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Abstract: The system of a greenhouse is required to ensure a suitable environment for crops growth.
In China, the Chinese solar greenhouse plays a crucial role in maintaining a proper microclimate
environment. However, the greenhouse system is described with complex dynamic characteris-
tics, such as multi-disturbance, parameter uncertainty, and strong nonlinearity. It is difficult for
the conventional control method to deal with the above problems. To address these problems, a
dynamic model of Chinese solar greenhouses was developed based on energy conservation laws,
and a nonlinear adaptive control strategy combined with a Radial Basis Function neural network
was presented to deal with temperature control. In this approach, nonlinear adaptive controller
parameters were determined through the generalized minimum variance laws, while unmodeled
dynamics were estimated by a Radial Basis Function neural network. The control strategy consisted
of a linear adaptive controller, a neural network nonlinear adaptive controller, and a switching
mechanism. The research results show that the mean errors were 0.8460 and 0.2967, corresponding to
a conventional PID method and the presented nonlinear adaptive scheme, respectively. The standard
errors of the conventional PID method and the nonlinear adaptive control strategy were 1.8480 and
1.3342, respectively. The experimental results fully prove that the presented control scheme achieves
better control performance, which meets the actual requirements.

Keywords: Chinese solar greenhouse; temperature control; nonlinear adaptive control; radial basis
function neural network

1. Introduction

A greenhouse is devised to create a more favorable climate, such as enough solar
radiation, adequate temperatures, and suitable humidity, to protect plants and promote
the growth of crops [1–3]. Chinese solar greenhouses (CSGs) produce a significant annual
output, which has large economic and social benefits in China. Therefore, considerable
attention has been given to the CSG in order to provide a proper environment for crop
growth. However, in Northeast China, the average temperatures are very low, even falling
to below −10 ◦C, and the cold season generally lasts for four months due to the high
latitude in some areas [4]. Such arctic weather seriously affects normal production and
brings great loss to the economic benefits [5]. Therefore, the structure of the CSG is different
from other countries due to the variability of weather in Northeast China, which usually
consists of a south roof, a north roof, a north wall and a thermal blanket for supplying
pollution-free and high-quality vegetables even during the winter.

A great many modeling methods for greenhouses have already been proposed such
as mechanism, transfer function and black-box modeling [6]. The Takagi-Sugeno fuzzy
model was developed according to the historical data of greenhouses [7]. A modeling
approach was built using the data collected from an actual greenhouse under closed-
loop control [8]. Online identification technology was adopted to obtain a more accurate
greenhouse model [9]. A stochastic dynamic model based on parameter identification was
proposed through the maximum likelihood estimation method [10]. It should be noted that
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dynamic models of greenhouses in different areas have differences owing to construction
and covering materials, which directly affect the internal environmental conditions, such
as temperature and relative humidity. Therefore, the dynamic model of the CSG is different
from other greenhouse because of its special structure.

The inside temperature is a significant factor in restricting greenhouse production in
Northeast China [11]. In this situation, the CSG must maintain a certain indoor temperature
level to meet the needs of crop growth. Furthermore, determining automatic control
strategies is the leading goal for obtaining higher-quantity greenhouse crops. A classical
feedback controller, such as the PID control method [12], has been widely used in various
fields. However, the control of inside temperatures has generally confronted a series of
difficulties in applying the classical feedback control strategy due to its inherent stochastic
complexity properties as follows:

(1) The greenhouse is considered a nonlinear dynamic system with intensive multi-
disturbance from surroundings, such as global radiation, humidity, and outside air
temperature [13,14];

(2) The control process is severely influenced by instable factors including global radia-
tion, external weather, and human activities;

(3) The crops and the environment have a strong and interactive relationship [15]. For
example, the plants transpiration and photosynthesis similarly affect the greenhouse
temperature that they depend on.

During recent years, many scholars have proposed advanced control strategies, such
as adaptive control [16,17], feedforward control [18,19], optimal control [20,21], fuzzy
control [22,23], robust control [24,25], and so on. These control methods can ensure the
inside temperature near the temperature set point in certain conditions. However„ the
problems caused by the instable factors and multi-disturbances are still difficult to deal
with. Furthermore, most of these climate control strategies are difficult to carry out in
greenhouse production due to the theoretical complex.

Deterministic artificial intelligence can deal with deterministic self-awareness state-
ments based on either the physics of the underlying problem or system identification to
establish governing deferential equations [26]. Furthermore, stochastic artificial intelli-
gence, such as neural network technologies, can be expressed in stochastic algorithms
in the face of stochastic disturbances. Adaptive controller design of a nonlinear system
with discrete-time characteristics was studied using neural networks [27]. The stochastic
neural adaptive tracking control problem of an indeterminate switched nonlinear system
with a non-strict feedback characteristic was investigated in [28]. The adaptive neural
network control scheme was presented to solve the accurate and robust control problem
of nonlinear systems with unknown dynamics [29]. The adaptive neural network con-
troller, based on the technique of backstepping, was proposed for the consensus tracking
control problem [30]. A nonlinear adaptive decoupling switching control strategy using
neural networks was studied to improve the closed-loop performance and evaporation
efficiency [31].

