Methylcellulose-Chitosan Smart Gels for Hairstyling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation Design
2.2. Rheology
2.3. Curl Drop Test
3. Results and Discussion
3.1. Rheological Testing: Flow Sweep (Viscosity vs. Shear Rate)
3.2. Rheological Testing: Temperature Ramp (G’ vs. Temperature)
3.3. Curl Drop Test
4. Conclusions
5. Next Steps and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartson, M.; Coyle, C.; Amin, S. Smart Materials and Formulations Help Differentiate Beauty Products. Household and Personal Products Industry Magazine. 2021. Available online: https://www.happi.com/issues/2021-09-01/view_features/smart-materials-and-formulations-help-differentiate-beauty-products/ (accessed on 19 February 2022).
- Bonetti, L.; De Nardo, L.; Fare, S. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials. Tissue Eng. Part B Rev. 2021, 27, 486–513. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Matsunaga, Y.T. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. J. Mater. Chem. B 2017, 5, 4307–4321. [Google Scholar] [CrossRef] [PubMed]
- Ruel-Gariépy, E.; Leroux, J.-C. In Situ-Forming Hydrogels—Review of Temperature-Sensitive Systems. Eur. J. Pharm. Biopharm. 2004, 58, 409–426. [Google Scholar] [CrossRef]
- Klouda, L. Thermoresponsive Hydrogels in Biomedical Applications: A Seven-Year Update. Eur. J. Pharm. Biopharm. 2015, 97, 338–349. [Google Scholar] [CrossRef]
- Fattahpour, S.; Shamanian, M.; Tavakoli, N.; Fathi, M.; Sadeghi-aliabadi, H.; Sheykhi, S.R.; Fesharaki, M.; Fattahpour, S. An Injectable Carboxymethyl Chitosan-Methylcellulose-Pluronic Hydrogel for the Encapsulation of Meloxicam Loaded Nanoparticles. Int. J. Biol. Macromol. 2020, 151, 220–229. [Google Scholar] [CrossRef]
- Tang, Y.-F.; Du, Y.-M.; Shi, X.-W.; Kennedy, J.F. Rheological Characterisation of a Novel Thermosensitive Chitosan/Poly (Vinyl Alcohol) Blend Hydrogel. Carbohydr. Polym. 2007, 67, 491–499. [Google Scholar] [CrossRef]
- Krieger, L. Acne Mask Could be Your New Go-to Zit Zapper; Johns. Johnson: New Brunswick, NJ, USA, 2016. [Google Scholar]
- Newsweek Amplify. Your Favorite Clarisonic Cleansing Brushes Are Back—Here’s Where to Buy Them Online. 2020. Available online: https://www.newsweek.com/amplify/your-favorite-clarisonic-cleansing-brushes-are-back-heres-where-buy-them-online (accessed on 27 February 2022).
- Fasanella, K.; Han, S. The Best Skin-Care Tools and Devices to Try at Home. Allure. 2020. Available online: https://www.allure.com/gallery/new-skin-care-tools-devices (accessed on 27 February 2022).
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A Step Forward on Sustainability in the Cosmetics Industry: A Review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Abrutyn, E.S. Deciphering Frizz Control Hair Care Formulas; Cosmetics & Toiletries: Carol Stream, IL, USA, 2013; Available online: https://www.cosmeticsandtoiletries.com/formulas-products/hair-care/blog/21837664/deciphering-frizz-control-hair-care-formulas (accessed on 2 May 2022).
