Bioactive Peptides: Applications and Relevance for Cosmeceuticals
Abstract
:1. Introduction
- (a)
- (b)
- (c)
- Adipocytes present in the hypodermis are capable of releasing bioactive peptides, called adipocytokines, such as interleukin-6 (IL-6), leptin, resistin, tumor necrosis factor α (TNF-α), acylation stimulating protein (ASP), and adiponectin [8];
- (d)
- Insulin can be considered an example of a polypeptide which acts on cell metabolism, as it facilitates the entry of glucose to the cell interior and interacts with hepatocytes, muscular cells, and adipocytes [9].
2. Signal Peptides
2.1. Heptapeptide Acetyl-DEETGEF-OH
2.2. Oligopeptide-68
2.3. Tripeptide-41
3. Carrier Peptides
4. Neurotransmitter Inhibitor Peptides
4.1. Acetyl Hexapeptide-3 (Argireline®)
4.2. Acetyl Tripeptide-30 Citrulline and Pentapeptide-18
5. Neurocosmetics
Happybelle-PE®
6. Safety Assessment of Bioactive Peptides Used in Cosmetics
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Machado, A.; Liria, C.W.; Proti, P.B.; Remuzgo, C.; Miranda, M.T.M. Síntese química e enzimática de peptídeos: Princípios e aplicações. Quim. Nova 2004, 5, 781–789. [Google Scholar] [CrossRef]
- Peptide Therapeutics Market (by Applications, by Route of Administration, and by Marketing Status)—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014–2020. April 2017. Available online: http://www.transparencymarketresearch.com/pressrelease/peptide-therapeutics-market.htmd (accessed on 1 October 2017).
- Global Cosmeceuticals Market Outlook 2020. RNCOS E-Services Pvt. Ltd., July 2017. Available online: http://www.giiresearch.com/report/rnc263147-global-cosmeceutical-market-outlook.html (accessed on 1 October 2017).
- Linder, J. The science behind peptides. Plast. Surg. Nurs. 2012, 32, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Falla, T.J. Cosmeceuticals and peptides. Clin. Dermatol. 2009, 27, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, P.K. Neuropeptides in the skin. An. Bras. Dermatol. 2003, 78, 483–498. [Google Scholar]
- Scholzen, T.; Armstrong, C.; Burnett, N.; Luger, T.; Olerud, J.; Ansel, J. Neuropeptides in the skin: Interactions between the neuroendocrine and the skin immune systems. Exp. Dermatol. 1998, 7, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, D.E.D.; Sardinha, F.L.C.; Mizurini, D.M.; Carmo, M.G.T. Adipocinas: Uma nova visão do tecido adipose. Rev. Nutr. 2007, 20, 549–559. [Google Scholar] [CrossRef]
- Claeys, I.; Simonet, G.; Poels, J.; Loy, T.V.; Vercamme, L.; Loof, A.; Broeck, J.V. Insulin-related peptides and their conserved signal transduction pathway. Peptides 2002, 23, 807–816. [Google Scholar] [CrossRef]
- Gazitaeva, Z.I.; Drobintseva, A.O.; Chung, Y.; Polyakova, V.O.; Kvetnoy, I.M. Cosmeceutical product consisting of biomimetic peptides: Antiaging effects in vivo and in vitro. Clin. Cosmet. Investig. Dermatol. 2017, 10, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Pai, V.V.; Bhandari, P.; Shukla, P. Topical peptides as cosmeceuticals. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Fields, K.; Falla, T.J.; Rodan, K.; Bush, L. Bioactive peptides: Signaling the future. J. Cosmet. Dermatol. 2009, 8, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lintner, K.; Mas-Chamberlin, C.; Mondon, P.; Peschard, O.; Lamy, L. Cosmeceuticals and active ingredients. Clin. Dermatol. 2009, 27, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Gorouhi, F.; Maibach, H. Role of topical peptides in preventing or treating aged skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Siméon, A.; Monier, F.; Emonard, H.; Gillery, P.; Birembaut, P.; Hornebeck, W.; Maquart, F.X. Expression and activation of matrix metalloproteinases in wounds: Modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. J. Investig. Dermatol. 1999, 112, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Netto, J.C.; Mendonça, R.J. Aspectos celulares da cicatrização. An. Bras. Dermatol. 2009, 84, 257–262. [Google Scholar]
- Carpenter, G.; Cohen, S. Epidermal growth factor. J. Biol. Chem. 1990, 265, 7709–7712. [Google Scholar] [PubMed]
- Suter, F.; Schmid, D.; Wandrey, F.; Zulli, F. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur. J. Pharm. Biopharm. 2016, 108, 304–309. [Google Scholar] [CrossRef] [PubMed]
- MIBELLE GROUP BIOCHEMISTRY. Paris: PERFECTION PEPTIDE-P7®. Available online: https://mibellebiochemistry.com/products/perfectionpeptide-p7/ (accessed on 28 October 2017).
- Pratchyapurit, W.O. Combined use of two formulations containing diacetyl boldine, TGF-β1 biomimetic oligopeptide-68 with other hypopigmenting/exfoliating agents and sunscreen provides effective and convenient treatment for facial melasma. Either is equal to or is better than 4% hydroquinone on normal skin. J. Cosmet. Dermatol. 2016, 15, 95–101. [Google Scholar]
- BIOTEC. São Paulo: β. WHITE™. Available online: http://www.biotecdermo.com.br/b-white/ (accessed on 31 August 2017).