The above considerations motivated our study. In particular, inspired by the modeling
method and control method in [32–34], this paper starts with the development of a dynamic
model of the CSG and proposes a nonlinear adaptive control scheme based on Radial Basis
Function (RBF) neural networks to solve temperature control for the CSG system. The
main contributions of this paper are summarized as follows:

(1) In order to make the dynamic model more accurate and closer to the actual system,
heat transfer quantities of the north wall and north roof were respectively added to
the dynamic model in this paper. In addition, the cold air penetration was added to
the humidity balance model;

(2) To the best of our knowledge, almost no research so far has addressed the fact that the
existing control scheme based on RBF has been applied to the CSG considering the
nonlinearity and adaptiveness. This control approach takes advantage of the strong
ability of learning and adaptability of RBF neural networks. In this paper, a linear
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adaptive controller, a neural network nonlinear adaptive controller, and switching
mechanism were combined to improve dynamic performance on the promise of
guaranteeing system stability. The parameters of the controller were determined
based on the generalized minimum variance control law. An RBF neural network
was employed to solve the unmodeled dynamics of CSGs. The experimental results
express that the presented control strategy shows quick set-point tracking ability in
the case of multi-disturbances and can achieve satisfactory control performances.

2. Materials and Methods
2.1. CSG Facility

The research on modeling and control was performed in an experimental greenhouse
located at Shenyang Agricultural University in Liaoning Province (41.48◦ N, 123.24◦ E,
and 42 m a.s.l. (above sea level)). The CSG architecture schematic is shown in Figure 1.
The greenhouse was 60 m long and 12 m wide. The heights of the north wall and north
roof were 3 m and 5.5 m, respectively. The north wall was a 0.6 m thick layered structure
consisting of brick, insulation polystyrene foam, and air layer. The cover of the south roof
was made of a 0.00012 m thick polyvinyl chloride film, and a 0.02 m thick cotton blanket
was used for thermal insulation at night.
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Figure 1. Architecture schematic of the (a) inside, and (b) outside of a CSG.

For measurement of the ambient parameters, different sensors were installed in
the experimental greenhouse. The type of temperature and humidity sensor used was
the SHT10 (Sensirion, Zurich, Switzerland), which can measure the temperature and
humidity simultaneously. Eighteen sensors were installed in the experimental greenhouse.
A distribution diagram of environmental sensors is shown in Figure 2. The locations of
sensors were installed every 18 m and two sets of sensors were installed at each location.
The sensors were placed horizontally at different heights above the ground (1.5, 3, and
4.5 m). The mean of the temperature and humidity recorded by the eighteen installed
sensors was considered as the temperature inside the greenhouse. The inside solar radiation
and outside solar radiation were measured by a pyranometer (MP200, Apogee Instruments,
Logan, UT, USA). The outside temperature, outside humidity, and the direction and velocity
of the wind were collected from an outer weather station. The sample interval of parameters
was 5 s and the mean of every 900 s was recorded for all variables.
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The Shenyang district (in Northeast China) is classified as a monsoon climate, and
has a wide temperature range. Influenced by the monsoon, winters are long, lasting
nearly five months. Solar radiation is able to provide part of the heat for plant growth.
However, during the night or bad weather such as snow with insufficient light intensity,
the greenhouse plays a crucial role in maintaining an appropriate temperature in order
to prevent the plants from damage, which would markedly decrease their production
rate. Therefore, it is common to regulate the temperature in these areas during the winter,
especially for value-added crops, such as strawberry or mushroom.
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Figure 3. Schematic diagram of energy balance of experimental greenhouse. (Note: 1. the greenhouse
blanket; 2. the north roof; 3. the north wall; 4. the soil; 5. the greenhouse frame; 6. crops).

In the heat model of Equation (1), where ρ is the air density, CP is air specific heat
capacity, h is the height of the greenhouse, Qrad (W/m2) is the intercepted solar radiant
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energy, Qheat(W/m2) is the heat provided by the greenhouse heaters, Qc(W/m2) is the heat
transferred from the envelope between the outside and the inside, Qr(W/m2) is the heat
absorbed by the crops through transpiration, Qn(W/m2) is the sensible heat transferred
from inside air to crops, Qs (W/m2) is the heat transferred from inside air to the soil in the
greenhouse, Qw(W/m2) is the sensible heat transferred from the north wall to indoor air,
and Qm(W/m2) is the sensible heat transferred from north roof to inside air.

