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Abstract: Federated learning is a distributed learning algorithm designed to train a single server
model on a server using different clients and their local data. To improve the performance of the
server model, continuous communication with clients is required, and since the number of clients is
very large, the algorithm must be designed in consideration of the cost required for communication.
In this paper, we propose a method for distributing a model with a structure different from that of the
server model, distributing a model suitable for clients with different data sizes, and training a server
model using the reconstructed model trained by the client. In this way, the server model deploys
only a subset of the sequential model, collects gradient updates, and selectively applies updates to
the server model. This method of delivering the server model at a lower cost to clients who only need
smaller models can reduce the communication cost of training server models compared to standard
methods. An image classification model was designed to verify the effectiveness of the proposed
method via three data distribution situations and two datasets, and it was confirmed that training
was accomplished only with a cost 0.229 times smaller than the standard method.

Keywords: federated learning; artificial intelligence; neural network

1. Introduction

As we become better at using data to enable the use of more complex artificial neural
network models, interest in data utilization has attracted the attention of all of society and
is starting to be utilized on all devices [1,2]. As various devices begin to participate in
training, research is being conducted on how to use a computing model in an environment
where computing devices and data are distributed, as opposed to a centralized system with
the typical deep learning models [3]. Recently, there has also been a series of active studies
on federated learning, which considers privacy more than existing distributed computing
models [4–6]. What is common between federated learning and the existing distributed
computing is that there is a central server and that distributed computing devices are
connected to it. The difference is whether or not the central server has the information
and control authority of the distributed environment. Federated learning, designed with
a widely deployed server model and uncontrollable distributed devices in mind, is in
the spotlight because it respects increasing data privacy and allows data to be utilized by
assuaging users’ concerns with using their distributed data. A typical implementation of
federated learning is shown in Figure 1.

Training a server model while respecting data privacy presents the following chal-
lenges: First, individual computing devices have different characteristics. They have a
broad impact on learning, including when a device will be online, what computational
power is available, whether the device will launch hostile attacks on the server, and
whether communication with the server can be reliably delivered [7,8]. Therefore, it is
necessary to design a robust algorithm to train the server model even when clients have
different characteristics.
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Second, the data are distributed on local devices, and any attempt by the server
to move these data would violate the users’ data privacy, while the data distribution
of each client remains unknown. The ideal situation is when the distribution of data
is independent across all devices and follows the same probability distribution, but the
distribution of actual data varies greatly by each user. When training a server model that
needs to be optimized for the entire dataset, the fact that the exact data of the client are
not known reduces the performance of the server model. In federated learning, training is
especially more difficult because it assumes a very large number of clients and different
data distributions.

Third, communication with the server is not free. In general, as more devices and
larger amounts of information are synchronized more frequently, the training difficulty
of the server model decreases, but unrestricted communication with user devices can be
dangerous [7,9,10]. For example, if it takes 100 rounds of communication to deploy and
train a 100 MB server model, with an assumption that 100 communications are made from
1 million devices, the communication charges incurred from the communication traffic
increase extraordinarily.

Figure 1. General procedure of federated learning.

If the server model converges quickly through the improvement of the learning
algorithm, training can be completed with fewer communications. We propose a method to
achieve fast convergence of the server model while communicating in a smaller size, which
is a method to train a server model on the server by deploying a derived variant of the server
model to the client in a federated learning environment. In the proposed method, when the
server model is distributed, some layers of the server model are probabilistically deleted,
and the derived model, which has a smaller size and a different structure, is distributed to
the client, and the client trains it. Clients participating in every communication round train
models with arbitrarily derived structures, and the results of this training are selectively
applied to the common part between the derived model and the server model. This
method of distributing the derived model in various sizes considering devices with various
computing powers is advantageous in terms of communication cost compared to fully
deploying the server model.

The advantages of the proposed federated learning algorithm are summarized as follows.

• By distributing the server model to the client as a smaller derivative model, the
communication cost is reduced, simultaneously providing superior training efficiency
over the standard method.

• Models distributed to clients do not require any additional computational work such
as decompression and can be used for local data training as they are.
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• Because the client does not know the complete structure of the server model, it
provides protection against potential attacks such as malicious gradient uploads.

The remainder of the paper starts with a presentation of the background, including
related works. Then, related works will be discussed. This is followed by a presentation of
the proposed method. Based on this, we present twelve federated learning experiments.
Finally, a conclusion is drawn, and an outlook on future work is described.

