the potential
to redefine skincare. This scientific review delves into the intricate interplay between
EOs and nanoparticles, particularly nanoemulsions, shedding light on their collaborative
prowess in addressing various skin concerns and advancing the field of dermocosmetic
delivery systems.

The essence of this transformative synergy lies in the precision and versatility offered
by nanoemulsions as carriers for EOs. These nano-scale vehicles serve as guardians of
bioactive compounds, encapsulating both hydrophilic and lipophilic actives with finesse.
The encapsulation process not only enhances the stability of EOs but also addresses solu-
bility challenges, ensuring optimal bioavailability and mitigating the volatility that often
hinders sustained efficacy.

Wrinkles, a prominent sign of aging, find a formidable adversary in this synergy.
Nanomaterials, such as palmitoyl pentapeptide-4 encapsulated in nanoemulsions, pen-
etrate the skin effectively, stimulating collagen synthesis and promoting skin elasticity.
Antioxidant-loaded nanoemulsions counteract oxidative stress, providing a controlled and
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sustained release of cosmeceuticals to combat premature aging comprehensively. Moreover,
the nanoemulsions contribute to the development of lightweight moisturizers that, with
their fine droplets, create a smooth and hydrating layer on the skin, addressing the issue of
dryness and contributing to a more youthful complexion.

The regenerative potential of nanomaterials is exemplified through stem cell-derived
nanovesicles, offering a novel approach to skin rejuvenation. Laden with bioactive molecules
and growth factors, these nanovesicles modulate cellular processes, stimulate collagen
synthesis, and promote tissue repair. The targeted delivery precision of nanoparticles
optimizes therapeutic outcomes, navigating through intricate skin layers with unparalleled
accuracy. This adaptability is particularly crucial in addressing the varying conditions of
aging skin, where factors like hormonal changes, environmental stressors, and metabolic
shifts contribute to the complex aging process.

The sustained release dynamics embedded in nanoparticles constitute a cornerstone
in essential oil–nanoparticle synergy, yielding prolonged and controlled release of active
ingredients. This not only optimizes therapeutic effects but also aligns seamlessly with the
stringent safety demands of skincare products. Rigorous scientific studies support the effec-
tiveness of essential oil–nanoparticle formulations in specific dermocosmetic applications,
demonstrating their transformative potential in mitigating various skin-related challenges
with precision and efficacy.

The current scientific landscape in dermocosmetics reflects an integration of natural
actives into nanoemulsions, emphasizing the moisturizing and photoprotective properties
of these formulations. Future trajectories pivot on scientific exploration, seeking to refine
the synergy between essential oils and nanoparticles. Ongoing research endeavors to
aim for optimized combinations and novel nanostructures tailored to specific skin needs,
anticipating a new era in skincare where meticulously crafted formulations offer targeted,
sustained, and scientifically enriched benefits.

This transformative synergy, backed by robust scientific evidence, meets modern
consumer demands for advanced formulations. As the industry embraces this paradigm
shift, propelled by scientific exploration, it ushers in a new era in skincare characterized by
precision, efficacy, and multifunctionality. The future holds promise for skincare formula-
tions that cater to specific skin needs, rooted in the harmonious collaboration of essential
oils and nanoparticles.
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Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products.
Molecules 2021, 26, 1547. [CrossRef] [PubMed]

123. Sharma, S.; Sain, S.; Mahur, S.; Choudhary, B.; Saini, P.; Kumar, A. Efficacy of Antimicrobial Substances in Food Safety and
Quality: Recent Advances and Future Trends. In Antimicrobials in Food Science and Technology; CRC Press: Boca Raton, FL, USA,
2023; ISBN 978-1-00-326894-9.

124. Sherry, M.; Charcosset, C.; Fessi, H.; Greige-Gerges, H. Essential Oils Encapsulated in Liposomes: A Review. J. Liposome Res. 2013,
23, 268–275. [CrossRef] [PubMed]
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