Development of Transethosomes Loaded with Fruit Extract from Carissa carandas L. as a Brightening and Anti-Aging Cosmeceutical Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of C. carandas L.
2.3. Determination of Malic Acid in ECE
2.4. Determination of Cytotoxicity and Biological Activities of ECE
2.4.1. Cytotoxicity Test in Melanoma Cell (B16F10)
2.4.2. Cytotoxicity in Normal Human Dermal Fibroblast Cells
2.4.3. Determination of Tyrosinase Inhibition
2.4.4. Determination of Cellular Tyrosinase Activity
2.4.5. Determination of Cell Proliferation Activity
2.4.6. Determination of Stimulate Collagen Production
- AC = the collagen concentration of the control
- AT = the collagen concentration of the test sample
2.5. In Vitro Skin Irritation Testing
2.6. Transethosomes Preparation
2.7. Effect of Concentrations of ECE Loaded in Transethosomes
2.8. Size, Polydisperse Index (PDI), and Zeta Potential Measurement
2.9. Morphology
2.10. Determination of Entrapment Efficiency (%EE) and Drug Loading Capacity (%LC)
2.11. In Vitro Permeation Study
2.12. Statistical Analysis
3. Results and Discussion
3.1. Extraction, Phytochemical Constituents, and Biological Activities of Ethanolic Extract of C. carandas L. (ECE)
3.2. Optimization of ECE Loaded in Transethosome Formulations
3.3. Effect of Concentration of ECE Loaded in Transethosomes: Formulation and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nadechanok, J.; Charinrat, S.; Nattawut, L.; Arpa, P. The Evaluation of Antioxidant and Antityrosinase Efficacy of Carissa carandas Fruit Extracts and the Development of a Preliminary Skincare Product. J. Appl. Pharm. Sci. 2020, 11, 153–157. [Google Scholar] [CrossRef]
- Khuanekkaphan, M.; Khobjai, W.; Noysang, C.; Wisidsri, N.; Thungmungmee, S. Bioactivities of Karanda (Carissa carandas Linn.) Fruit Extracts for Novel Cosmeceutical Applications. J. Adv. Pharm. Technol. Res. 2021, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bajpai, M.; Mishra, P. Carissa carandas L.—Phyto-Pharmacological Review. J. Pharm. Pharmacol. 2020, 72, 1694–1714. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.K.; Pattnaik, A.K.; Dagur, P.; Kumar, D.; Ghosh, M. Excision and Incision Wound Healing Activity of Apigenin (4′,5,7-Trihydroxyflavone) Containing Extracts of Carissa carandas Linn. Fruits. Pharmacogn. Mag. 2022, 18, 502–509. [Google Scholar] [CrossRef]
- Toobpeng, N.; Powthong, P.; Suntornthiticharoen, P. Evaluation of Antioxidant and Antibacterial Activities of Fresh and Freeze-dried Selected Fruit Juices. Asian J. Pharm. Clin. Res. 2017, 10, 156–160. [Google Scholar] [CrossRef]
- Saher, S.; Narnawre, S.; Patil, J. Evaluation of Phytochemical and Pharmacological Activity of Carissa carandas L. Fruits at Three Different Stages of Maturation. Drug Res. (Stuttg) 2020, 70, 80–85. [Google Scholar] [CrossRef]