- Pingali, S.; Benhur, A.M.; Amin, S. Engineering Rheological Response in Chitosan-Sophorolipid Systems through Controlled Interactions. Int. J. Cosmet. Sci. 2020, 42, 407–414. [Google Scholar] [CrossRef]
- Hwang, J.K.; Shin, H.H. Rheological Properties of Chitosan Solutions. Korea-Aust. Rheoogy J. 2000, 12, 175–179. [Google Scholar]
- Varum, K.M.; Ottoy, M.H.; Smidsrod, O. Water-Solubility of Partially N-Acetylated Chitosans as a Function of pH: Effect of Chemical Composition and Depolymerization. Carbohydr. Polym. 1994, 25, 65–70. [Google Scholar] [CrossRef]
- Szatkowski, T.; Kolodziejczak-Radzimska, A.; Zdarta, J.; Szwarc-Rzepka, K.; Paukszta, D.; Wysokowski, M.; Ehrlich, H.; Jesionowski, T. Synthesis and Characterization of Hydroxyapatite/Chitosan Composites. Physiochemical Probl. Miner. Process. 2015, 51, 575–585. [Google Scholar]
- Hossain, M.S.; Iqbal, A. Production and Characterization of Chitosan from Shrimp Waste. J. Bangladesh Agric. Eng. 2014, 12, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Rout, S.K. Physicochemical, Functional and Spectroscopic Analysis of Crawfish Chitin and Chitosan as Affected by Process Modification; LSU and Agricultural and Mechanical College: Baton Rouge, LA, USA, 2001. [Google Scholar]
- Mo, H.K.; Meyers, S.P. Utilization of Crawfish Processing Wastes as Carotenoids, Chitin, and Chitosan Sources. J. Korean Soc. Food Nutr. 1992, 21, 319–326. [Google Scholar]
- Tolamiate, A.; Debrieres, J.; Rhazi, M.; Alagui, M.; Vincendon, M.; Vottero, P. On the Influence of Deacetylation Process on the Physiochemical Characteristics of Chitosan from Squid Chitin. Polymer 2000, 41, 2463–2469. [Google Scholar] [CrossRef]
- Muzzarelli, R. Chitosan-Based Dietary Foods. Carbohydr. Polym. 1996, 29, 309–316. [Google Scholar] [CrossRef]
- Rimdusit, S.; Jingjid, S.; Damrongsakkul, S.; Tiptipakorn, S.; Takeichi, T. Biodegradability and Property Characterizations of Methyl Cellulose: Effect of Nanocompositing and Chemical Crosslinking. Carbohydr. Polym. 2008, 72, 444–455. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Silva, C.; Torres, M. Rheological Behaviour of Aqueous Methylcellulose Systems: Effect of Concentration, Temperature and Presence of Tragacanth. LWT 2017, 84, 764–770. [Google Scholar] [CrossRef]
- Clasen, C.; Kulicke, W.M. Determination of Viscoelastic and Rheology-Optical Material Functions of Water-Soluble Cellulose Derivates. Prog. Polym. Sci. 2001, 25, 1839–1919. [Google Scholar] [CrossRef]
- Chen, S.; Amin, S. Design of High Performance Curlin Mascara through Utilization of Smart Thermoresponsive Polymer. Int. J. Cosmet. Sci. 2020, 42, 557–563. [Google Scholar] [CrossRef]
- Silva, E.; Paula, A.; Silva, V.; Alvarenga, A.; Bertolucci, S. Biostimulating Effect of Chitosan and Acetic Acid on the Growth and Profile of the Essential Oil of Mentha arvensis L. Ind. Crops Prod. 2021, 171, 113987. [Google Scholar] [CrossRef]
- Mondal, M.I.H. Cellulose-Based Superabsorbent Hydrogels. Polym. Polym. Compos. Ref. Ser. 2019. [Google Scholar] [CrossRef]
- Mucha, M. Rheological Characteristics of Semi-Dilute Chitosan Solutions. Macromol. Chem. Phys. 1997, 198, 471–484. [Google Scholar] [CrossRef]
- Desbrières, J.; Hirrien, M.; Ross-Murphy, S.B. Thermogelation of Methylcellulose: Rheological Considerations. Polymer 2000, 41, 2451–2461. [Google Scholar] [CrossRef]
- Eskens, O.; Villani, G.; Amin, S. Rheological Investigation of Thermoresponsive Alginate-Methylcellulose Gels for Epidermal Growth Factor Formulation. Cosmetics 2020, 8, 3. [Google Scholar] [CrossRef]
