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Abstract: A critical advancement in solar photovoltaic (PV) establishment has led to robust ac-
celeration towards the evolution of new MPPT techniques. The sun-oriented PV framework has a
non-linear characteristic in varying climatic conditions, which considerably impact the PV framework
yield. Furthermore, the partial shading condition (PSC) causes major problems, such as a drop in the
output power yield and multiple peaks in the P-V attribute. Hence, following the global maximum
power point (GMPP) under PSC is a demanding problem. Subsequently, different maximum power
point tracking (MPPT) strategies have been utilized to improve the yield of a PV framework. How-
ever, the disarray lies in choosing the best MPPT technique from the wide algorithms for a particular
purpose. Each algorithm has its benefits and drawbacks. Hence, there is a fundamental need for an
appropriate audit of the MPPT strategies from time to time. This article presents new works done
in the global power point tracking (GMPPT) algorithm field under the PSCs. It sums up different
MPPT strategies alongside their working principle, mathematical representation, and flow charts.
Moreover, tables depicted in this study briefly organize the significant attributes of algorithms. This
work will serve as a reference for sorting an MPPT technique while designing PV systems.

Keywords: photovoltaic (PV) system; partial shading condition (PSC); maximum power point
tracking (MPPT)

1. Introduction

Reserves of natural fossil fuels are getting depleted at a rapid pace. Therefore, the
growing electricity demand can be met by employing renewable energy sources. Renew-
able energy sources show potential avenues for electricity generation. Among various
sustainable energy sources, solar energy proves to be a viable substitute for electricity
generation, since it is an ample, inexhaustible, and non-polluting source of energy.

Solar energy production is booming at a fast rate. This growth is due to the recent
advancements in accuracy, convergence speed for harvesting maximum energy [1,2]. As
suggested by the International Energy Agency report ‘Global Energy Review 2021’, global
electricity demand is due to increase by 4.5% in 2021, or more than 1000 TWh. In 2020,
renewable energy grew by 3%. Furthermore, the demand for renewable energy will increase
in 2021 in every sector, such as heating, power, etc. Sun-powered photovoltaic (PV) and
wind are estimated to be a factor of two-thirds of renewable development. The contribution
of renewable energy sources in electricity production will grow practically by 30% in 2021,
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indicating the highest share of renewable energy sources since the Industrial Revolution.
Therefore, Solar PV electricity production is likely to ascend by 145 TWh, or practically by
18% in 2021.

A solar cell produces DC power when solar rays incident on it. Therefore, several
solar cells are connected to form a PV module. Later, the grouping of solar modules results
in the formation of the solar array. PV modules have relatively low conversion efficiency
due to the nonlinear characteristics of the solar cells. Therefore, it becomes necessary to
exploit the maximum available power from the PV modules.

Moreover, the maximum power supplied by the photovoltaic module is not static
as the atmospheric parameters such as irradiance level, temperature, dirt, and the partic-
ular installing conditions, such as the geographical conditions of an area, influence the
performance of a PV system [3]. Hence, there is a need to investigate studies related to
forecasting weather conditions precisely as solar energy is available free of cost in nature.
So, PV systems can either be a grid-connected generating unit or a standalone generating
unit. Therefore, rural areas and poor grid power quality regions get electricity from such
units [4].

The P-V characteristics of the solar cell exhibit an optimum point that varies under
atmospheric conditions (i.e., solar irradiance and temperature). At that point, the cell
generates the maximum power. Consequently, the maximum power point tracking (MPPT)
technique is employed to ensure that the photovoltaic (PV) module exploits optimum
capacity at all times [5].

In the last decade, various MPPT methodologies were suggested to extract the maxi-
mum power from the PV modules [6]. However, the selection of a particular method is still
obscure. Moreover, until now, recent research works do not include all newly developed
MPPT algorithms. Therefore, there is a great need to analyze and review the proposed
strategies from time to time, which will provide an insight into the selection of specific
methods as per the context.