In the humidity model of Equation (1), where E is the transpiration rate of crops in
g·m−2·s−1, C is the water vapor condensation caused by the indoor and outdoor tempera-
ture difference in g·m−2·s−1, φa is the humidity taken away by the cold air penetrating the
greenhouses in g·m−2·s−1 and φe is the water condensation or evaporation when heating
system is activated in g·m−2·s−1.

According to the well-known Penman–Monteith formula, Qr can be circulated by [37]:

Qr = Cl Rn +

(
esβ

γ

)
Tin −

(
hl P

8.036γ

)
Hin (2)

where Cl is the convective heat loss coefficient from indoor air to the cover, Rn is the net
radiative exchange between the canopy and the environment, es is the air saturation vapor
pressure, β is the influence coefficient of temperature change on saturated water vapor
pressure, γ is the psychrometric constant, hl is the heat transfer constant between crops and
inside air, and P is the standard atmospheric pressure. Hin indicates the absolute humidity
of the indoor air.

Solar radiation, a significant factor affecting the indoor temperature, is defined as [38]:

Qrad =
c1τSout AgrsinIo

Va
(3)

where c1 is the aging coefficient of lighting material, τ is the greenhouse global transmission,
Sout is the solar radiation, Agr is surface area of greenhouse which absorbs solar radiation,
sinIo is the incidence angle of sunlight, and Va is the volume of the greenhouse.

In this study, the air heating adopted by heating equipment, the energy provided by
which is calculated as [39]:

Qheat =
ηQP
Agr

(4)

where η is the energy efficiency of heaters and QP is the energy power of the heating
equipment in W/m2.

Qc can be expressed as follows [40]:

Qc = hC(tin − tout)

(
Asu

Agr

)
(5)

where tin and tout are the inside and outside temperatures in °C, respectively. Asu is the
superficial area of cover materials. The conversion relation between t and T is as follows:

t = T − 273.15 (6)

The overall energy loss coefficient hc, increasing with wind speed vout, is defined as
the formula [38]:

hc = A + Bvout (7)

Single-layer and double-layer covering materials are different. Generally, CSGs use a
single-layer covering material. In this paper, the values of A and B were 6 and 0.5, respectively.

In this paper, the heat transfer into the greenhouse environment was also considered.
In Equation (1), Qn and Qs are calculated as follows [13]:

Qn = (Tin − Tl)ρCP/ra (8)
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Qs = (Tin − Ts)ρCP/ra (9)

where: Ts is soil surface temperature and Tl represents the leaf temperature of crops.
Under existing conditions in the CSG, this paper calculated the aerodynamic resistance

of soil by means of following formula [37]:

ra = 305(D/vin)
0.5 (10)

where: D is the leaf width and vin is indoor wind speed.
Heat transfer quantity Qw is calculated as follows:

Qw = Awαw(Tin − Tw) (11)

where: Aw is the north wall area, Tw represents the north wall temperature and αw is the
convective heat transfer coefficient between the north wall and the inside air.

Heat transfer quantity Qm is calculated as follows:

Qm = Ahαh(Tin − Th) (12)

in which Ah is the area of the north roof, Th represents the north roof temperature and αh
is the convective heat transfer coefficient between the north roof and the inside air.

E =
Cl Rn + (esβ/γ)Tin − (hl P/8.036γ)Hin

λ
(13)

where λ is latent heat of evaporation.

C = 0.00164
(

Ar/Agr
)(

T′in − T′r
)1/3

(Hin − Hs,r) (14)

in which, Ar is the greenhouse covering the area in m2 and T′in is the virtual temperature
of indoor air. Equation (15) is the formula of T′in and T′r , where ea represents the actual
water vapor pressure of indoor air.

T′ = T(1 + 0.378ea/P) (15)

where the absolute humidity of air saturated water under the plastic covering film Hs,r is
defined by:

Hs,r = 2165ea/P (16)

In Equation (1), φe and φa are calculated as follows [41]:

φe =

(
ηArhP
Agrλ

)
QP (17)

φa = ψa(Hin − Hout) (18)

Due to geographical factors, winter in Northeast China is cold and dry with strong
winds. This cold wind is an important factor affecting greenhouse humidity. Therefore,
cold air penetration was added to the humidity balance model. The calculation equation is
shown in Equation (19):

ψa =
εVa

3600
(19)

Cold air infiltration, ψa, is greatly influenced by outdoor wind speed, and ε represents
the cold air infiltration coefficient, the value of which is different with the outdoor wind
speed and generally lies between 0.2 and 0.5.

Equations (2)–(12) were substituted into Equation (1) to obtain the temperature dy-
namic model of the system, which is shown in Equation (20). Equations (13)–(19) were
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substituted into Equation (1) to acquire the humidity dynamic model of the system, which
is shown in Equation (21). The model parameters are provided in Appendix A in Table A1.

