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Abstract: A test suite is a set of test cases that evaluate the quality of software. The aim of whole
test suite generation is to create test cases with the highest coverage scores possible. This study
investigated the efficiency of a multiple-searching genetic algorithm (MSGA) for whole test suite
generation. In previous works, the MSGA has been effectively used in multicast routing of a network
system and in the generation of test cases on individual coverage criteria for small- to medium-sized
programs. The performance of the algorithms varies depending on the problem instances. In this
experiment were generated whole test suites for complex programs. The MSGA was expanded
in the EvoSuite test generation tool and compared with the available algorithms on EvoSuite in
terms of the number of test cases, the number of statements, mutation score, and coverage score. All
algorithms were evaluated on 14 problem instances with different corpus to satisfy multiple coverage
criteria. The problem instances were Java open-source projects. Findings demonstrate that the MSGA
generated test cases reached greater coverage scores and detected a larger number of faults in the test
class when compared with the others.

Keywords: search-based software engineering; software testing; genetic algorithm; EvoSuite tool;
multiple coverage

1. Introduction

In software testing, genetic algorithms (GAs) have successfully achieved the maximum
coverage criterion in object-oriented classes [1–4]. The coverage criterion is a definition
for which parts of the program are to be executed and whether the set of test cases can be
executed as defined [5,6]. There are a variety of coverage criteria for testing (e.g., branch,
line, mutation). EvoSuite [7] is an automatic tool to generate whole test suites for Java
classes using GA. The whole test suite is a set of generated test cases to cover various
coverage criteria at a time. Traditionally, a test case is generated to satisfy the individual
coverage criterion [8].

A multiple-searching genetic algorithm (MSGA) [9] is an improved GA that has
various chromosomes to increase the performance of search solutions. The MSGA has been
successfully applied in the multicast routing of a network system [9] and in generating test
cases in software testing [10]. The MSGA has been utilized in software testing to generate
test cases for testing small- to medium-sized programs. Those programs are written in C
language. The set of test cases was created satisfying the branch coverage criterion. Their
results indicated that the MSGA generates fewer cases but achieves a better percentage of
coverage than the traditional GA. Nevertheless, the question remains whether the MSGA
would be suitable for programs developed in another language or other complex programs.
The techniques are sufficient to generate test cases for small-sized programs but may
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not succeed with complex programs [11,12]. Consequently, the aim of this study was to
evaluate test case generation of the MSGA for whole test suites of Java classes. The MSGA
was extended on EvoSuite. The MSGA was evaluated with 14 open-source Java projects
developed by Google and the Apache Software Foundation, and the results were compared
to five other algorithms available in EvoSuite: traditional GA, steady-state GA, breeder
GA, cellular GA, and random search.

The paper is structured as follows. Section 2 discusses the whole test suite generation
including the tool used, the experimental methods, the representation of chromosomes,
and the fitness function. Section 3 presents the problem instances and the parameter setting.
The experimental results are described in Section 4. The results are discussed in Section 5.
Finally, Section 6 concludes the paper.

2. Whole Test Suites

The target of the whole test suite is to optimize the generated test cases to cover
a variety of coverage criteria and minimize the number of test cases while maximizing
coverage [13,14]. This means the generated test cases can execute more statements in
the test class to satisfy various criteria. EvoSuite supports whole test suite generation
using the GA. Basically, the GA begins with initial chromosomes and applies genetic
operators (selection, crossover, and mutation). The GA repeats until criteria are satisfied,
for example, timeout or 100% coverage is reached. However, the timeout criterion is
inapplicable for determining which algorithm can generate the fewest number of test
cases while achieving maximum coverage [15]; because test case generation is stopped at
a predetermined timeout, the number of generated test cases may be insufficient to provide
maximum coverage. Therefore, it will focus on generating test cases to obtain maximum
coverage and to find as many faults as possible. This section describes the representation
of chromosomes, the fitness function, and the genetic algorithm used in this research.