- Neimkhum, W.; Anuchapreeda, S.; Lin, W.-C.; Lue, S.-C.; Lee, K.-H.; Chaiyana, W. Effects of Carissa carandas Linn. Fruit, Pulp, Leaf, and Seed on Oxidation, Inflammation, Tyrosinase, Matrix Metalloproteinase, Elastase, and Hyaluronidase Inhibition. Antioxidants 2021, 10, 1345. [Google Scholar] [CrossRef]
- Bhokare, S.G.; Dongaonkar, C.C.; Lahane, S.V.; Sawale, V.S.; Thombare, M.S. Herbal Novel Drug Delivery—A Review. World J. Pharm. Pharm. Sci. 2016, 5, 593–611. [Google Scholar]
- Manosroi, A.; Khanrin, P.; Lohcharoenkal, W.; Werner, R.G.; Götz, F.; Manosroi, W.; Manosroi, J. Transdermal Absorption Enhancement through Rat Skin of Gallidermin Loaded in Niosomes. Int. J. Pharm. 2010, 392, 304–310. [Google Scholar] [CrossRef]
- Casanova, F.; Santos, L. Encapsulation of Cosmetic Active Ingredients for Topical Application—A Review. J. Microencapsul. 2016, 33, 1–17. [Google Scholar] [CrossRef]
- Raj, A.; Dua, K.; Nair, R.S.; Sarath Chandran, C.; Alex, A.T. Transethosome: An Ultra-Deformable Ethanolic Vesicle for Enhanced Transdermal Drug Delivery. Chem. Phys. Lipids 2023, 255, 105315. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Benedusi, M.; Sguizzato, M.; Cortesi, R.; Baldisserotto, A.; Buzzi, R.; Valacchi, G.; Esposito, E. Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on Melanoma Cells. Pharmaceutics 2022, 14, 1038. [Google Scholar] [CrossRef] [PubMed]
- Sguizzato, M.; Ferrara, F.; Hallan, S.S.; Baldisserotto, A.; Drechsler, M.; Malatesta, M.; Costanzo, M.; Cortesi, R.; Puglia, C.; Valacchi, G.; et al. Ethosomes and Transethosomes for Mangiferin Transdermal Delivery. Antioxidants 2021, 10, 768. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Boonpisuttinant, K.; Winitchai, S.; Manosroi, W.; Manosroi, J. Free Radical Scavenging and Tyrosinase Inhibition Activity of Oils and Sericin Extracted from Thai Native Silkworms (Bombyx mori). Pharm. Biol. 2010, 48, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Saraphanchotiwitthaya, A.; Manosroi, J. In Vivo Immunomodulating Activity of Wood Extracts from Clausena excavata Burm. f. J. Ethnopharmacol. 2005, 102, 5–9. [Google Scholar] [CrossRef]
- Bollareddy, S.R.; Krishna, V.; Roy, G.; Dasari, D.; Dhar, A.; Venuganti, V.V.K. Transfersome Hydrogel Containing 5-Fluorouracil and Etodolac Combination for Synergistic Oral Cancer Treatment. AAPS Pharm. Sci. Tech. 2022, 23, 70. [Google Scholar] [CrossRef]
- Opatha, S.A.T.; Titapiwatanakun, V.; Boonpisutiinant, K.; Chutoprapat, R. Preparation, Characterization and Permeation Study of Topical Gel Loaded with Transfersomes Containing Asiatic Acid. Molecules 2022, 27, 4865. [Google Scholar] [CrossRef]
- Tawfeek, H.M.; Abdellatif, A.A.H.; Abdel-Aleem, J.A.; Hassan, Y.A.; Fathalla, D. Transfersomal Gel Nanocarriers for Enhancement the Permeation of Lornoxicam. J. Drug Deliv. Sci. Technol. 2020, 56, 101540. [Google Scholar] [CrossRef]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Przybylska-Balcerek, A.; Stuper-Szablewska, K. Phenolic Acids Used in the Cosmetics Industry as Natural Antioxidants. EJMT 2019, 4, 24–32. [Google Scholar]