In this article, different MPPT techniques have been reviewed and then compared
on the basis of several factors such as tracking speed, cost of implementation, complexity,
etc. These MPPT techniques can be classified into two significant groups, specifically,
conventional and meta-heuristic strategies. Conventional techniques comprise perturb and
observe (P&Q), incremental conductance, fractional open-circuit voltage, and fractional
short circuit currents. Meta-heuristic strategies reassessed include swarm-intelligence (SI)
and bio-inspired (BI). SI consists of the particle swarm optimization (PSO), ant colony
optimization (ACO), artificial bee colony (ABC), grey wolf optimization (GWO), emperor
penguin optimization (EPO), salp swarm algorithm (5SA), and jaya algorithm (JA). BI com-
prises cuckoo search (CS), flying squirrel search optimization (FSSO), owl search algorithm
(OSA), and firefly algorithm (FFA). Whereas artificial intelligence (AI) techniques include
fuzzy logic control (FLC), artificial neural networks (ANN), and its sub-categorization
evolutionary computational (EC). EC strategies studied consist of a genetic algorithm (GA)
and differential evolution (DE).

This article is structured as follows: Section 2 explains the Solar cell characteristic. The
influence of environmental factors on the I-V and P-V curves is discussed in Section 3.
Section 4 introduces the equivalent circuit diagram of the solar cell. Section 5 discusses the
partial shading effect. In Section 6, MPPT algorithms and their categorization are discussed.
Section 7 presents a comparison between the MPPT techniques along with their merits
and demerits. Section 8 covers the simulation results of the implemented algorithm under
partial shading conditions (PSC). The future scope of the research work is discussed in
Section 9. Lastly, Section 10 concludes the work with some operable viewpoints.

2. Equivalent Circuit Model of Solar Cell

The simple single diode model represents the PV cell. The equivalent single diode
circuit consists of a diode, a current source, a shunt resistor, and a series resistor. Primarily,
an ideal solar cell is modeled by a current source in parallel with a diode. For practical
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applications, the model incorporates series resistance and shunt resistance. Generally, in
the equivalent model of the solar cell, the shunt resistance (Ry,) signifies manufacturing
defects and poor solar cell design, while the series resistance (Rs) accounts for the contact
resistances [7]. The fundamental single-diode model of the PV cell is illustrated in Figure 1.
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Figure 1. Single diode model of the solar cell.

The current produced by the solar cell is given by Equation (1).
Ipv = Iph —Ip—1Iy 1

where I, represents output current; [, indicates the photoelectric current; Ip denotes the
diode current; Iy, signifies the shunt current.

To compute current flowing in the diode, utilize the Shockley equation as per
Equation (2).

Ip=1Io [exp(nl%(vpv + I R5)> - 1] @)

By Ohms law, the current flowing in the shunt resistor, Iy, is calculated by using
Equation (3).

Voo + InwR
Iy = 2= 3)
Rsh
The characteristic equation of a solar cell is specified in Equation (4).
q va + IpvRS
Ly =1, —1 —(V Iy R -1 - —4—— 4
po ph O[exp(nkT( po + 1po S)) } Ry, 4

where I, signifies the photoelectric current, g4 denotes the electron charge; I represents
the reverse saturation current of the diode; V), indicates the voltage across the diode; Rs
and Ry, represent the series and shunt resistors of the solar cell in (Q2), respectively; T
denotes the temperature at the junction; K means the Boltzmann'’s constant [4]; # signifies
the ideality factor of the diode.

3. Solar Cell Characteristic

The short circuit current (I5.) stands for the current flow in the short-circuit condition of
the solar cell. The open-circuit voltage (V) signifies the maximum voltage available from
the solar cell during the open-circuit condition. However, short circuit and open circuit
conditions do not contribute to power generation. Nevertheless, a specific combination
of voltage and current led to maximum power (P;;,x) generation. The coordinates of the
combination indicate the maximum power point (MPP). I-V and P-V curves of the solar
cell are exhibited in Figure 2.
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Figure 2. The I-V and P-V characteristic curves of the solar cell.