2.1. Genetic Algorithm

The GA is a popular search-based method that utilizes a process of natural selec-
tion. The GA has recently undergone many improvements to suit optimization problems.
Basically, the GAs [16,17] simulate the possible solutions of the given problem, called
chromosomes. Each chromosome consists of genes. The genes denote characteristics of
chromosomes that can be transmitted to the next generation. Each generation comprises
chromosomes, called populations. The mechanism of the GA ensures appropriate chromo-
somes through genetic operators such as selection, crossover, and mutation. The suitability
of each chromosome is determined by its fitness value. The chromosomes with high fitness
values have an opportunity to be selected as the parent chromosomes [18,19]. Then, the
parent chromosomes are processed by crossover and mutation operators. The mechanism
of the GA repeats until the optimal solution is found.

The selection operator [20,21] is the process that chooses at least two chromosomes to
complete the next steps. Selection has a variety of methods such as roulette wheel, ranking,
tournament, and elitism. The crossover operator [22] creates two new chromosomes from
the selected chromosome in the previous step. Typically, the crossover point chooses at
random within the chromosome. Offspring are created by swapping the genes from the
crossover point onwards. The new offspring are added to the population. The mutation
operator [18,23] helps to reduce iteration searches and produce various chromosomes. The
mutation changes the random element, thus resulting in a new chromosome. Chromosomes
are selected, as the mutation operator depends on the probability of mutation.

2.2. Genetic Algorithm for Software Testing

The GA is one of the most widespread methods used in software testing and includes
both the traditional GA and the improved GAs. For example, test case generation with
hybrid GA, path testing, and mutation testing leads to fewer redundant test cases and
the greatest mutation score [24]. To minimize the number of test cases while increasing
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test coverage, a population aging process was applied to a typical GA without affecting
any of the GA’s original parameters [25]. GA is used to improve test case generation for
multiple paths, for which GA can find solutions quickly [26]. GA is used to reform formal
specifications to generate test data that can detect as many faults as possible [27]. The
evidence accumulated suggested that GAs enhance the performance of test cases, allowing
them to examine more source code and detect more faults. Furthermore, the usage of GA
in software testing decreases testing time because GA can produce test cases automatically.

The processes of a GA for software testing are similar to the process of a general GA,
in that it consists of main three processes: selection, crossover, and mutation. The chromosome
representation and fitness function differ in each problem. This experiment tested the java
source code and used EvoSuite to evaluate the performance of algorithms. Therefore, the chro-
mosome representation and fitness functions are shown in Sections 2.3 and 2.4, respectively.

2.3. Chromosome Representation

The chromosome representation determines the structure of a potential solution in the
GA [28,29]. A solution is called a chromosome, and a set of chromosomes is a population.
In generating test suites, the chromosome represents a list of statements to be executed
in software or the test class, called test cases. A set of test cases is a test suite. The
length of each test case depends on the number of statements. A statement [30] denotes
a new variable declaration or an existing method involving the test class. The mentioned
variables of method calls must be in the same chromosome. Test cases involve five types of
statements [14]:

• Primitive statements are the variable declarations with values, include declaring array
with size.

int defaultParser0 = 24;
String[] stringArray0 = new String[6];

• Field statements are the statements that refer to variables of objects.

SourceMapFormat sourceMapFormat0 = SourceMapFormat.DEFAULT;

• Constructor statements involve creating new objects and calling the existing construc-
tor in the test class.

Options options0 = new Options();

• Method statements concern the existing method involving the test class.

Options options1 = options0.addOption("", true, (String) null);
Precision.round(1.0, Integer.MIN_VALUE);

• Assignment statements assign values to variables of objects or array elements.

stringArray0[0] = "q";

Figure 1 displays the chromosome representation for the Grade class. From the source
code, the array of float objects is declared and called in the next line. This means that the
float array variable is declared in the test case to test some statements of the Grade class.
Therefore, the statement in the test case can be a primitive statement as follows:

float[] floatArray0 = new float[6];

The generated test suite for the Grade class is composed of two test cases or two
chromosomes. Each test case has a different list of statements depending on the number of
variables and values used in each test. For example, Test case 1 contains five statements
but EvoSuite only counts three statements because it counts declared variables and ignores
the assertions. As for Test case 2, it has one statement. The assertions are added after the
search-based methods test case generation process [31]. Therefore, the assertions are not
counted in the number of statements.
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Figure 1. Chromosome representation.

2.4. Fitness Function

The fitness function is a guide to selecting optimal test suites. The fitness function
corresponds to a given coverage criterion [32]. The coverage criterion [8] is the rule
that defines which parts of the software are tested in test suites. The fitness function is
a measurement as to whether test suites satisfy a given coverage criterion. This experiment
focused on multiple coverage criteria that are the existing criteria in EvoSuite. There are
eight coverage criteria that are differentiated by the fitness function [33,34].

