
electronics

Article

A Non-Interactive Attribute-Based Access Control Scheme by
Blockchain for IoT

Qiliang Yang 1,* , Mingrui Zhang 1, Yanwei Zhou 1 , Tao Wang 1 , Zhe Xia 2 and Bo Yang 1

����������
�������

Citation: Yang, Q.; Zhang, M.; Zhou,

Y.; Wang, T.; Xia, Z.; Yang, B. A

Non-Interactive Attribute-Based

Access Control Scheme by Blockchain

for IoT. Electronics 2021, 10, 1855.

https://doi.org/10.3390/

electronics10151855

Academic Editors: Hung-Yu Chien,

Chun-I Fan, Chunhua Su and

Pietro Manzoni

Received: 19 June 2021

Accepted: 30 July 2021

Published: 1 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science, Shaanxi Normal University, Xi’an 710119, China; zmrcrypto@163.com (M.Z.);
zyw@snnu.edu.cn (Y.Z.); water@snnu.edu.cn (T.W.); byang@snnu.edu.cn (B.Y.)

2 School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China;
xiazhe@whut.edu.cn

* Correspondence: yangqiliang@snnu.edu.cn

Abstract: As an important method of protecting data confidentiality in the Internet of Things (IoT),
access control has been widely concerned. Because attribute-based access control mechanisms are
dynamic, it is not only suitable to solve the dynamic access problem in IoT, but also to deal with the
dynamic caused by node movement and access data change. The traditional centralized attribute-
based access control mechanism has some problems: due to the large number of devices in IoT, the
central trusted entity may become the bottleneck of the whole system. Moreover, when a central
trusted entity is under distributed denial-of-service (DDoS) attack, the entire system may crash.
Blockchain is a good way to solve the above problems. Therefore, we developed a non-interactive,
attribute-based access control scheme that applies blockchain technology in IoT scenarios by using
PSI technology. In addition, the attributes of data user and data holder are hidden, which protects the
privacy of both parties’ attributes and access policy. Furthermore, the experimental results indicate
that our scheme has high efficiency.

Keywords: private set intersection; attribute-based access control; IoT; blockchain

1. Introduction

As the evolution of the Internet, the Internet of Things (IoT) [1] has been more and
more widely used in people’s lives. IoT generates a large amount of data, including
personal data. Once these privacies are disclosed, it will bring great losses to users. As one
of the important methods of data protection, access control mechanism can guarantee that
data is only accessed by users with permission, which has made access control mechanism
become an important research content in the security of IoT.

Attribute-based access control mechanism [2,3] is a dynamic access control model that
uses attributes as determinants of access control. Compared with the identity-based access
control mechanism, the attribute-based access control mechanism makes the attribute set be
easily combined with the access structure to achieve fine-grained access control. Attribute
sets can also easily represent the identities of certain groups of users, enabling one-to-many
communication. Therefore, attribute-based access control can not only solve the dynamic
access problem of nodes in the IoT, but also cope well with the dynamics caused by node
movement and access data changes.

In traditional access control models, there is a centralized decision-maker to make
access decisions based on access control policy and attribute information. Each access
request is directed to the same central trusted entity, which holds all the information and
makes all decisions based on the stored information. This approach has some drawbacks:
when there are many devices in IoT networks, a central trusted entity may become the
bottleneck of the entire system. Moreover, when a central trusted entity is under DDoS
attacks, the entire system may be disabled.
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Blockchain [4] is a good way to solve the above problems. Blockchain is well qualified
to become the trusted third party in the access control mechanism in the IoT scenario due
to its security, auditability, immutability, anonymity, and other characteristics. In terms of
storage capacity, the storage capacity of blockchain is not cheap because it can only add
blocks, not delete historical blocks, and as a distributed system, blockchain will keep the
same content on every complete node. With the continuous development of blockchain,
blockchain has evolved from a ledger database to a secure and trusted platform. The
Ethereum-based blockchain has a Turing-complete virtual machine that can execute smart
contracts for arbitrarily complex algorithms. Therefore, it is very practical to use smart
contracts in the access control mechanism of the IoT.