- Krstonošić, V.; Ćirin, D. Are Cosmetics Based on Alpha Hydroxy Acids Safe to Use When Purchased over the Internet? Toxicol. Ind. Health 2022, 38, 835–838. [Google Scholar] [CrossRef]
- Tang, S.-C.; Yang, J.-H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018, 23, 863. [Google Scholar] [CrossRef] [PubMed]
- Khunchalee, J.; Charoenboon, P. The Study of Free Radical Scavenging, Total Phenolic Contents and Tyrosinase Inhibition Activity of Crude Extract from Carissa carandas Linn. Creat. Sci. 2019, 11, 26–34. [Google Scholar]
- Friedman, N.; Dagan, A.; Elia, J.; Merims, S.; Benny, O. Physical Properties of Gold Nanoparticles Affect Skin Penetration via Hair Follicles. Nanomed. Nanotechnol. Biol. Med. 2021, 36, 102414. [Google Scholar] [CrossRef]
- Su, R.; Fan, W.; Yu, Q.; Dong, X.; Qi, J.; Zhu, Q.; Zhao, W.; Wu, W.; Chen, Z.; Li, Y.; et al. Size-Dependent Penetration of Nanoemulsions into Epidermis and Hair Follicles: Implications for Transdermal Delivery and Immunization. Oncotarget 2017, 8, 38214–38226. [Google Scholar] [CrossRef]
- Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Surfactant Effects on Lipid-Based Vesicles Properties. J. Pharm. Sci. 2018, 107, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, P.G.; Sengupta, P.; Chicgovinda, P.P.; Rao, P.J. Nanoencapsulation of Clove Oil and Study of Physicochemical Properties, Cytotoxic, Hemolytic, and Antioxidant Activities. J. Food Process. Eng. 2021, 44, e13645. [Google Scholar] [CrossRef]
- Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; Farouk, H.O.; Zaki, R.M. Fabrication and Appraisal of Simvastatin via Tailored Niosomal Nanovesicles for Transdermal Delivery Enhancement: In Vitro and In Vivo Assessment. Pharmaceutics 2021, 13, 138. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Chang, C.-H.; Yang, Y.-M. Ethanol Effects on the Gelation Behavior of α-Tocopherol Acetate-Encapsulated Ethosomes with Water-Soluble Polymers. Colloid. Polym. Sci. 2013, 291, 1341–1352. [Google Scholar] [CrossRef]
- Qureshi, M.I.; Jamil, Q.A.; Usman, F.; Wani, T.A.; Farooq, M.; Shah, H.S.; Ahmad, H.; Khalil, R.; Sajjad, M.; Zargar, S.; et al. Tioconazole-Loaded Transethosomal Gel Using Box–Behnken Design for Topical Applications: In Vitro, In Vivo, and Molecular Docking Approaches. Gels 2023, 9, 767. [Google Scholar] [CrossRef]
- Dudhipala, N.; Phasha Mohammed, R.; Adel Ali Youssef, A.; Banala, N. Effect of Lipid and Edge Activator Concentration on Development of Aceclofenac-Loaded Transfersomes Gel for Transdermal Application: In Vitro and Ex Vivo Skin Permeation. Drug Dev. Ind. Pharm. 2020, 46, 1334–1344. [Google Scholar] [CrossRef] [PubMed]