• Line coverage is a basic criterion used to measure how many test suites can execute
statement lines. The statements must be reached at least once. These statement lines
exclude the comment lines. As a consequence, the fitness function for line coverage is
computed according to Equation (1).

f (TLC) = |SL| − |SLT |+ ∑
b∈B

dmin(b, T) (1)

where SL is the number of statement lines excluding comment lines, SLT represents the
number of statement lines executed in test suite T, and dmin(b,T) denotes the minimum
branch distance of branch b in a set of branches B that is executed on test suite T. The
branch distance [4] demonstrates how close the test suite was to the desired outcome.

• Branch coverage aims to cover control statements, be it the decision-making or loop
statements. The control statements are executed to obtain outcomes both true and
false. This means at least one test suite executes the control statement to obtain a true
result, and at least one more time to obtain a false result. Therefore, the fitness function
measures how many test suites can reach control statements. The fitness function for
branch coverage is defined as Equation (2).

f (TBC) = ∑
b∈B

d(b, T) (2)
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where d(b,T) indicates the branch distance of branch b in a set of branches B that is reached
with test suite T. Equation (3) is the condition to obtain the value of the branch distance
d(b,T). In the equation, dmin is a minimal branch distance covered by T.

d(b, T) =


0 if the branch has been covered,

dmin(b, T) if the predicate has been executed at least twice,
1 otherwise.

(3)

• Direct branch coverage includes the control statements in methods that are called
directly by test suites. With the execution of the control statements through an indirect
method call, it is difficult to cover those control statements. The indirect method
call is a calling method within another method. The fitness function of direct branch
coverage uses the same f(TBC) as that of branch coverage but only focuses on the
control statements in methods directly called.

• Exception coverage involves handling exceptions in the test class. The exception is
some problems that occur at runtime. Therefore, generated test suites must create
exceptions in the test class and throw them. The fitness function of exception coverage
cannot be computed as a percentage because some exceptions are unintended, unde-
clared, or thrown to the external method. Equation (4) defines the fitness function of
exception coverage:

f (TEC) =
1

1 + NE
(4)

where NE is the number of all unique exceptions that test suites can only discover in the
test class.

• Weak mutation coverage involves modifying a location in the test class (called mutant)
and observing the outcomes of the original and mutant versions. In the event that
the outcomes of both are the same, this indicates that the test suites are unable to
execute faults or that the mutant is never executed [35,36]. The fitness function of
weak mutation coverage is computed using Equation (5):

f (TWM) = ∑
µ∈M

d(µ, T) (5)

where d(µ,T) represents the infection distance of mutant µ in a set of mutants M that is
executed with test suite T. The infection distance of the mutant can obtain the value as
Equation (6). In the equation, dmin denotes a minimal infection distance executed by T.

d(µ, T) =
{

dmin(µ, T) if the mutant is reached,
1 otherwise.

(6)

• Output coverage is used to cover the returned value of the method by means of
mapping a return type to abstract values. The abstract values are possible returned
values based on the given return data type of method. There is at least one test suite
that calls a method in the test class to return a value that corresponds to each abstract
value. Equation (7) shows a list of abstract values:

Vabst(type(M)) =


{−, 0,+}

{alphabetical, digit, ∗}
{true, f alse}
{null, 6=

if type ≡ Number,
if type ≡ Char,

if type ≡ Boolean,
otherwise.

(7)

where Vabst(type(M)) is abstract values of a method based on a given return type. The
output coverage utilizes abstract values to calculate fitness value as Equation (8):

f (TOC) = ∑
g∈Vabst

d(g, T) (8)
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where g represents an abstract value in a set of abstract values of method that is reached at
least once by test suite T.

• Method coverage relates to creating test suites to execute all methods in the test class.
The fitness function of method coverage is defined as Equation (9):

f (TMC) = |MT | − |ME| (9)

where MT is the total number of methods in the test class, and ME indicates the number of
executed methods by test suites in the test class.

• Method coverage (no exception) aims to cover all methods in the test class without
throwing an exception. When the method calls and receives the invalid parameters or
invalid states, the method will throw the exception. This results in test suites of the
method coverage achieving a high fitness value. Consequently, method coverage (no
exception) requires that all methods are directly called through test suites and that
executions are terminated when they occur. The fitness function of method coverage
(no exception) is the same as the fitness function of method coverage.