2. Background
2.1. Federated Learning

Federated learning aims to learn statistical models in a distributed environment.
There are differences from existing distributed environment computing [11,12], edge
computing [13,14], and fog computing [15,16]. Previous studies have focused on directly
utilizing the computing resources of distributed devices such as Internet of Things devices.
On the other hand, in federated learning, the focus is on the privacy of data resources, the
availability of distributed devices, and the cost of communicating with a central server.
These differences are as follows. 1. Data reside in distributed devices, and these data
must not be interrogated or inferred. 2. Devices participating in training have different
characteristics, including availability of devices, data bias, computing performance, and
communication delay. In addition, these characteristics are neither arbitrarily adjusted
nor predictable by the server. 3. For training the server model, devices communicate with
the server regularly, and the required communication cost should be considered. These
characteristics make it difficult to apply the previously researched distributed computing
techniques, and when training an arbitrary model, the training efficiency is degraded
compared to the general environment.

Assuming that N device owners O1, ...,ON participating in federated learning each
have their own data d1, ..., dN , it would be reasonable to see that each set of data has different
distributions D1, ...,DN . In the traditional method, all the data sets d = d1 ∪...∪ dN that
are collected as a single object are trained, but in federated learning, transferring raw
data is prohibited. For example, let Y = {0, 1} be the label space in the data d. When
all the data are collected in the server, each data point x in d has a probability such that
P(xi ∈ d has label y ∈ Y) = P(xj ∈ d has label y ∈ Y), while P(xi ∈ dk has the label
y ∈ Y) 6= P(xj ∈ dk has label y ∈ Y) in distributed devices. Each device trains its own
modelM1, ...,MN only with the data it has. To train a neural network, we aim to minimize
its loss function, and in doing so, a cross entropy function can be used as a loss function
such as loss(x, t) = −∑n

i=1 ti log xi, for n classes, where ti is the truth label, and xi is the
probability for the ith class from the model output. When the server has the entire dataset
d and has to update θ, the parameter of the model, we use the gradients for the entire
training dataset: θ = θ − η · ∇θloss(M(dX ), dY ), where η is the learning rate. However, to
train the server modelM in federated learning, it collects the gradients of the loss function
` from the clients, instead of the clients’ data:

min
θ

`(θ) =
N

∑
i=1

ni
n

Li(θ) where Li = ∑
j∈di

`j(θ) (1)

The number of data points in each device is ni, and `j(θ) represents loss functions of a
modelMj with dj. In a traditional environment, it is possible to optimize all the data at the
same time by collecting each datum in the center and performing training, but in federated
learning, only the results of learning are obtained without collecting distributed data. In
this method of training the server model by collecting the results of several trainings, the
difficulty of training the server model as above increases as the distribution of data varies
as higher in general. In order to increase the training performance in consideration of
the distribution of data, several studies have been conducted on how to collect and apply
training results in each client [17].



Electronics 2021, 10, 2081 4 of 11

2.2. Related Works

Deep learning technology is being used to utilize big data and is a field that is being
actively researched [18,19]. Deep learning can extract high-level features from many low-
level samples and learn hierarchical features of the data. It has been successfully used in
computer vision, speech recognition, and natural language processing [20–23]. As this data-
driven model has been successfully utilized, the importance of data collection has increased,
and regulations have also increased [24]. In response to this trend, there was a need for a
method to effectively train a deep learning model, and federated learning technology is
being actively studied. In federated learning, both the amount of computation consumed
by the client and the cost of communicating with the server must be considered. Unlike
centralized systems in data centers, clients are unreliable with low bandwidth connections,
so it is important to minimize communication costs with servers. Methods used in existing
deep learning studies can be used to reduce communication costs. Quantization of the
model, which converts a neural network with floating-point numbers into a neural network
with lower bitwidth numbers, can effectively compress the model size with minimal
performance degradation. This can be easily applied to federated learning [25,26]. There
are many other methods, but not all of them are intuitively applicable to federated learning.
Such a problem of finding a trade-off between communication cost and model performance
is still an open question, and various attempts are being made to solve it [27,28].

There are three ways to reduce the communication cost: to compress the information
sent from the client to the server; to let the server compress and distribute the model; or to
achieve fewer communication rounds by improving the training efficiency. Several studies
have been conducted on client-to-server communication compression, and its effectiveness
has been shown [29–31]. How much communication cost can be reduced depends on the
network the client is using, and the efficiency of these methods may vary. Although there is
no study evaluating the effect of using the three methods at the same time, these methods
alone can effectively reduce the communication cost, and the effect depends on the system
configuration. For example, since home networks typically have larger download band-
widths than uploads, compressing client-to-server communications can be more effective
than other methods. When sending updates to the model, aggressive lossy compression is
sometimes used to approximate updates to actively reduce the communication size. Since
federated learning assumes a very large number of clients, performance degradation can
be minimized by averaging.