- Avadhani, K.S.; Manikkath, J.; Tiwari, M.; Chandrasekhar, M.; Godavarthi, A.; Vidya, S.M.; Hariharapura, R.C.; Kalthur, G.; Udupa, N.; Mutalik, S. Skin Delivery of Epigallocatechin-3-Gallate (EGCG) and Hyaluronic Acid Loaded Nano-Transfersomes for Antioxidant and Anti-Aging Effects in UV Radiation Induced Skin Damage. Drug Deliv. 2017, 24, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.A.; De Almeida Júnior, R.F.; Onofre, T.S.; Casadei, B.R.; Farias, K.J.S.; Severino, P.; De Oliveira Franco, C.F.; Raffin, F.N.; De Lima E Moura, T.F.A.; De Melo Barbosa, R. Annatto Oil Loaded Nanostructured Lipid Carriers: A Potential New Treatment for Cutaneous Leishmaniasis. Pharmaceutics 2021, 13, 1912. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.; Yoon, I.; Lee, W.K. Design and Characterisation of pH-Responsive Photosensitiser-Loaded Nano-Transfersomes for Enhanced Photodynamic Therapy. Pharmaceutics 2022, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.J.; Salah, S.; Abdel Halim, S.A.; Badr-Eldin, S.M. Investigating the Potential of Utilizing Glycerosomes as a Novel Vesicular Platform for Enhancing Intranasal Delivery of Lacidipine. Int. J. Pharm. 2020, 582, 119302. [Google Scholar] [CrossRef]
- Cui, F.; Shi, K.; Zhang, L.; Tao, A.; Kawashima, Y. Biodegradable Nanoparticles Loaded with Insulin–Phospholipid Complex for Oral Delivery: Preparation, in Vitro Characterization and In Vivo Evaluation. J. Control. Release 2006, 114, 242–250. [Google Scholar] [CrossRef]
- Hassan, A.S.; Hofni, A.; Abourehab, M.A.; Abdel-Rahman, I.A. Ginger Extract–Loaded Transethosomes for Effective Transdermal Permeation and Anti-Inflammation in Rat Model. Int. J. Nanomed. 2023, 18, 1259–1280. [Google Scholar] [CrossRef]
- Munir, M.; Zaman, M.; Waqar, M.A.; Hameed, H.; Riaz, T. A Comprehensive Review on Transethosomes as a Novel Vesicular Approach for Drug Delivery through Transdermal Route. J. Liposome Res. 2024, 34, 203–218. [Google Scholar] [CrossRef]
- Albash, R.; Abdelbary, A.; Refai, H.; El-Nabarawi, M. Use of Transethosomes for Enhancing the Transdermal Delivery of Olmesartan Medoxomil: In Vitro, Ex Vivo, and in Vivo Evaluation. Int. J. Nanomed. 2019, 14, 1953–1968. [Google Scholar] [CrossRef]
- Patil, S.; Dandagi, P.M.; Kazi, T.; Hulyalkar, S.; Biradar, P.; Kumbar, V. A DoE-Based Development and Characterization of Nadifloxacin-Loaded Transethosomal Gel for the Treatment of Acne Vulgaris. Futur. J. Pharm. Sci. 2024, 10, 46. [Google Scholar] [CrossRef]
Samples | Simulated Skin Tissue After Testing and Incubation with MTT Solution | Cell Viability(%) | Results |
---|---|---|---|
Positive control | 0.78 ± 0.07 | Irritant | |
Negative control | 99.99 ± 6.41 | Non-irritant | |
2.00% ECE | 92.38 ± 3.96 | Non-irritant | |
2.00% ECE loaded transethosomes | 103.59 ± 3.70 | Non-irritant |
Content of Extract (mg/mL) | Inhibition of Enzyme Tyrosinase in Melanoma Cells (%) | Collagen Stimulation (%) | Fibroblast Proliferation (%) |
---|---|---|---|
0.10 | 36.97 ± 7.63 | 24.31 ± 1.54 | 30.99 ± 6.75 |
0.50 | 49.85 ± 8.00 | 36.61 ± 2.48 | 35.70 ± 5.98 |
1.00 | 64.11 ± 6.97 | 60.09 ± 0.97 | 41.07 ± 4.21 |
Ascorbic acid (50 µg/mL) | - | 17.81 ± 0.33 | 42.50 ± 5.48 |