2.5. EvoSuite

EvoSuite [31] is an automated tool used to generate test cases for Java code. EvoSuite
is available for free download at http://www.evosuite.org (accessed on 12 December 2019).
EvoSuite can be run from the command line or as plugins in an integrated development
environment [37]. In this experiment, EvoSuite was accessed via its Eclipse plugin. There-
fore, EvoSuite requires the java bytecode from the test class as input, and test cases are
automatically generated. EvoSuite applies several techniques, for example, GAs, chemical
reaction optimization, linearly independent path-based search, and random search. Fur-
thermore, EvoSuite supports eight coverage criteria. Testers can choose whether generated
test cases satisfy individual or multiple coverage criteria. EvoSuite is a tool that can be
extended or modified, such as by adding new techniques and increasing/adjusting ge-
netic operators or fitness functions. Several researchers have utilized EvoSuite to generate
whole test suites [14,38–40]. EvoSuite can successfully generate whole test suites using
search-based techniques.

In this study, five available algorithms in EvoSuite (four GAs and the random search)
were utilized to compare the efficiency for test suite generation of the MSGA. The four
GAs are the traditional GA, steady-state GA, breeder GA, and cellular GA. The traditional
GA is an unmodified GA that performs only three basic genetic operators. The steady-
state GA [41,42] is an improved GA with added processes after the mutation operator is
employed. The added processes involve removing the chromosome with the lowest fitness
value from the current population. The breeder GA [43,44] chooses the fittest chromosomes
with the principle of breeding before performing genetic operators. The cellular GA [45]
performs the mutation operator on only one of the best chromosomes, which is selected
from the crossed chromosomes.

2.6. Multiple-Searching Genetic Algorithm

The MSGA [9] has improved the GA for multicast routing in network systems. The
MSGA adjusts the selection operator of the GA by producing two types of chromosomes:
conservative and explorer chromosomes. The conservative chromosomes are similar to
the initial chromosomes in GA, but the conservative chromosomes keep only half of the
highest fitness chromosomes. The remaining chromosomes are removed. The conservative
chromosomes are used to produce the explorer chromosomes. Thereafter, both types
of chromosomes are merged. Figure 2 displays the method of creating two types of
chromosomes for the MSGA.

http://www.evosuite.org
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Figure 2. Mechanism for generation of the conservative and explorer chromosomes.

The explorer chromosomes are created using the candidate sets to gather genes of
all conservative chromosomes that are in the same position. This means genes in the
same position of all conservative chromosomes are collected in the same candidate set.
For example, first position genes of all conservative chromosomes are kept in the first
candidate set. The explorer chromosome’s gene is chosen from each candidate set by
selecting only one gene. Gene selection in the candidate can involve selection methods
such as roulette wheel or tournament. The selected gene is assigned in the same position
on explorer chromosomes. Algorithm 1 outlines the explorer chromosome creation.

Algorithm 1 Pseudocode for explorer chromosomes

1: //Collect genes in each position of conservative chromosomes
2: for i = 1 to the number of conservative chromosomes
3: for j = 1 to the length of chromosomes
4: Select ith gene of jth conservative chromosome
5: Keep the selected gene to ith candidate set
6: end for
7: end for
8: //Create explorer chromosomes
9: for i = 1 to the number of conservative chromosomes
10: for j = 1 to the number of candidate set
11: Select one gene in jth candidate set
12: Keep the selected gene to jth gene of ith explorer chromosome
13: end for
14: end for
15: return explorer chromosomes

The mechanisms for crossover and mutation operators of the MSGA are similar to
GA. Typically, the crossover operator involves exchanging genes between two-parent
chromosomes, and two offspring chromosomes are obtained for the next generation. The
mechanism for the crossover operator of the MSGA is swapping genes between conser-
vative and explorer chromosomes at the position cut points. Thereafter, one offspring is
retained in the explorer chromosome, and another is kept in the conservative chromosome.
The mutation operator relates to modifying one or more genes. The mutation operator
is executed after the crossover operator. The mutation operator of the MSGA separates
the mutation probability of conservative and explorer chromosomes. This means the con-
servative and explorer chromosomes are mutated differently depending on the mutation
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probability. Figure 3 illustrates the method of crossover and mutation operators of the
MSGA, in which the mutation probability of conservative chromosomes is represented by
Mc, and the mutation probability of the explorer chromosomes is indicated by Me.