It is a general training method to distribute the models from the server to the client
as is, but training them is possible even by compressing and distributing them. There is a
study analyzing the effect of compressing and distributing a model in the server on the
convergence of training [32]. Caldas proposes to distribute the compressed model on the
server [33]. According to his study, clients unpack the distributed model, train it, and then
compress it again and upload it to the server. Although the structure of the model trained
on the client is the same as that of the server, it has been shown that the communication
cost can be effectively reduced through weight subsampling and quantization of the model.
Hamer, on the other hand, proposes a method to train an ensemble model in federated
learning and presents a method to find the optimal mixture weight by distributing a
pretrained partial model to a client [34]. In this method, the client and server exchange only
a part of the model constituting the ensemble, thereby lowering the communication cost.

A computationally efficient training method can reduce the total number of training
steps required for convergence, which in turn reduces the communication cost. Some
training techniques used in deep learning can be intuitively applied to federated learning,
and sometimes not. An example of an overall training method improvement designed for
federated learning is FedAverage proposed by McMahan [35]. This study is one of the first
papers that introduced the concept of federated learning, and it shows that as the local
computation of the client increases, the training of the server model can also be accelerated.
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3. Method

In general, when training a deep neural network model, the structure of the model
is set to fixed because if the structure changes, performance convergence can be difficult.
However, regarding the prerequisites of federated learning, it is still possible to consider
model transformations as part of the overall learning process. (1) Clients have to download
a new server model for every communication. (2) Each client has its own data distribu-
tion and computational performance, so a common server model is not always optimal.
(3) Considering the fact that the total number of clients is very large, we propose a new
federated learning method.

The overall structure follows the federated learning method proposed by McMahan [35],
where the server creates a server model and distributes it to clients. Clients train the
distributed model, using all the data they have. The model that has undergone a certain
amount of training in the client is uploaded back to the server, and the server updates the
server model by collecting the trained models. The parameter update of the server model
is adjusted so that all clients contribute at the same rate in one communication round.

Before distributing the model to the client, the server creates a model with a smaller
structure by probabilistically removing the intermediate layers so that the distributed
model has a size smaller than or equal to the size of the server model. The method of
generating the model with the new structure is shown in lines 9–14 of Algorithm 1 and
in Figure 2. In the server model, two parts coexist with a structure that does not always
change and a part whose structure changes probabilistically. In the part where the structure
is stochastically changed, the intermediate layers are deleted with a probability of p, and the
other part copies the server model as it is. We design the server model so that intermediate
layers of the server model have the same input and output dimensions, so that there is no
problem even if the intermediate structure is changed. As the number of skipped parts
increases, the deformed model has a smaller size, and the communication cost is reduced
thanks to its reduced structure.

The proposed algorithm considers that it can be an advantage for the client to have
a smaller derivative model than the server model. A derived model can be created by
omitting some structures from the entire structure of the server model. When the size
of the model is reduced, it is possible to train local data with less communication and
computational costs. Aside from the fact that the size of the model benefits communication
costs, the size of the model also affects how well the client generalizes the local data. In a
federated learning environment, the more the distribution of local data differs from the
distribution of the entire dataset, the smaller the number of biased data may be. In this
case, if the client has a smaller model, it gains an advantage in generalizing the local data.
The results trained from the client can be selectively applied to the server model as follows.

Figure 2. This figure shows the configuration of the server model used in the experiment and the process of generating an
arbitrary derivative model to be distributed to the client.
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Algorithm 1: FederatedPartial. T is the number of communication rounds, B is the
local minibatch size, E is the numberof local epochs, η is the learning rate, i and j are
indices of layers to be replaced, and p is the probability of being distributed.