To sum up, we propose a non-interactive, attribute-based access control scheme by
blockchain for IoT. In our work, the data holder stores the data resources in the cloud server.
When a user wants to access the data resources, the user first sends their own attribute set
confidentially to the blockchain as a transaction. Subsequently, the smart contract of the
blockchain will run the private set intersection (PSI) protocol to automatically determine
whether the attribute set meets the access structure of the data holder. When the element
number of the intersection achieves the threshold set by the data holder, the user is given
access to the data holder’s cloud data. In our scheme, instead of interacting with data users
to verify that a data user is qualified, the data holder deploys their own access policy on
the blockchain, and a smart contract automatically determines whether a user is qualified
or not. By and large, our work can be summed up in three parts:

1. We developed a non-interactive, attribute-based access control scheme by blockchain
for IoT by using PSI technology. In addition, the attributes of data user and data
holder are hidden, which protects the privacy of both parties’ attributes and access
policy.

2. We provide complete security proof of our scheme.
3. We simulated our scheme under the Ethereum Truffle development framework and

provide an efficiency analysis.

The rest of our work is shown below. The related work and preliminaries are given in
Sections 2 and 3. In Sections 4 and 5, our system model and security model are introduced.
In Section 6, we provide our concrete access control scheme. The complete security analysis
is presented in Section 7. In Section 8, we present comparisons and performance analysis.
In the end, we provide a summary in Section 9.

2. Related Work

Traditional centralized attribute-based access control mechanisms have emerged one
after another. For example, Yuan et al. [5], in order to deal with the issues around the fact
that the access control models at that time were mostly static and coarse-grained, and thus
were not suitable for the dynamic and temporary network service-oriented environment
of information access, they proposed an attribute-based access control model, which was
depended on the attributes of subjects, environments, and so on. To protect data access
in the IoT, Hemdi et al. [6] developed an attribute-based access control mechanism. Their
system is able to apply policies to find unauthorized users. Ouechtati et al. [7] proposed an
access control system for IoT named Trust ABAC to deal with problems such as the limited
storage capacity of mobile devices in the IoT.

However, this type of centralized attribute-based access control mechanism has some
drawbacks: firstly, when there are many devices in IoT networks, a central trusted entity
may become the bottleneck of the entire system. Moreover, when a central trusted entity is
under DDoS attacks, the entire system may be disabled. To solve these problems, blockchain
technology has been extensively studied by many scholars and applied to access control
mechanisms [8–12].

Blockchain has the ability to technically force all participants to comply with the
integrity under the assumption that none of the participants are trustworthy, and it has
immutability and privacy protection. Thus, blockchain can become a trusted third platform
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in the access control for IoT. Some researchers focus on the reliable storage capacity of
blockchain. They make use of the characteristics of blockchain, such as immutability and
auditability, to provide a secure storage space. Dorri et al. [13] came up with an access
control scheme in which the access policies are stored on blockchain and the immutable
property of blockchain is used to generate a chronological and immutable transaction
history. Alansari et al. [14] used blockchain as a platform to store access policies and users’
attributes. The computation-intensive part is executed in Intel SGX, which is a secure
hardware external to the chain. Blockchain is only used as a trusted platform to prevent
data tampering.

In terms of storage capacity, since blockchain can only add blocks, it cannot delete
historical blocks. In addition, as a distributed system, blockchain stores the same content
on every full node, and thus the storage capacity of blockchain is not cheap. Therefore,
some scholars do not store data on blockchain, the blockchain only stores hashes pointing
to the data, and the blockchain is treated as a trusted platform for executable smart
contracts. For example, a blockchain-based data access control protocol was provided
by Rifi et al. [15] to address the issue of private personal data and sensitive medical data
being collected. They took advantage of the computing power of blockchain to maintain
authentication and communication between different nodes through three different types
of smart contracts, and the transaction data are kept in another database. Cruz et al. [16]
proposed a platform called RBAC-SC that leverages Ethereum’s smart contract technology
for the cross-organizational utilization of users. Zhang et al. [17] developed an access
control scheme using smart contract to implement access control in IoT scenarios. An
attribute-based access control scheme called TrustAccess was provided by Gao et al. [18] to
prevent access policy and attributes leakage.

Blockchain has now evolved from a ledger database to a secure and trusted platform.
The trusted computing power provided by blockchain is more valuable than the expensive
storage capacity. Therefore, when using blockchain storage, users should store access
control data, not data generated by IoT devices. In our proposed scheme, the blockchain
stores access policies and users’ attributes. The smart contract is applied to determine
whether an attribute of a data user meets the access structure of the data holder.