The dynamic model of CSG shows that the model parameters, such as global radiation,
outside wind speed, and outside air temperature, reflect stochastic properties. Therefore,
the CSG system is a complex system characterized by uncertain parameters. Moreover, the
process of CSG is a nonlinear system because dynamic models contain nonlinear items.

.
Tin(t) =

[
− hc Asu

AgrρCPh −
2

305
(

D
vin

)0.5
h
− Ahαh

ρCPh −
Awαw
ρCPh −

es β
ρCPhr

]
Tin(t) +

hl P
8.036γρCPh Hin(t)+

12η
AgrρCPh u(t) + 273.15

AgrρCPh +
c1τSout AgrsinI0

Vaρcph + Tl
305(D/vin)

0.5h
+ hctout Asu

AgrρCPh + Ts
305(D/vin)

0.5h

+ Th Ahαh
ρCPh + Tw Awαw

ρCPh −
Cl Rn
ρCPh

(20)

.
Hin(t) =

es β
rλh Tin(t)−

(
hl P

8.036γλh + φa
h

)
Hin(t)−

ηArhP
Agrλh u(t) + φa

h + Cl Rn
λh

+ 0.00164Ar(1+0.378ea/P)1/3

Agrh (Tin(t)− Tr)
1/3
[

2165ea
Tin(t)+273.15 − Hin(t)

] (21)

where the system state variable can be selected as:

x(t) = [x1(t), x2(t)]
T = [Tin Hin]

T

The input variables are expressed as follows:

u(t) = QP

The output variables are obtained as:

y(t) =
[

y1(t) y2(t)
]T

= Cx(t) =
[

1 0
0 0

][
x1(t)
x2(t)

]
3. Nonlinear Adaptive Control Based on Switching Mechanism
3.1. Controller Design Model

The dynamic model of a northern greenhouse is shown in Equations (20) and (21).
The north solar greenhouse model can be re-expressed as:

.
x1(t) = −a0x1(t) + a1x2(t) + a2u(t) (22)

.
x2(t) = a3x1(t)− a4x2(t)− a5u(t) + a6(x1(t)− 10)1/3

(
8053.8

x1(t) + 273.15
− x2(t)

)
(23)

where,

a0 = hc Asu
AgrρCPh + 2

305h/(D/vin)
0.5 +

Ahαh
ρCPh + Awαw

ρCPh + es β
ρCPhγ

a1 = hl P
8.036γρCPh , a2 = 12η

AgrρCPh , a3 = es β
rλh , a4 = hl P

8.036γλh + εVa
3600h ,

a5 =
ηArhp
Agrλh and a6 = 0.00164Ar(1+0.378ea/P)1/3

Agrh .

In this paper, first order Taylor expansion was used to approximate the derivative of
x1 and x2 by discarding the high order error items. The following discrete-time system can
approximate the dynamic properties of the continuous greenhouse system.

x1(t + 1) = x1(t) +
.
x1(t)T (24)

x2(t + 1) = x2(t) +
.
x2(t)T (25)

y(t) = x1(t) +ω(t) (26)
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where T is the sampling period. x1(t), x2(t) represent corresponding state variables at
sampling instants of the continuous system. ω(t) is the measurement noise.

Substituting Equation (22) into Equation (24), we obtain:

x2(t) =
x1(t+1)−x1(t)

a1T + a0x1(t)−a2u(t)
a1

, f1(y(t + 1), y(t), u(t))
(27)

Thus,

x2(t− 1) = x1(t)−x1(t−1)
a1T + a0x1(t−1)−a2u(t−1)

a1

, f1(y(t), y(t− 1), u(t− 1))
(28)

Furthermore, noticing Equations (23), (25) and (28), we obtain:

x2(t) = x2(t− 1) +
.
x2(t− 1)T = f1(x1(t), x1(t− 1), u(t− 1)) + {a3x1(t− 1)

−a4x2(t− 1)− a5u(t− 1)− a6(x1(t− 1)− 10)1/3
[

8053.8
x1(t−1)+273.15 − x2(t− 1)

]}
T

, f2(y(t), y(t− 1), u(t− 1))

(29)

Noticing Equations (24) and (26), we obtain:

y(t + 1) = x1(t + 1) = x1(t) +
.
x1(t)T = x1(t) + (−a0x1(t)

+a1 f2(y(t), y(t− 1), u(t− 1)) + a2u(t))T

, f3(y(t), y(t− 1), u(t), u(t− 1))

(30)

Applying a similar approach in [42], the greenhouse dynamical model can be decom-
posed into a linear model incorporating a nonlinear term nearby the operating point, which
can be expressed in the following formulation:

A
(

z−1
)

y(t) = B
(

z−1
)

u(t− 1) + v(t− 1) (31)

where A
(
z−1) = 1 + az−1, B

(
z−1) = 1 + bz−1. a and b are polynomials about z−1. na

and nb are the system orders. v[x(t)] = v[y(t), . . . , y(t− na + 1), u(t), . . . , u(t− nb)] is the
higher order nonlinear item.