1 Initialize w1
2 for round t← 1 to T do
3 St ← random n clients
4 foreach client k ∈ St in parallel do
5 wnew ← BuildPartialModel (wt, p, i, j)
6 k.trained← ClientUpdate (k, wnew, B, E, η)
7 wt+1 ← ServerUpdate (St, wt, n)
8

9 Function BuildPartialModel(w, p, i, j):
10 wnew ← (copy w)
11 for k← i to j do
12 if p < U[0, 1] then
13 delete kth layer in wnew
14 return wnew
15

16 Function ClientUpdate(k, w, B, E, η):
// Run on client

17 B← (split data of k into batches of size B)
18 for epoch i← 1 to E do
19 foreach batch b ∈ B do
20 w← w− η∇wL(w; b)
21 return w
22

23 Function ServerUpdate(S, w, n):
24 foreach client k ∈ S do
25 foreach layer wi ∈ k.trained do
26 if wi is in w then
27 w← w + 1

n wi
28 return w

The client trains the distributed model with local data and sends the entire model to
the server. The server needs to selectively apply updates because the models it receives
have a different structure from the server model. For this, the server selects only the
common parts applicable to the server model among the whole structure of the received
model and applies the update. When applying updates, the updates are adjusted and
applied so that each client contributes the same proportion.

4. Experiment

In order to deploy and train a model with a structure different from the server model
and to find out whether there is a benefit in the cost of convergence when actual conver-
gence is achieved, an image classification model has been designed upon which federated
learning is performed and analyzed. In the experiment, it is assumed that 100 clients
participate, and only 20% of clients participate in training for every communication round.
The experimental parameters used in the experiment are shown in Table 1.
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Table 1. This table shows the federated learning results of the image classification model using the standard method and the
proposed algorithm, FederatedPartial. The ratios represent the cost of FederatedPartial compared to the standard method.

Cost Hit 0.8 Cost Hit 0.8 Method Rounds Traffic Data Dataset Variables Optimizerin Rounds in Traffic Ratio Ratio Distribution

Exp1 960 2.86× 109 Standard
0.892 0.569 (10, 90)

T: 2000
B: 50
E: 5
η: 0.001
i: 3
j: 9
p: 2

3

SGD
with 0.9
Mome-
ntum

Exp2 857 1.63× 109 Partial

Exp3 1032 3.08× 109 Standard
0.757 0.500 (90, 10)

Fashion

Exp4 781 1.54× 109 Partial MNIST

Exp5 1007 3.00× 109 Standard
0.781 0.517 (10, 10, 80)

Exp6 787 1.55× 109 Partial

Exp7 323 9.57× 108 Standard
0.346 0.229 (10, 90)

MNIST

Exp8 111 2.19× 108 Partial

Exp9 316 9.42× 108 Standard
0.413 0.273 (90, 10)

Exp10 131 2.57× 108 Partial

Exp11 279 8.31× 108 Standard
0.431 0.284 (10, 10, 80)

Exp12 120 2.36× 108 Partial

There are two datasets to be used for the image classification model, MNIST and
Fashion-MNIST, and the distribution of the dataset is artificially adjusted to assume a
federated learning environment [36,37]. The MNIST dataset has numbers from 0 to 9 as
labels and contains grayscale images of handwritten digits. Fashion-MNIST has 10 types
of fashion items as labels and consists of grayscale pictures of them. Both datasets consist
of 60,000 training data points and 10,000 test data points with an image size of 28 × 28.
Examples of images in the datasets are shown in Figure 3. In order to ensure that the
distribution of the local data of each client is clearly different from the entire dataset, the
data are distributed so that each client has a maximum of one to three labels. There are
three types of data distributions to 100 clients: (1) 10 clients have 1 label, and the remaining
90 clients have 2 labels; (2) 90 clients have 1 label, and the remaining 10 clients have 2 labels;
(3) 10 clients have 1 label, another 10 clients have 2 labels, and the remaining 80 clients
have 3 labels. The three situations are depicted in Figure 4.

Figure 3. An example of grayscale handwritten digits and 10 fashion items from the dataset MNIST
and Fashion-MNIST.

The model used in the experiment is an artificial neural network model composed of
a combination of a convolutional layer and a linear layer. Each layer goes through the ELU
activation function, and some layers are replaced with Skip layers at the deployment time.
This model has 14,911 parameters, with downloads and uploads made by 100 clients per
one communication round, resulting in a total communication cost of 2,982,200. When a
new model is created to distribute the model to the client, the middle part of the server
model is newly designed and deployed each time. An example of the deployment process
for this model is shown in Figure 2.
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Figure 4. A graphical set of bars to show how to partition the entire dataset so that each client has an
extreme data distribution.

Using the federated averaging algorithm proposed by McMahan [35] as a standard,
twelve experiments were designed by combining the standard method, the proposed
method, and three distributions of two datasets. Unlike the proposed method, the stan-
dard method does not undergo transformation in the deployment and update of the
server model. Both methods were tested with the same parameters such as maximum
communication round, running rate, and batch size.