Figure 3. Mechanism for the crossover and mutation operators of the MSGA.

3. Experimental Evaluation

The capability of the MSGA to generate whole test suites was compared with algo-
rithms in EvoSuite. This section details the problem instances and the parameter setting.

3.1. Problem Instance

When evaluating algorithms, the real-world problem instances would be used to
minimize threats to external validity. The efficiency of the MSGA was measured by 14 java
open-source programs and libraries (Table 1). Some of these libraries and programs
were developed by Google and the Apache Software Foundation, because Google and
the Apache Software Foundation have a large number of open-source software projects
available for download by developers. Furthermore, libraries and program from another
corpus were used to ensure that classes were diverse: JGraphT, Joda Time, NanoXML, and
Parallel Colt. The 14 problem instances were chosen at random to have a variety of sizes and
functionalities, as well as to be drawn from multiple studies [7,46,47]. The largest problem
had 65,389 lines, 761 classes, and 66,671 branches (Parallel Colt), whereas the smallest
problem consisted of 955 lines, 30 classes, and 178 branches (Java Certificate Transparency).

Table 1. Detail of tested programs.

Case Study No. of Lines No. of Classes No. of Branches

Closure Compiler 102,535 816 15,357
Commons CLI 1480 22 961

Commons Codec 5545 68 3050
Commons Email 1505 20 209
Commons Jelly 4688 95 636

Commons Math3 65,389 918 28,450
Commons Numbers 317 5 225

Guava 52,884 578 16,859
Java Certificate Transparency 955 30 178

JGraphT 26,401 368 12,039
Joda Time 19,441 166 9924
NanoXML 1882 26 738

Parallel Colt 122,923 761 66,671
Truth 4117 58 223

Total 410,062 3931 155,520
Note: The number of non-commenting source lines of code was reported by JavaLOC (https://sourceforge.
net/p/locjava/wiki/Home/ (accessed on 28 August 2020)). The number of classes and branches was reported
by EvoSuite.

3.2. Parameter Tuning

The parameter setting can influence the efficiency of the GA. The optimal values of
parameters depend on problems that cannot define the optimal values for all problems [48].
This experiment used the EvoSuite tool to apply the MSGA to generate whole test suites

https://sourceforge.net/p/locjava/wiki/Home/
https://sourceforge.net/p/locjava/wiki/Home/
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of Java classes. The MSGA was extended to EvoSuite and the results compared with
the existing algorithms in EvoSuite. Consequently, the parameters of algorithms in this
experiment tuned the default values of EvoSuite, whether they be population size, chro-
mosome length, selection, crossover, mutation, fitness function, etc. As Arcuri and Fraser
(2013) [49] pointed out, the default values of EvoSuite are sufficient to test the performance
of the algorithms. However, the MSGA has two types of chromosomes, and the mutation
probabilities for both chromosomes have to differ. Tsai et al. (2004) [9] indicated that
obtaining the optimal solution of the MSGA should define a higher mutation probability of
the explorer chromosomes than that of the conservative chromosomes. The default of the
mutation probabilities in EvoSuite is 0.75. Several researchers [18,50] demonstrated that 1/l
is an efficient mutation probability, where l is the length of chromosomes. Therefore, the
mutation probability of conservative chromosomes was defined as 1/l and that of explorer
chromosomes was assigned the default value (0.75) because 1/l has a smaller value than
the default value.

3.3. Evaluation Metrics

The efficiency of algorithms for software testing is the maximum source code reachable
and reveals the maximum faults possible of the generated test cases. All algorithms mea-
sured the number of test cases, the number of statements, mutation scores, and coverage
scores. The metrics of the number of test cases and the number of statements showed how
much each algorithm obtained in 60 s. The coverage score counted the total number of
source codes accessed by the test cases. The mutation score reported the number of detected
faults in the test class. All the experimental findings were examined using a 95% confidence
interval for the coverage score and the mutation score, non-parametric Mann–Whitney U
tests with a significance level (p-value) of 0.05, the Vargha–Delaney Â12 effect size, and the
standard deviation.