3.2. Nonlinear Controller

Before introducing the nonlinear controller, a linear controller was first introduced
based on generalized minimum variance. The control object can be obtained as follows:

A
(

z−1
)

y(t) = B
(

z−1
)

u(t− 1) + ω(t− 1) (32)

The generalized minimum variance performance index was introduced in the follow-
ing function:

J = ‖y(t + 1)−M
(

z−1
)

w(t) + Q
(

z−1
)

u(t)‖2 (33)

where M
(
z−1) and Q

(
z−1) are polynomial about z−1.

The Diophantine equation was introduced as follows:

1 = FA
(

z−1
)
+ z−1D

(
z−1
)

(34)

where F is a constant. D
(
z−1) is diagonal polynomial matrix.

Substituting Equation (34) into Equation (32) yields:

y(t + 1) = D
(

z−1
)

y(t) + FB
(

z−1
)

u(t) + Fω(t) (35)
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Substituting Equation (35) into Equation (33), the generalized minimum variance
linear controller can be expressed as follows:[

FB
(

z−1
)
+ Q

(
z−1
)]

u(t) = M
(

z−1
)

w(t)− D
(

z−1
)

y(t)− Fω(t) (36)

where H
(
z−1) = FB

(
z−1)+ Q

(
z−1). The linear feedback controller based on generalized

minimum variance is shown in Figure 4.
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However, the linear feedback controller could not meet the actual control require-
ments when applying it to the complex nonlinear system. In order to control complex
dynamic systems better, a nonlinear controller based on generalized minimum variance
was constructed in this paper.

In order to effectively control the nonlinear plant (31), the nonlinear controller can be
expressed as follows:

u(t) = L−1
(

z−1
)[

M
(

z−1
)

w(t)− D
(

z−1
)

y(t)− K
(

z−1
)

v(t)
]

(37)

where M
(
z−1), L

(
z−1) and D

(
z−1) are diagonal polynomial matrices. K

(
z−1), which is

a polynomial matrix about z−1, is used to eliminate the effect of the nonlinear term v(t),
L
(
z−1) = 1− z−1. w(t) is defined as bounded reference input.

Substituting Equation (37) into Equation (31) yields:

[
L
(

z−1
)

A
(

z−1
)
+ z−1B

(
z−1
)

D
(

z−1
)]

y(t + 1) = B
(

z−1
)

M
(

z−1
)

w(t) +
[

L
(

z−1
)
− B

(
z−1
)

K
(

z−1
)]

v(t) (38)

where
[
L
(
z−1)A

(
z−1)+ z−1B

(
z−1)D(z−1)], B(z−1)M(z−1), and [L

(
z−1)− B

(
z−1)K(z−1)]

are diagonal matrices.
The influence of

[
L
(
z−1)− B

(
z−1)K(z−1)]v(t) can be removed by making an ade-

quate selection of K
(
z−1), which implies the influence of nonlinear term v(t).

According to Equation (38), the closed-loop characteristic polynomial of the system is
as follows:

T
(

z−1
)
= L

(
z−1
)

A
(

z−1
)
+ z−1B

(
z−1
)

D
(

z−1
)

(39)

According to Equation (38), in order to eliminate the effect of nonlinear term, K
(
z−1)

was chosen to satisfy the following Equation:

L
(

z−1
)
= B

(
z−1
)

K
(

z−1
)

(40)

The nonlinear control strategy can be seen in Figure 5.
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3.3. Parameters Selection

In order to identify parameters of the controller (37), the following cost function
was introduced:

ψ = ‖y(t + 1)−M
(

z−1
)

w(t) + Q
(

z−1
)

u(t) + K
(

z−1
)

v(t)‖2 (41)

where M
(
z−1), Q

(
z−1), K

(
z−1) are polynomial about z−1.

The following Diophantine equation was introduced:

1 = FA
(

z−1
)
+ z−1D

(
z−1
)

(42)

Substituting Equation (42) into Equation (31) yields:

y(t + 1) = D
(

z−1
)

y(t) + FB
(

z−1
)

u(t) + Fv(t) (43)

Substituting Equation (43) into Equation (41), if the performance index is ψ = 0, the
generalized minimum variance controller can be obtained as follows:[

FB
(

z−1
)
+ Q

(
z−1
)]

u(t) = M
(

z−1
)

w(t)− D
(

z−1
)

y(t)−
[

F + K
(

z−1
)]

v(t) (44)

A constant λ is introduced, we selected λ which satisfied the performance index of
Equation (41).