3. Background
3.1. Private Set Intersection (PSI)

Private Set Intersection protocol [19–22] can compute the intersection of two parties’
sets secretly, and the two parties know only the cardinality or elements of the intersection
and no other information.

3.2. Threshold Secret Sharing Scheme

In (S, T)—threshold secret sharing structure [23], let secret A be divided into T pieces,
each of which is held by one party, such that A can be reconstructed from pieces held by at
least S parties. In addition, these parties cannot obtain any information from pieces less
than S.

4. System Model

In this section, as shown in Figure 1, our system model is given. The model consists of
four parties, which are blockchain, cloud server, data user, and data holder.

(1) A data holder stores data in a cloud server.
(2) The data holder uploads access policy to blockchain as a transaction.
(3) If a user wants to obtain the data holder’s data, the user first sends their attributes

set and public key to blockchain as a transaction.
(4) The smart contract of blockchain runs PSI protocol to obtain cardinality of the

intersection. When the element number of the intersection reaches the threshold set by the
data holder, the user is allowed to access the data holder’s data.
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(5) The data holder uses the public key that belongs to the selected data user to encrypt
the data address or access token.

(6) The data holder sends the ciphertext to the data user.
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5. Security Model

We only assume that adversaries are semi-honest rather than malicious in our security
model. This is because if a data holder is malicious in our scenario, they may lie about
having some important data to attract users to access. Users will no longer trust the data
holder if they find that they have been cheated. The data holder will lose the opportunity
to service data users and earn service fees. If a data user is malicious in our scenario, they
may fake their own attributes to accommodate the data holder’s access structure. Since the
PSI protocol is used in our scheme, neither the data user nor the data holder knows which
attributes the other has.

In the security model, the adversary corrupts one of the parties. This party abides the
protocol directives but may learn more information than allowed after getting transcript
of messages. Security of a two-party computing protocol means that both parties do not
disclose their input, i.e., security is confidentiality.

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a function, R1(p, q) and R2(p, q) are
the first element and the second element of R(p, q), respectively. Let TPP be a two-party
protocol that computes R. VIEWTPP

1 (p, q) =
{

p, d1, n1
1, · · ·, nt

1
}

represents the view of
the data holder, where d1 is the random number generated by the data holder during
the execution of the protocol, and ni

1(i = 1, · · ·, t) represents the i message received by
the data holder. Similarly, VIEWTPP

2 (p, q) =
{

q, d2, n1
2, · · ·, nt

2
}

represents the view of
the data user. Let OUTPUTTPP

1 (p, q) and OUTPUTTPP
2 (p, q) be the outputs of the two

respective parties.
We say that TPP computes R securely if there exist probabilistic polynomial time

algorithms Sim1 and Sim2 such that

{(Sim1(p, R1(p, q)), R2(p, q))}p,q∈{0,1}∗
c≡
{

VIEWTPP
1 (p, q), OUTPUTTPP

2 (p, q)
}

p,q∈{0,1}∗
(1)

{(R1(p, q), Sim2(q, R2(p, q)))}p,q∈{0,1}∗
c≡
{

OUTPUTTPP
1 (p, q), VIEWTPP

2 (p, q)
}

p,q∈{0,1}∗
(2)
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where |p|=|q|, Sim1 and Sim2 are simulators. The symbol
c≡ represents computationally

indistinguishable.

6. Our Proposed Scheme

Let
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and makes T0 = gt0 ,

T1 = gt1 , · · ·, Tm = gtm public. Then, S0 = hg
q0
t0 , S1 = hg

q1
t1 , · · ·, Sm = hg

qm
tm are sent

to the smart contract of blockchain by the data holder.