In order to evaluate the effectiveness of the proposed method in federated learning,
it is necessary to measure how much communication cost is consumed until the server
model has a certain accuracy. At this time, it is necessary to determine how to measure
the cost by considering the characteristics of federated learning: that the learning curve is
not smooth and fluctuates greatly. There is a gap between when the target performance
is first achieved and when it stably converges beyond the target performance. In our
experiment, we recorded the communication cost when the server model satisfied the
target performance more than three times within five communication times. The target
performance measure of the server model is set as the inference accuracy of the server
model for the entire dataset. The target performance was set to an accuracy of 0.8, each
experiment was repeated four times, and the cost of the four trials was averaged.

5. Discussion

Twelve experiments were conducted to compare the standard method and the pro-
posed method, and the results are recorded in Table 1. In the three data distributions of
Fashion-MNIST, FederatedPartial reached the target performance with a cost 0.6–0.7 times
smaller compared to the standard method. Figure 5 shows the learning curves of Exp3
and Exp4.

In the most extreme case of data distribution difference (90, 10), FederatedPartial
required 0.612 times less cost than the standard method, but it required 0.672 times less
cost in the less localized data (10, 90). This is because FederatedPartial has a greater effect
when the data distribution difference between clients is large, which can be interpreted
as the relationship between the data and model size of each client. When one client has
a large difference from the distribution of the entire dataset, it means that the data have
very few variants, with which it is easier to train via a smaller model. FederatedPartial
distributes server models of various sizes to clients and shows that the training efficiency
of the central server model can also be increased by distributing a server model suitable for
clients that need a smaller model to increase the client’s learning efficiency.

In federated learning, it is generally known that the greater the difference in the data
distribution of each client, the more difficult it is to train. In Exp5, compared to Exp1, a
little more cost was required to reach the target performance. Exp5 is designed so that each
client has three labels of data, which is closer to the original dataset distribution than the
data distribution in Exp1, but Exp5 recorded a higher cost than Experiment 1. This shows
that the difference between the data distribution of each client and the distribution of the
original dataset affects the training, and how the client group is divided also affects the
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training of the server model. This difference also appears in the comparison between Exp7
and Exp11 using the MNIST dataset. It can be seen that the server model suffers slightly
from training when there is a diverse group of clients.

Figure 5. Learning curves of Exp3 and Exp4.

In an experiment using the MNIST dataset, FederatedPartial was able to train the
server model using a traffic cost 0.22 to 0.28 times smaller than the standard method
to reach the target performance. All six experiments showed the same tendency as the
experiment conducted on Fashion-MNIST. The structure of the FedParitial algorithm and
the server model used to train MNIST and Fashion-MNIST is the same, but FederatedPartial
showed a higher effect in MNIST. This phenomenon seems to have been possible because
FederatedPartial appropriately provides a model suitable for the size of the client data
when the server model has a large and complex model, but the data the client has only
require a simple model. Compared to Fashion-MNIST, MNIST can be sufficiently trained
with a simpler model, and this difference can be seen as the reason for the difference in the
efficiency of the algorithms proposed in the two datasets.

Both the standard method and the proposed method showed a reduction in communi-
cation cost but showed different ratios of efficiency in both the number of communications
and communication traffic. In Exp1 and 2, for the server model to reach the target per-
formance, FederatedPartial required a cost of traffic 0.569 times smaller and a cost of
communication rounds 0.892 times smaller compared to the standard method. In all com-
parative experiments, the reduction in traffic cost was greater, which means that the total
cost of traffic consumed by the standard method is not essential. In federated learning,
what is more important in learning the server model is not the size of the communica-
tion but the importance of the information contained in the communication and frequent
synchronization between the client and the server model. When applying the federated
learning technology, whether the traffic cost or the number of communications should take
precedence with regards to the system configuration and the characteristics of the client
still remains questionable, so further research on this difference in efficiency is needed.
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6. Conclusions

In this study, we showed that the training of a server model is possible even when
deploying it in various structures and sizes. With the proposed FederatedPartial method, it
was possible to achieve the target performance of the server model at a lower cost compared
to the standard method in terms of the number of communications and communications
traffic. In our federated learning experiments, different efficiencies were shown depending
on the difference between the distribution of data from the client and the distribution
of the entire dataset, but when the server model was large enough to learn the entire
dataset, it showed a noticeable communication cost reduction efficiency. It is worth further
researching the relationship between the reduction of communication cost and the data
distribution of clients, as well as the multi-objective optimization of communication traffic
and communication frequency.
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