M
(

z−1
)
= λ−1M

(
z−1
)

(45)

Q
(

z−1
)
= λ−1L

(
z−1
)
− FB

(
z−1
)

(46)

K
(

z−1
)
= λ−1L

(
z−1
)

B−1
(

z−1
)
− F (47)

det
{

L
(

z−1
)

A
(

z−1
)
+ z−1λB

(
z−1
)

D
(

z−1
)}
6= 0, |z| < 1 (48)

3.4. Adaptive Switching Control

The parameters of the greenhouse model always vary as the external environment
changes. These situations directly lead to the occurrence of parameter uncertainties.
Therefore, it is necessary to update model parameters of CSG in real time. According
to Equation (37), the following formula is given to identify the system parameters: y(t) =
θTX(t− 1) + v(t− 1), where X(t− 1) = [y(t− 1), . . . , y(t− na), u(t− 1), u(t− nb − 1)],
θ =

[
−a1, . . . ,−an, b0, . . . , bnb

]
.
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To predict the output of the system, two estimation models were introduced in this
paper. The first one was the linear estimation model:

ŷ1(t) = θ̂T
1 (t− 1)X(t− 1) (49)

where θ can be approximated as θ̂T
1 (t− 1) at instant t − 1 and the parameter θ can be

determined through the algorithm as follows:

θ̂1(t) = θ̂1(t− 1) +
µ1(t)X(t− 1)eT

1 (t)

1 + X(t− 1)TX(t− 1)
(50)

µ1(t) =
{

1 i f ‖e1(t)‖ > 44
0 else

(51)

where 4 > 0 is the upper bound of the nonlinear term v(t− 1). The linear model error
e1(t) is defined as follows:

e1(t) = y(t)− ŷ1(t) = y(t)− θ̂T
1 (t− 1)X(t− 1) (52)

The neural network nonlinear estimation model, written in the following algorithm,
is the second model.

ŷ2(t) = θ̂T
2 (t− 1)X(t− 1) + v̂(t− 1) (53)

where v̂(t− 1) is approximated through RBF neural networks and θ̂T
2 (t− 1) is the second

approximation of θ at instant t− 1. The algorithm was employed to identify the parameter
as follows:

θ̂2(t) = θ̂2(t− 1) +
β(t)X(t− 1)eT

2 (t)

1 + X(t− 1)TX(t− 1)
(54)

β(t) =
{

1 i f ‖e2(t)‖ > 4ξ
0 else

(55)

where |v(t− 1)− v̂(t− 1) ≤ ξ|, ξ < 0 is a pre-specified small positive number and e2(t) is
the nonlinear model error, i.e.:

e2(t) = y(t)− ŷ2(t) = y(t)− θ̂T
2 (t− 1)X(t− 1)− v̂(t− 1) (56)

Without considering nonlinear term v̂(t− 1), the linear adaptive control law based on
the linear estimation model can be expressed in the following Equation:

L
(

z−1
)

u(t) = M̂
t
1w(t)− D̂

t
1y(t) (57)

From Equation (31), the nonlinear adaptive control law based on the RBF neural
network nonlinear estimation model is expressed as follows and the structure is shown in
Figure 6.

L
(

z−1
)

u(t) = M̂
t
2

(
z−1
)

w(t)− D̂
t
2

(
z−1
)

y(t)− K̂
t
2

(
z−1
)

v̂(t) (58)
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Figure 6. Nonlinear adaptive controller structure.

To ensure the stability of the close-loop system, the linear adaptive controller was
adopted in this paper. However, the strong nonlinear system showed poor performance
if a nonlinear item v̂(t− 1) was larger when using a linear adaptive controller alone. The
nonlinear adaptive controller can decrease the effect of a nonlinear term on system output.
However, the nonlinear adaptive controller has an aggressive control effect and stability of
the close-loop system cannot be guaranteed. In this paper, a switching mechanism was
introduced to enhance performance of the control system and guarantee stability for the
closed-loop system, which is shown in Figure 7. The switching criterion is defined as:

Ji(t) = ∑t
l=1

µi(l)
(
‖ei(l)‖2 − 16∆2

)
4
(

1 + X(l − 1)TX(l − 1)
) + α ∑t

l=t−N+1(1− µi(l))‖ei(l)‖2 (i = 1.2) (59)

µi(t) =
{

1 i f ‖ei(t)‖ > 4∆
0 else

(60)

where N is an integer and α ≥ 0 is a predefined constant, i = 1 denotes the linear
model, and i = 2 stands for the nonlinear models. Each time, t, the nonlinear estimation
model, and the linear model predicted the system output, and model parameters were
automatically updated by the identified algorithm. Meanwhile, J1(t) and J2(t) were
calculated respectively and the control law u∗(t) was selected corresponding to the smaller
J∗(t) to control the system.
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3.5. RBF Neural Network for Unmodeled Dynamics

As we all know, neural networks are capable of approaching a complicated nonlinear
mapping sufficiently owing to the rich connections and nonlinear activating functions of
neurons [43]. In this research, an RBF network was employed to estimate and compensate
the unmodeled dynamics of the CSG system.