4. Influence of Environmental Factors on I-V and P-V Characteristic Curves
4.1. Effect of Varying Temperature on 1=V and P-V Characteristicsof the Solar Cell

Temperature change shows a significant impact on the performance of the mod-
ule. The effect of change in temperature on the P-V and I-V curves is demonstrated in
Figures 3 and 4, respectively. The variation in temperature from 25 °C to 125 °C is studied.
Furthermore, from Figure 3, it can be concluded that the open-circuit voltage (V) of the
PV module decreases with the increase in temperature. As a result, the output power yield
of the PV module will drop.

35 T T
3L ——T1=25°C
—=T=50"C
a5t T=75°C
’ =T =100 °C
; 5 ——T=125°C
5
21s5h
[~
l .
051
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Figure 3. The influence of varying the temperature on the P-V characteristics of the solar cell.
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Figure 4. The effect of varying the temperature on the I-V characteristics of the solar cell.

4.2. Effect of Varying Insolation on I-V and P-V Characteristicsof the Solar Cell

The effect of change of insolation on the I-V and P-V curve is observed by varying
the insolation from 200 W/m? to 1000 W/m?2, by an increment of 200 W/ m?2. As the solar
irradiance increases, the PV module can generate more output power due to the rise in the
current. The upgrade in current exemplifies the higher peaks on the I-V and P-V curves,
as depicted in Figures 5 and 6, respectively.
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Figure 5. The stimulus of varying insolation on the I-V characteristics of the solar cell.
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Figure 6. The impact of varying insolation on the P-V characteristics of the solar cell.

5. Partial Shading Condition

Photovoltaic systems are highly prone to partial shading. A shadow is an image
cast obtained upon a surface (like a solar panel) by any obstruction intercepting the solar
rays resulting in a partial shading effect (PSC). Thus, Uniform irradiance is not possible
continually because of the changing environmental conditions such as rain, clouds, storms,
etc. Furthermore, building shade and tree shade also contribute to shading. Hence, this
effect prevents a solar panel connected in series from receiving the same incident irradiance
level [8].

Due to shading on the PV array, the output power yield of the PV module decreases.
The non-linearity in the PV module’s output I-V characteristics has led to multiple local
maxima on the P-V curve. Thus, shading leads to hot spots that cause severe damage
to these cells. Additionally, current mismatch within a PV string and voltage mismatch
between parallel modules are also significant drawbacks of shadowing. The severity of the
impact of shade depends on the configuration of the PV string, the type of module used,
placement of the bypass diode, partial shading patterns, and the shading heaviness [9].

If partial shading of one cell occurs, then less current flows in the shaded cell in
contrast with the other cells of the string. Consequently, a higher current will be forced to
flow through the un-shaded cells. As a result, cells act as a diode in the reverse direction.
Furthermore, the shaded cell limits the current flow in the string. Hence, the output power
of the PV string decreases. Moreover, as the number of shaded cells increases, the decrease
in the output power of the PV string will be more prominent.

The number of multiple peaks in the P-V curve increases with an increase in the
shaded modules. Therefore, to mitigate the shading effect, a bypass diode is introduced
across the string of particular cells connected in series. A bypass diode allows only unidi-
rectional current flow. Bypass diodes, connected in anti-parallel, offer the low impedance
path to power when the power flows toward the sink [10].

Under the ordinary conditions of uniform irradiance, the P-V curve presents a unique
MPPD, as illustrated by the curve in Figure 2. However, during partial shading, a staircase
current waveform is obtained as the I-V curve. Meanwhile, the corresponding P-V curve
shows the multiple peaks as depicted by Figures 7 and 8, respectively.
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Figure 7. I-V curve under different solar insolation.
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Figure 8. P-V curve at the different solar insolation.