4. Experimental Results

In this study, the MSGA was extended on EvoSuite version 1.0.6 to create all of the test
suites for the above problem instances. The experimental results are summarized in the
dot plot and marginal distribution plots that were created using RStudio version 1.1.383.
The experiments were run on Windows 10 Professional (Seattle, WA, USA) 64 with an
Intel® Core i7 3.40 GHz CPU and 16 GB of RAM. All six algorithms were independently
executed 30 times for each test class. Each run used 60 s timeout. The experiment had
3931 × 6 × 30 = 707,580 runs of EvoSuite by executing 3931 classes in the above problem
instances and six aforementioned algorithms. Therefore, the computation time of this
experiment was at least 707,580/(60 × 24) = 491.375 days.

The competing algorithms were compared in terms of the number of test cases (#T),
the number of statements (#S), mutation score, and coverage score. The generated test
suites satisfied multiple criteria: line, branch, direct branch, exception, weak mutation,
output, method, and method (no exception). The multiple criteria were the default coverage
criteria of EvoSuite. The experimental results were investigated with the Vargha–Delaney
Â12 effect size and non-parametric Mann–Whitney U tests with a 5% level of significance
(p-value). The relationships between output variables were measured using the correlation
coefficients. Furthermore, the experimental results are presented with a 95% confidence
interval (CI) and the standard deviation (σ). The experimental results are tabulated in
Table 2.
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Table 2. Results of generating a whole test suite using each algorithm.

Algorithm #T #S
Mutation Score Coverage Score

p-Value
Â12

(MSGA:Others)Avg. CI σ Avg. CI σ

MSGA 29,063.5000 115,118.8667 0.3958 (0.3944,
0.3972) 0.0038 0.5567 (0.5556,

0.5578) 0.0029 - -

Standard GA 19,665.5667 71,463.5000 0.3644 (0.3622,
0.3666) 0.0059 0.5142 (0.5125,

0.5158) 0.0044 <0.00001 1

Steady-State GA 25,156.8000 95,555.2667 0.3761 (0.3745,
0.3777) 0.0042 0.5258 (0.5247,

0.5268) 0.0029 <0.00001 1

Breeder GA 19,896.5667 72,086.6000 0.3668 (0.3657,
0.3680) 0.0031 0.5137 (0.5128,

0.5146) 0.0023 <0.00001 1

Cellular GA 19,722.2000 67,968.6667 0.3633 (0.3614,
0.3652) 0.0051 0.5044 (0.5032,

0.5056) 0.0032 <0.00001 1

Random Search 28,553.0667 119,981.8333 0.3809 (0.3796,
0.3823) 0.0036 0.5404 (0.5392,

0.5416) 0.0032 <0.00001 0.9944

The aim of this study was to assess the efficiency of the whole test suites generated
with MSGA compared to the others. The MSGA outperformed all algorithms, which is
evident in the number of test cases. The MSGA can generate more test cases than the other
algorithms in 60 s. According to Fraser (2018) [31], presenting the number of statements
provides a better evaluation than just presenting the number of test cases. The number of
statements indicates the total number of instructions that were used to test the test class.
Each test case may have a different number of statements. The MSGA produced fewer
statements than the random search. When considering the mutation score and coverage
score, the MSGA achieved the highest scores. The mutation score [51,52] is a measure
of efficiency for the test suites of how many faults can be revealed in the test class. The
coverage score [53,54] is the ratio of executed statements based on the given criteria using
the test suites. The average mutation score of the MSGA was 0.3958, which shows that the
test cases of the MSGA revealed faults 39.58% out of the total number of mutants. With
95% confidence, the average fault detection of the MSGA was between 39.44% and 39.72%.
For the coverage score, the MSGA scored the highest average of 0.5567, which means that
approximately 55.67% of the source code in the test class was executed using test cases of
the MSGA.

The distributions of the average mutation score and average coverage score achieved
by each algorithm are shown in Figure 4. Each dot represents the average scores that each
open-source library or program scored. The dot plots of the mutation score and coverage
score display very little difference of each algorithm—it is hard to tell how each algorithm
differs significantly. Therefore, this study considered the p-value and Â12 (Table 2) to
compare the efficiency of the MSGA with the others. The results of the comparison indicate
all p-values < 0.05, which means a statistically significant difference between the MSGA
and the others. The Â12 indicates the number of times that the MSGA can perform better
than the others. The Â12 of all algorithms had values of more than 0.95. This means that
the MSGA beat each algorithm more than 95% of the time. Â12 = 0.9944 demonstrates that
99.44% of the time, the MSGA outperformed the random search.