- Speer, S.; Amin, S. Sustainable Thermoresponsive Whey Protein-and Chitosan-Based Oil-In-Water Emulsions for Cosmetic Applications. Int. J. Cosmet. Sci. 2021, 44, 30–41. [Google Scholar] [CrossRef]
- Argüelles-Monal, W.; Recillas-Mota, M.; Fernández-Quiroz, D. Chitosan-Based Thermosensitive Materials. Biol. Act. Appl. Mar. Polysacch. 2017. [Google Scholar] [CrossRef] [Green Version]
- Kienzle-Sterzer, C.A.; Rodriguez-Sanchez, D.; Rha, C.K. Flow Behavior of a Cationic Biopolymer: Chitosan. Polym. Bull. 1985, 13, 1–6. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Y.; Wang, Q. Cellulose Acetate for Shape Memory Polymer: Natural, Simple, High Performance, and Recyclable. Adv. Polym. Technol. 2018, 37, 869–877. [Google Scholar] [CrossRef]
- Hoogenboom, R. Temperature-Responsive Polymers: Properties, Synthesis, and Applications. Smart Polym. Appl. 2014. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Y.; Chen, S.; Luo, H.; Lu, J. Conditioning Agent and a Method for Making Hair Having a Shape Memory Effect. U.S. Patent No. 8,349,299, 8 January 2013. [Google Scholar]
- Thao, N.T.; Wijerathna, H.; Kumar, R.S.; Saravana; Choi, D.; Dananjaya, S.; Attanayake, A.P. Preparation and Characterization of Succinyl Chitosan and Succinyl Chitosan Nanoparticle Film: In Vitro and In Vivo Evaluation of Wound Healing activity. Int. J. Biol. Macromol. 2021, 193, 1823–1834. [Google Scholar] [CrossRef]
- Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-Solubility of Chitosan and its Antimicrobial Activity. Carbohydr. Polym. 2006, 63, 367–374. [Google Scholar] [CrossRef]
- Kumar, R.; Xavier, K.M.; Lekshmi, M.; Balange, A.; Gudipati, V. Fortification of Extruded Snacks with Chitosan: Effects on Techno Functional and Sensory Quality. Carbohydr. Polym. 2018, 194, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Hekiem, N.L.L.; Ralib, A.A.M.; Hatta, M.A.M.; Ahmad, F.B.; Nordin, A.N.; Ab Rahim, R.; Za’Bah, N.F. Effect of Chitosan Dissolved in Different Acetic Acid Concentration towards VOC Sensing Performance of Quartz Crystal Microbalance Overlay with Chitosan. Mater. Lett. 2021, 291, 129524. [Google Scholar] [CrossRef]
- Usmani, M.; Khan, I.; Haque, A.; Bhat, A.; Mondal, D.; Gazal, U. Biomass-Based Composites from Different Sources: Properties, Characterization, and Transforming Biomass with Ionic Liquids. Compos. Sci. Eng. 2017, 1, 45–76. [Google Scholar]
Sample Number | Chitosan Concentration (%) | Methylcellulose Concentration (%) |
---|---|---|
1 | 0.25 | 0 |
2 | 0.25 | 0.10 |
3 | 0.25 | 0.50 |
4 | 0.25 | 1.00 |
5 | 0.25 | 2.75 |
6 | 0 | 1.00 |
7 | 0.25 | 1.00 |
8 | 0.50 | 1.00 |
9 | 0.75 | 1.00 |
10 | 1.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartson, M.; Coyle, C.; Amin, S. Methylcellulose-Chitosan Smart Gels for Hairstyling. Cosmetics 2022, 9, 69. https://doi.org/10.3390/cosmetics9040069
Hartson M, Coyle C, Amin S. Methylcellulose-Chitosan Smart Gels for Hairstyling. Cosmetics. 2022; 9(4):69. https://doi.org/10.3390/cosmetics9040069
Chicago/Turabian StyleHartson, Meghan, Ciara Coyle, and Samiul Amin. 2022. "Methylcellulose-Chitosan Smart Gels for Hairstyling" Cosmetics 9, no. 4: 69. https://doi.org/10.3390/cosmetics9040069
APA StyleHartson, M., Coyle, C., & Amin, S. (2022). Methylcellulose-Chitosan Smart Gels for Hairstyling. Cosmetics, 9(4), 69. https://doi.org/10.3390/cosmetics9040069