(2) For each y ∈ Y, a data user chooses s randomly from
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(Tsy0

0 , Tsy1

1 , Tsy2

2 , · · ·, Tsym

m ) = (gst0y0
, gst1y1

, gst2y2
, · · ·, gstmym

) (4)

to blockchain.
(3) Then, the smart contract on blockchain computes

F = ∏m
i=0 Tsyi

i = gs∑m
i=0 tiyi

(5)

E = ∏m
i=0 e(hg

qi
ti , Tsyi

i )

= ∏m
i=0 e(hg

qi
ti , gstiyi

)

= ∏m
i=0 e(g, h)stiyi

e(g, g)sqiyi

= e(g, h)s∑m
i=0 tiyi

e(g, g)sQ(y)

= e(F, h)e(g, g)sQ(y)

(6)

If and only if y ∈ X, Q(y) = 0, E = e(F, h), then the smart contract outputs 1, which
means the y uploaded by the data user is in the data holder’s attributes set. Otherwise, the
smart contract outputs 0. In the above process, the smart contract only knows the number
of y that is in the data holder’s attributes set. Therefore, in our scheme, the privacy of the
access policy and the privacy of the attributes of both parties are protected.

• The function of h:

If there is no h in our scheme, S0 = g
q0
t0 , S1 = g

q1
t1 , · · ·, Sm = g

qm
tm . In this case, anyone

can tell if y ∈ X by checking that ∏m
i=0 e(Ti, Si)

yi
= ∏m

i=0 e(gti , g
qi
ti )

yi

= e(g, g)Q(y) = 1. If

the h is introduced into our scheme, we have ∏m
i=0 e(Ti, Si)

yi
= e(g, h)∑m

i=0 tiyi
e(g, g)Q(y).

Since ∑m
i=0 tiyi is a random polynomial, e(g, g)Q(y) is hidden by e(g, h)∑m

i=0 tiyi
.

• The function of s:

If there is no s, then for any y, anyone can figure out Ty
1 and compare it with the Ty

1

in Ty0

0 , Ty
1 , Ty2

2 , · · ·, Tym

m of the data user uploaded to the blockchain to determine whether
y ∈ Y.



Electronics 2021, 10, 1855 6 of 11

7. Security Analysis

(1) A data user is a semi-honest adversary:
The simulator Sim1, which simulates the data holder, is created as follows: X, |X ∩Y|,

and |Y| are taken as inputs, which means that the simulator Sim1 can obtain nothing except
the data holder’s input X and |X ∩Y| and |Y| obtained after the end of the protocol.

Moreover, Sim1 obtains public parameters T0 = gt0 , T1 = gt1 , · · ·, Tm = gtm , and S0 =

hg
q0
t0 , S1 = hg

q1
t1 , · · ·, Sm = hg

qm
tm . For ∀y ∈ Y, (Tsy0

0 , Tsy1

1 , Tsy2

2 , · · ·, Tsym

m ) = (gst0y0
, gst1y1

, gst2y2
,

· · ·, gstmym
) sent by the data user to blockchain can be simulated by Sim1. The following

procedure is performed |Y| times (X0 is initially set to be empty):

• If the smart contract outputs 1,
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1Sim . The following procedure is performed | |Y  times ( 0X  is initially set to be empty): 

• If the smart contract outputs 1, *
R qs ←  , 0\Rx X X← , computes and outputs 

0 1

0 1, , ,
msx sx sx

mT T T⋅ ⋅ ⋅  , 0 0 { }X X x=  . Because 0\x X X∈ , ( ) 0Q x = , 
0 1

0 1, , ,
msx sx sx

mT T T⋅ ⋅ ⋅
satisfies ( , )E e F h= . Moreover, due to the randomness of s , the tuple 

0 1

0 1, , ,
msx sx sx

mT T T⋅ ⋅ ⋅ is indistinguishable from the tuple of the data user sent to blockchain in 
the real experiment. 

• If the smart contract outputs 0, \x G X∈ , compute 
0 1

0 1, , ,
msx sx sx

mT T T⋅ ⋅ ⋅ so that 
( , )E e F h= is not true, unless ( ) 0Q x = . However, the probability of this event is 

negligible. 
The data holder can obtain X , | |X Y , and | |Y . Anything else the data holder 

sees can be simulated by 1Sim . Thus, the data holder cannot obtain any other useful 
information about the protocol. 

(2) A data holder is a semi-honest adversary: 

, x ← RX\X0 , computes and outputs
Tsx0

0 , Tsx1

1 , · · ·, Tsxm
m , X0 = X0 ∪ {x}. Because x ∈ X\X0, Q(x) = 0, Tsx0

0 , Tsx1

1 , · · ·, Tsxm
m

satisfies E = e(F, h). Moreover, due to the randomness of s, the tuple Tsx0

0 , Tsx1

1 , · · ·, Tsxm
m is

indistinguishable from the tuple of the data user sent to blockchain in the real experiment.