Kojic acid (1.0 mg/mL) | 81.96 ± 5.74 | - | - |
α-Arbutin (0.2 mg/mL) | 38.02 ± 2.60 | - | - |
Formula | Physicochemical Properties | ||
---|---|---|---|
Size (nm) | Polydisperse Index (PDI) | Zeta Potential (mV) | |
1 | 834.43 ± 138.92 | 0.47 ± 0.12 | −22.20 ± 0.78 |
2 | 504.00 ± 42.96 | 0.47 ± 0.01 | −24.13 ± 0.32 |
3 | 463.77 ± 31.22 | 0.64 ± 0.02 | −31.37 ± 0.42 |
4 | 649.67 ± 52.64 | 0.35 ± 0.01 | −24.00 ± 0.87 |
5 | 345.17 ± 122.17 | 1.00 ± 0.00 | −26.07 ± 0.83 |
6 | 379.60 ± 85.94 | 0.54 ± 0.03 | −22.80 ± 1.73 |
7 | 412.43 ± 46.52 | 0.57 ± 0.01 | −30.30 ± 0.10 |
8 | 399.23 ± 61.01 | 0.72 ± 0.09 | −20.37 ± 1.27 |
9 | 232.40 ± 77.08 | 0.61 ± 0.11 | −19.80 ± 1.87 |
10 | 277.47 ± 21.36 | 0.45 ± 0.00 | −24.80 ± 0.87 |
Content of ECE (%) | Size (nm) | Polydisperse Index (PDI) | Zeta Potential (mV) | Encapsulation Efficacy (%) | Loading Capacity (%) |
---|---|---|---|---|---|
0.50 | 213.57 ± 13.54 a | 0.34 ± 0.04 a | −30.43 ± 0.42 a | 49.81 ± 2.07 a | 2.71 ± 0.35 a |
1.00 | 202.87 ± 5.22 a | 0.36 ± 0.05 a | −31.43 ± 1.53 a | 67.77 ± 5.52 a | 7.18 ± 0.88 b |
2.00 | 277.47 ± 21.36 b | 0.45 ± 0.00 b | −24.80 ± 0.87 b | 63.02 ± 15.35 a | 14.70 ± 1.31 c |
Formulation | Flux (µg/cm2/h) | Lag Time (h) | ER | P × 10−3 (cm/h) | Q 48 h (µg/cm2) |
---|---|---|---|---|---|
2.00% ECE-loaded transethosomes | 17.27 ± 6.68 * | 0.51 ± 5.81 | 4.14 | 11.31 ± 4.37 * | 808.78 ± 324.64 * |
2.00% ECE solution | 4.18 ± 1.55 * | 2.28 ± 4.75 | 1.00 | 3.92 ± 1.46 * | 180.84 ± 33.59 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soradech, S.; Tiatragoon, W.; Phanphothong, P.; Ouamkan, K.; Kengkwasingh, P.; Ruengsomwong, S.; Intawong, S.; Muangman, T. Development of Transethosomes Loaded with Fruit Extract from Carissa carandas L. as a Brightening and Anti-Aging Cosmeceutical Ingredient. Cosmetics 2024, 11, 199. https://doi.org/10.3390/cosmetics11060199
Soradech S, Tiatragoon W, Phanphothong P, Ouamkan K, Kengkwasingh P, Ruengsomwong S, Intawong S, Muangman T. Development of Transethosomes Loaded with Fruit Extract from Carissa carandas L. as a Brightening and Anti-Aging Cosmeceutical Ingredient. Cosmetics. 2024; 11(6):199. https://doi.org/10.3390/cosmetics11060199
Chicago/Turabian StyleSoradech, Sitthiphong, Worawan Tiatragoon, Phongsapak Phanphothong, Kanyarat Ouamkan, Pattarawadee Kengkwasingh, Supatjaree Ruengsomwong, Somkamol Intawong, and Thanchanok Muangman. 2024. "Development of Transethosomes Loaded with Fruit Extract from Carissa carandas L. as a Brightening and Anti-Aging Cosmeceutical Ingredient" Cosmetics 11, no. 6: 199. https://doi.org/10.3390/cosmetics11060199
APA StyleSoradech, S., Tiatragoon, W., Phanphothong, P., Ouamkan, K., Kengkwasingh, P., Ruengsomwong, S., Intawong, S., & Muangman, T. (2024). Development of Transethosomes Loaded with Fruit Extract from Carissa carandas L. as a Brightening and Anti-Aging Cosmeceutical Ingredient. Cosmetics, 11(6), 199. https://doi.org/10.3390/cosmetics11060199