The RBF neural network was divided into three layers herein in this paper, the input
layer which connects the input vector to the network, the unique hidden layer, and the
output layer. The activation function of RBF neural network was the Gaussian function,
which can be expressed as [44]:

F(x) = exp

(
‖x− c‖2

2σ2

)
(61)

where x is the n-dimensional input vector and c is the center vector, which is the same as
the x-dimension, and σ is the width of the basis function around the center point.

In this paper, the output of the neural network input layer was v̂i[x(t)]. The input vec-
tor was x(t) = [y(t), . . . , y(t− na + 1), u(t), . . . , u(t− nb)], and the output layer network
nonlinear output was as follows:

v̂i[x(t)] =
q

∑
p=1

WpmFp(x) (62)

where, m = 1, 2, . . . , l and q is the number of nodes in the hidden layer, l is the number
of nodes in the output layer, Wpm is the connection weight between the neuron P in the
hidden layer and the neuron m in the output layer, and Fp(x) is the excitation function of
the neuron P in the hidden layer.

4. Results

In this part, two simulation experiments, being composed of a set-point tracking
experiment and a full-day real weather experiment, were conducted to test the performance
of the nonlinear adaptive control strategy.

4.1. Set-Point Tracking Experiment

The research was designed to prove the effectiveness of the control method for CSG in
terms of the tracking performance with strong multi-disturbances. There existed internal
conditions as follows: solar radiation Sout = 350 W/m2, outside air temperature tout = 5 ◦C,
outside humidity Hout = 16 g/m3, outside wind speed vout = 2 m/s, inside temperature
tin = 17 ◦C, and inside humidity Hin = 18 g/m3. After using the Euler method, the
initial design models were expressed around the nominal operating point as follows:
A
(
z−1) = 1− 1.992z−1 + 0.9851z−2, B

(
z−1) = 0.004321− 0.4223z−1, where the system

order was na = 2 and nb = 1. In this situation λ was chosen as 0.2 and the switching
criterion parameters were selected to be α = 1, N = 2, and ∆ = 0.015. The initial weights of
the RBF neural network were obtained by training the input and output data in a small
range of working points. The hidden layer was equal to 8 and the relevant parameters
were chosen to be q = 6, σ = 0.65, α = 0.05, and ηRBF = 0.3.

In order to research the tracking performance of the nonlinear adaptive controller, the
inside temperature set points were changed to a wide range. At the same time, the outside
weather conditions, such as outside temperature, outside wind speed, and outside solar
radiation fluctuated in a large scope. The experiment design was as follows. The inside
temperature was changed from 17 ◦C to 28 ◦C at t = 0–500 s. The effects of the external
disturbances were simulated in this process. The outside temperature was changed from
5 ◦C to −3 ◦C at t = 150 s. The solar radiation was changed from 350 W/m2 to 150 W/m2

at t = 350 s. The inside temperature was changed from 28 ◦C to 24 ◦C at t = 500 s and the
outside solar radiation simultaneously became zero. The outside wind speed was changed
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from 2 m/s to 6 m/s at t = 700 s and the outside temperature was changed from −3 ◦C to
−12 ◦C at t = 850 s. In the end, the inside temperature was changed from 24 ◦C to 19 ◦C at
t = 1000 s. The effect of the extreme outside temperature was simulated during this period.
The outside temperature was changed from −16 ◦C to −27 ◦C at t = 1200 s.

The set-point tracking research results are demonstrated in Figures 8 and 9. The inside
temperature quickly tracked the set point and the control method reduced the influence of
uncertain factors. Moreover, in the face of strong external disturbances such as stiff wind
and cold weather, the inside temperature still tracked the set point quickly.
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4.2. Full-Day Real Weather Experiment

In this test, we used experimental data from a full, cold day (26 January 2018) in
Shenyang, China. The environmental conditions (including inside temperature, outside
wind, outside humidity, outside temperature, and solar radiation) from 0:00 to 24:00
were collected every 15 min. Figures 10–14 express the inside temperature, wind speed,
outside humidity, outside temperature and solar radiation, respectively. It can be derived
from Figures 10–14 that the aforementioned model parameters show random properties.
Figure 10 shows that the inside temperature exceeded 15 ◦C from 9:30 to 16:00 on 26 January
2018, and at other times was below 15 ◦C, which was unfavorable for crop growth. We
determined the set point of the inside temperature according to the following rules. Firstly,
the set point was designed according to the current temperature of the greenhouse. The
air heater equipment shut off when the current temperature exceeded 20 ◦C. Secondly,
the set point of the temperature was adjusted by the energy management. The set point
gradually decreased to 15 ◦C with the reduction of outside solar radiation, which met the
minimum requirement for the crops. The set point curve of the temperature is shown in
Figure 10 (red line). The air heater equipment was turned on and off at 15:30 and 10:00,
respectively. The outside weather data were substituted into the dynamical model of the
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CSG during the experiment. The corresponding response for the set point of the inside
temperature is shown in Figure 15. The corresponding response of control input is shown
in Figure 16. The tracking error curves, corresponding to the conventional PID method
and the presented nonlinear adaptive scheme, are shown in Figures 17 and 18.
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Figure 17. Variation errors of conventional PID control during the experimental process.
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Figure 18. Variation errors of nonlinear adaptive control errors during the experimental process.