• If the smart contract outputs 0, x ∈ G\X, compute Tsx0

0 , Tsx1

1 , · · ·, Tsxm
m so that

E = e(F, h) is not true, unless Q(x) = 0. However, the probability of this event is negligible.
The data holder can obtain X, |X ∩Y|, and |Y|. Anything else the data holder sees can

be simulated by Sim1. Thus, the data holder cannot obtain any other useful information
about the protocol.

(2) A data holder is a semi-honest adversary:
The simulator Sim2, which simulates the data user, is constructed as follows: Y,

|X ∩Y|, and |X|= m are taken as inputs, and |X ∩Y| elements are picked in Y. More-
over, m−|X ∩Y| elements are picked in G\Y to form set X. Then, construct polynomial

Q(x) = q0 + q1x + · · · + qmxm in the data holder’s way.
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, outputs

T0 = gt0 , T1 = gt1 , · · ·, Tm = gtm and S0 = hg
q0
t0 , S1 = hg

q1
t1 , · · ·, Sm = hg

qm
tm . These two

tuples make |X ∩Y| elements in Y satisfy E = e(F, h).
The data user can obtain Y, |X ∩Y|, and |X|. Anything else the data user sees can be

simulated by Sim2. Thus, the data user cannot obtain any other useful information about
the protocol.

(3) Access policy privacy
In our scheme, the smart contract runs the private set intersection protocol to deter-

mine whether the attributes set of a data user meets the access structure of the data holder.
The data user does not know the specific access policy of the data holder.

(4) Attribute privacy
In our scheme, the attributes of the data holder X = {x1, x2, · · ·, xm} are converted to

a polynomial Q(x), and the coefficients of the polynomial q0, . . . , qm are then placed on the

exponent of S0, S1, · · ·, Sm. Next, S0 = hg
q0
t0 , S1 = hg

q1
t1 , · · ·, Sm = hg

qm
tm are sent to the smart

contract of blockchain by the data holder. Thus, the privacy of data holder’s attributes is

protected. Moreover, for each y ∈ Y, a data user chooses s randomly from
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)
to blockchain. The attributes of the data user are hidden in the exponent of g. Therefore,
the privacy of data user’s attributes is protected.

8. Comparisons and Performance Analysis

As can be seen in Table 1, we first compared our scheme with [8–10,18] in terms of
attribute privacy, access policy privacy, and so on. In terms of no intermediary party
involved, Zhang et al. [8] and Chen et al. [10] need an intermediary party to distribute
keys. However, in our scheme, no intermediate party is required to distribute keys. In
terms of access policy privacy, in our scheme, the smart contract runs the private set
intersection protocol to determine whether the attributes set of a data user meets the
access structure of the data holder. The data user does not know the specific access pol-
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icy of the data holder. In terms of attribute privacy, in our scheme, the attributes of the
data holder X = {x1, x2, · · ·, xm} are converted to a polynomial Q(x), and the coefficients
of the polynomial q0, . . . , qm are then placed on the exponent of S0, S1, · · ·, Sm. Then,

S0 = hg
q0
t0 , S1 = hg

q1
t1 , · · ·, Sm = hg

qm
tm are sent to the smart contract of blockchain by the

data holder. Thus, the privacy of data holder’s attributes is protected. Moreover, for each

y ∈ Y, a data user chooses s randomly from
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) to blockchain. The attributes
of the data user are hidden in the exponent of g. Thus, the privacy of data user’s attributes
is protected. In terms of fine granularity, since the access control mechanism we have
proposed is an attribute-based access control mechanism, we can implement fine-grained
access control. In terms of encrypted storage, in our scheme, after selecting a data user,
the data holder uses the public key that belongs to the selected data user to encrypt the
data address or access token and sends to the data user. In terms of non-interactivity,
in our scheme, the data user and the data holder do not need to interact for access
control operations.

Table 1. Comparisons with previous works.