Figure 5 and Table 3 represent the association between pairs of output variables, the
number of test cases, the number of statements, mutation score, and coverage score. The
highest statistical correlation (0.9755) was found between the number of test cases and the
number of statements, taking into account six algorithms and 14 open-source programs
and libraries. In general, the number of test cases was highly correlated with the number
of statements. The trend in Figure 5a clearly demonstrates that the number of test cases is
higher, and a higher number of statements is obtained. The relationships between pairs of
other variables are negligible, with a coefficient of <0.3. This means that when the number
of test cases or the number of statements increases, there is no tendency for the mutation
score or the coverage score to increase or decrease. Some scattering can be observed from
the dots in Figure 5b–e. The association between the mutation score and the coverage score
exhibits a low correlation because coefficients of >0.3 and <0.5 (see Figure 5f and Table 3).
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Figure 4. Average scores of mutations and coverages for each algorithm.
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Table 3. Correlation coefficient matrix for output variables.

Correlation Matrix #T #S Mutation Score Coverage Score

#T 1.0000 0.9755 −0.1786 −0.0149
#S - 1.0000 −0.2050 −0.0487

Mutation score - - 1.0000 0.3552
Coverage score - - - 1.0000

5. Discussion

The purpose of the study was to examine the efficiency of the MSGA for generating
whole test suites. The MSGA was extended into the EvoSuite tool, and the performance
was compared with five existing algorithms in EvoSuite. The findings indicate that the
MSGA outperforms the competition in terms of mutation score and coverage score. As
regards the number of test cases, the MSGA obtained the highest number. Many researchers
stress decreasing the number of test cases to reduce the time for the overall testing [55–57].
In this experiment, the test cases of all algorithms were automatically produced through
the EvoSuite tool in a limited time of 60 s. In addition, Gay (2017) [58] claims test cases are
generated with an automatic tool and that the time is reduced. This means that the MSGA
generates test cases faster than the aforementioned algorithms, which decreases the time
for the overall testing. In addition, these findings confirm previous results [59,60] on the
relationship between the output variables. They indicated that the number of test cases is
not correlated with the mutation score or coverage score, though the mutation score and
the coverage score are slightly related.

There were several threats to the validity of this experiment. First, threats to internal
validity relate to parameter tuning and the result collection. In this study, all algorithms
were assigned parameters with the default values of EvoSuite. Each algorithm was inde-
pendently executed 30 times with the same tool to investigate the accuracy of the results.
All experimental results were collected using EvoSuite: number of test cases, number
of statements, mutation score, and coverage score. Second, threats to external validity
involve a definition of instances and the scope of experimental analysis. The problem
instances in this study were chosen from programs and libraries developed by Google and
the Apache Software Foundation. A total of 14 instances were selected based on previous
research studies. These instances are open-source Java projects that are widely available for
programmers to download. In this experiment, a total of 3931 classes were applied. The
results are limited to the algorithms utilized in the experiment.

6. Conclusions

Test suite generation has been a major topic in software testing research in creating
efficient test cases. By investigating the performance of the MSGA to generate whole
test suites for Java classes and complex programs, this experiment established that test
cases of the MSGA revealed a larger number of faults and executed more instructions
in the test class than other algorithms. These experimental results obtained values from
defining the same parameter setting of all algorithms. In addition, all algorithms were run
on the same tool and the same computer to avoid bias of the results. This suggests that
the MSGA is an improved GA for finding routes in the network system but can also be
reused to generate whole test suites in software testing. In general, the same parameter
tuning may limit the performance of the algorithm. Each algorithm has different optimal
parameter values depending on the problem instances. The results in this experiment are
just a preliminary efficacy test for generating a whole test suite. Consequently, MSGA
should be assigned with appropriate values to generate test cases that are more efficient
at finding faults and testing the source code. Furthermore, alternative coverage criterion
selections and correlations with software system use resulted in different outcomes. Future
research into whole test suite generation using the MSGA should focus on improving the
performance to detect more faults and reach more statements in the test class by adding
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processes to choose the best chromosomes for the next generation or integration with the
other methods.
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