As indexes of the variable randomness, average error and standard error were selected
to measure the control performance of using a conventional PID method and an RBF
nonlinear adaptive scheme. Table 1 shows the consequence of using the conventional PID
method and the presented nonlinear adaptive strategy. The mean errors were 0.8460 and
0.2967, respectively. The standard errors were 1.8480 and 1.3342, respectively. Moreover,
as can be seen from Figures 17 and 18, the tracking error of temperature for the presented
nonlinear control scheme was smaller than the error of the conventional PID method.
By comparing the two methods, it can be seen that the presented nonlinear adaptive
control scheme showed better control performance, characterized by good adaptability and
preferable robustness. Compared to the conventional PID method, the proposed nonlinear
adaptive scheme has the following advantages. Firstly, the strategy improves set-point
tracking performance greatly and is more robust. Secondly, it has a better adaptability for
external climatic disturbance. Thirdly, it may give a meaningful reference to deal with the
complex greenhouse climate control problem.

Table 1. Performance Comparison between conventional PID control and nonlinear RBF adap-
tive control.

Methods
Temperature Error (◦C)

Corresponding Line Front
Mean Standard

Conventional PID 0.8460 1.8480 orange, dash-dot
Nonlinear adaptive

control 0.2967 1.3342 blue, solid

5. Conclusions

In this paper, the CSG has been described as a nonlinear, uncertain and multi-
disturbance dynamic system. A nonlinear dynamic model for CSGs, based on energy
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conservation laws, was constructed by equations, and the corresponding control model
was established. A nonlinear adaptive control strategy for CSG production, employing an
RBF neural network, was proposed. The main objective was to meet the normal require-
ments of temperature control for CSGs. Due to the great ability to deal with a non-minimum
phase system, a generalized minimum variance method was introduced to determine the
controllers’ parameters. Considering the strong learning capacity of the RBF neural net-
work, the RBF neural network was employed to estimate and compensate the unmodeled
dynamics of the system. The mean error and standard error for the conventional PID
method were 0.8460 and 1.8480, respectively. By contrast, the presented nonlinear control
strategy had great improvement with the result of 0.2967 and 1.3342, corresponding to the
mean and standard error. The control strategy was tested for complex greenhouse climate
control and the experiment results showed that the presented nonlinear adaptive control
method had great adaptability, robustness, and prominent real-time control performance.
A valuable reference can be provided by this control method to formulate climate control
schemes for practical application in greenhouse production.
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Appendix A

Table A1. Meanings of parameters of the greenhouse temperature model.

Parameter Meaning Value Range Unit

P standard atmospheric pressure 101 kPa
ρ air density 1.1691 kg/m3

CP the specific heat of air at constant pressure 1.003 -
es the air saturation vapor pressure 3.167 kPa
γ the psychrometric constant 66 Pa/◦C
λ latent heat of evaporation 2450 J/g
vout outside wind speed 0.2–12 m/s
Cl the coefficient of convective heat loss from indoor air to the cover (0.05–50) -
η heat energy efficiency of the heating equipment 0.85 -
Rn the net solar radiation absorbed by crops 100–350 W/m2

β
influence coefficient of temperature change on saturated water vapor

pressure 0.001 -

Hout outside humidity 6–29 g/m3

Aw north wall area 50 m2

tw north wall temperature 8–20 ◦C
αw convective heat transfer coefficient through north wall 5–25 -
hl the heat transfer constant between crops and inside air 13.3 -
D leaf width 0.15–0.25 m
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Table A1. Cont.

Parameter Meaning Value Range Unit

ε cold air permeability coefficient 0.2–0.5 m/s
τ the greenhouse global transmission 0.6 -
Agr surface area which absorbs solar radiation 392 m2

Asu the superficial area of the cover materials 615 m2

h the height of greenhouse 2.5 m
Ah the area of north roof 100 m2

th north roof temperature 8–25 ◦C
c1 the aging coefficient of lighting material 0.82 -
Sout solar radiation 100–500 W/m2

vin inside wind speed 0–0.3 m/s
ts soil surface temperature 6–25 ◦C
tl the leaf temperature of crops 6–20 ◦C
αh convective heat transfer coefficient through north roof 5–25 -
tout outside air temperature −30–8 ◦C
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