Scheme No Intermediary
Party Involved

Access Policy
Privacy

Attribute
Privacy

Fine
Granularity

Encrypted
Storage

Non-
Interactive

[8] 8 8 8 3 3 8

[9] 3 8 8 3 8 3

[10] 8 8 8 3 3 8

[18] 3 8 3 3 3 8

Ours 3 3 3 3 3 3

Only our proposed scheme can satisfy the above six properties, which are attribute
privacy, access policy privacy, fine granularity, encrypted storage, non-interactive, and no
intermediary party involved. In addition, as shown in Figure 2, since the scheme in [18] is
interactive and our scheme is non-interactive, the efficiency of our scheme is higher than
that in [18].

The scheme in [18] is interactive. Because in their scheme, the data user first generates
a proof to prove his attributes set satisfies the access policy of the data owner. Then, the
data owner generates the decryption key for the data user by the data user’s attributes. In
addition, the authors of [18] claim that their scheme protects the privacy of access policies.
However, in [18],

→
x is a part of CT, from which we can know the specific attribute of

decrypting a ciphertext. Then, we can derive all the attributes that satisfy the data owner’s
access policy. That is, the privacy of the access policy is compromised.

Next, we perform an experiment to simulate our proposed scheme. We simulate our
proposed scheme on a laptop. The experimental settings are shown in Table 2.

For time measurement, we used Java (11.0.3) as the programming language and Java
Pairing-Based Cryptography Library (JPBC Lib-2.0.0) as the Cryptography Library. As
shown in Figure 3a–c, we set m = 10, 20, 30, 40, 50 attributes to measure the time cost of
data holder, data user, and verification. Moreover, taking the average of five measurements,
we found the setup time of our scheme to be 2719 ms.
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Table 2. Experimental setup.

Language Java (Program Version 11.0.3)

Operating system Windows 10
Processor 2.60GHz Intel i5-4200H Processor
Memory 8 GB

Cryptography Library Java Pairing-Based Cryptography Library (JPBC Lib-2.0.0)

Figure 3a shows the time spent by the data holder in the first step in our scheme
to create the polynomial Q(x) = ∏m

i=1 (x− xi) = q0 + q1x + · · ·+ qmxm according to the

number of its attributes and calculate T0 = gt0 , T1 = gt1 , · · ·, Tm = gtm and S0 = hg
q0
t0 ,

S1 = hg
q1
t1 , · · ·, Sm = hg

qm
tm .

Figure 3b shows the time spent by the data user in the second step in our scheme to

calculate (Tsy0

0 , Tsy1

1 , Tsy2

2 , · · ·, Tsym

m ) = (gst0y0
, gst1y1

, gst2y2
, · · ·, gstmym

).
Figure 3c shows the time spent by the smart contract on blockchain to calculate

F = ∏m
i=0 Tsyi

i = gs∑m
i=0 tiyi

and E = ∏m
i=0 e(hg

qi
ti , Tsyi

i ).
The Ethereum transaction price was 1 ETH = USD 339 when this paper was written.

Suppose the gas price is 1gas = 1× 109 wei. 1wei = 1× 10−18 ETH, so 1gas = 1× 10−9 ETH
= 3.39× 10−7 USD. We measured the smart contract gas consumption of storing attribute
elements. As shown in Table 3, we set 10, 20, 30, 40, and 50 attributes to perform gas
consumption computations.
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Table 3. The smart contract cost of storing attribute elements.

Number of Attributes Gas Used USD

10 78,089 0.0264
20 98,139 0.0332
30 133,196 0.0451
40 168,258 0.0570
50 203,327 0.0689

9. Conclusions

We have developed a non-interactive access control scheme by blockchain for IoT by
using PSI technology. A data holder uploads data to a cloud server. If a user wants to
access the data, the data user first writes attributes to blockchain as a transaction. Next,
the PSI protocol is run by a smart contract to determine whether the attributes set meets
the threshold structure. If the condition is met, the data user is allowed to access the data
holder’s data. Then, the data holder uses the selected user’s public key to encrypt the data
address and sends it to the user. Our scheme is able to protect both the privacy of access
policy and the privacy of attributes while ensuring trusted access control. In addition,
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a complete security proof is given. On the basis of the Ethereum Truffle development
framework, we simulated the scheme in the Windows 10 system, and the experimental
results indicate that our scheme has high efficiency.
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