- Halbe, H.W.; Cunha, D.C. O Excesso do órgão adiposo. Diagn. Tratamento 2008, 13, 153–160. [Google Scholar]
- PHARMASPECIAL. São Paulo: LIPOXYN®. Available online: http://www.pharmaspecial.com.br/media/produtos/_lit_lipoxyn.pdf (accessed on 30 June 2017).
- Siméon, A.; Emonard, H.; Hornebeck, W.; Maquart, F.X. The tripeptide-copper complex glycyl-L-histidyl-L- lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sci. 2000, 67, 2257–2265. [Google Scholar] [CrossRef]
- Finkley, M.; Appa, Y.; Bhandarkar, S. Copper peptide and skin. In Cosmeceuticals and Active Cosmetics: Drugs vs. Cosmetics; Elsner, P., Maibach, H., Eds.; Marcel Dekker Press: New York, NY, USA, 2005; pp. 549–563. [Google Scholar]
- Blanes-Mira, C.; Clemente, J.; Jodas, G.; Gil, A.; Fernández-Ballester, G.; Ponsati, B.; Gutierrez, L.; Pérez-Payá, E.; Ferre-Montiel, A. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int. J. Cosmet. Sci. 2002, 24, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Xiao, S.; Pan, P.; Li, P.; Huo, J. The anti-wrinkle efficacy of argireline, a synthetic hexapeptide, in Chinese subjects: A randomized, placebo-controlled study. Am. J. Clin. Dermatol. 2013, 14, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.; Shults, A.; Zhao, Y. Argireline decreases EPSP amplitude over time, and increases paired-pulse facilitation in a dose-dependent manner. Eur. J. Neurosci. 2015, 15, 17–23. [Google Scholar]
- Ruiz, M.A.; Clares, B.; Morales, M.E.; Gallardo, V. Evaluation of the anti-wrinkle efficacy of cosmetic formulations with an anti-aging peptide (Argireline®). ARS Pharm. 2010, 50, 168–176. [Google Scholar]
- GALENA. São Paulo: ARGIRELINE®. Available online: http://www.pharmakondf.com.br/Pharmakon/arquivos/INSUMOS_FARMACEUTICOS/A/6213_-_IC_-_ARGIRELINE.pdf (accessed on 25 June 2017).
- Petit, J.L.V.; Gonzalez, R.D.; Botello, A.F. Nanocapsules Containing Microemulsions. U.S. Patent 20,130,216,596, 22 August 2013. [Google Scholar]
- GALENA. São Paulo: VANISTRYL®. Available online: http://www.farmacianaturalfarma.com.br/noticias/7ae84ef6051d941223a415ddf24b38d3.pdf (accessed on 25 April 2017).
- Slominski, A.; Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 2000, 21, 457–487. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.W.; Conradson, T.B.; Dixon, C.M.; Crossman, D.C.; Barnes, P.J. Sensory neuropeptide effects in human skin. Br. J. Pharmacol. 1987, 92, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Millington, G.W. Proopiomelanocortin (POMC): The cutaneous roles of its melanocortin products and receptors. Clin. Exp. Dermatol. 2006, 31, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.A.; Dehkordi, A.J.; Haijhashemi, V.; Mahabadi, A.A. Biomimetic proopiomlanocortin suppress capsaicin-induced sensory irritation in humans. Res. Pharm. Sci. 2016, 11, 484–490. [Google Scholar] [PubMed]
- MIBELLE GROUP BIOCHEMISTRY. Paris: HAPPYBELLE-PE®. Available online: https://mibellebio chemistry.com/products/happybelle-pe/ (accessed on 26 December 2017).
- Safety Assessment of Palmitoyl Oligopeptides as Used in Cosmetics. Available online: http://www.cir-safety.org/sites/default/files/palmit072012slr.pdf (accessed on 22 April 2017).
- Maia Campos, P.M.G.; Mercúrio, D.G.; Tadini, K.A. Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties—Clinical study. Braz. J. Pharm. Sci. 2015, 51, 901–909. [Google Scholar]
- Safety Assessment of Tripeptide-1, Hexapeptide-12, Their Metal Salts and Fatty Acyl Derivatives, and Palmitoyl Tetrapeptide-7 as Used in Cosmetics. Available online: https://www.cir-safety.org/sites/default/files/tripep062014final.pdf (accessed on 22 April 2017).
- Pickart, L.; Lovejoy, S. Biological activity of human plasma copper-binding growth factor glycyl-L-histidyl-Llysine. Methods Enzymol. 1987, 147, 314–328. [Google Scholar] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, T.N.; Pedriali Moraes, C.A. Bioactive Peptides: Applications and Relevance for Cosmeceuticals. Cosmetics 2018, 5, 21. https://doi.org/10.3390/cosmetics5010021
Lima TN, Pedriali Moraes CA. Bioactive Peptides: Applications and Relevance for Cosmeceuticals. Cosmetics. 2018; 5(1):21. https://doi.org/10.3390/cosmetics5010021
Chicago/Turabian StyleLima, Tamyres Nassa, and Carla Aparecida Pedriali Moraes. 2018. "Bioactive Peptides: Applications and Relevance for Cosmeceuticals" Cosmetics 5, no. 1: 21. https://doi.org/10.3390/cosmetics5010021