6. Maximum Power Point Tracking Algorithms

PV array has a non-linear characteristic but has a distinct maximum power point
(MPP). Therefore, to exploit the optimum power from PV panels, MPPT techniques are
employed. The electronic converter enforces the MPPT algorithm. The MPPT ensures
that the PV array must operate at the V¢ (reference voltage) all the time, resulting in
improvements in PV panel efficiency under varying atmospheric conditions [11]. The
typical block diagram of the MPPT framework is illustrated in Figure 9.
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Figure 9. The typical block design of the MPPT implementation for PV systems.
6.1. Conventional MPPT Strategies

Recent developments in conventional algorithms are discussed in concise form in
Table 1 at the end of this section, while in the following sub-sections, each traditional
method is explained comprehensively.

6.1.1. Perturb and Observe (P&O) MPPT Technique

The P&O strategy is a broadly utilized strategy owing to its effortlessness and ease
of execution [12]. Furthermore, fewer number of sensors are required, resulting in lower
actualized costs [13]. The P&O MPPT algorithm deals with similar rules tothe “Hill Climb
Search’ technique. However, the latter is less efficient than the previous one [14].

The P&O strategy is an iterative technique used to track the maximum power point
(MPP). Predominantly, its operating principle works by introducing a slight disturbance
in the voltage of the PV array, and the corresponding impact on the power is measured.
Accordingly, the PV module voltage is elevated or decremented by varying the duty cycle
of the dc—dc converter. These perturbations help in confirming whether the power is
enhanced or stepped-down. Therefore, if an increment in the voltage increases the power,
then the working point of the PV module is on the left edge of the P-V plot. Thus, there is
a signal that the perturbation is set in a positive direction [15]. However, if an increment
in the voltage prompts a decrease in the power, then the operating point is on the right
edge side of the P-V plot. Hence, to follow the MPP, the perturbation direction needs to
converge towards a specific end. Consequently, the iteration process is continued until the
MPP is attained.

Even though the P&O strategy works well during the settled insolation, it too has
few disadvantages of wavering near the MPP, a slow MPP tracking speed, and endures to
locate the true MPP under partial shading conditions [13,16]. Therefore, an altered P&O
technique has been proposed to conquer these drawbacks [17,18]. The standard flowchart
to implement the P&O algorithm is shown in Figure 10.
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Figure 10. Flowchart to implement the P&O strategy.

6.1.2. Incremental Conductance MPPT Algorithm

The incremental conductance (INC) technique is an enhanced version of the P&O
strategy. This technique is utilized in following the MPP under fast changes of atmospheric
conditions [19,20].

The INC technique is principally established on the reality that the slope of power
(P-V) curve of PV array is zero (dp/9dv = 0) at MPP, positive (dp/dv > 0) on the left of MPP,
and negative (dp/0dv < 0) on the right of MPP.

The instantaneous power (P) is defined as the product of current and voltage.

P=VxI (5)

On differentiating Equation (5) with respect to V, the slope of the P-V curve can be
computed as follows in Equation (6)

P IV xI) al
= _1+V><(av) ©)

Therefore, the following expressions can be composed

ol I ) oP
=" <V> at the MPP, i.e., (av = 0) ()

at the MPP, i.e., (7)

ol I . oP
5T (V) at the left of MPP, i.e,, (W >0) ®)
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at the left of MPP, i.e., (8)

L <o) ©)

ol I
= < <> at the right of MPP, i.e., (W

°1% \%
at the right of MPD, i.e., (9)

Thus, MPP can be followed by comparing incremental conductance (d//9V) to an
instantaneous one (I/V), as illustrated in the flowchart to implement the INC technique

given in Figure 11.

Measure V(i) and I(i) of the
PV array

!

ATG)=1G) - 1G-1)
AV() = V() - V(1)

.

YES———— IsAV>0? SN0
rYES YES_l
! AtMPP o o PoAtMPP
. . " ) ' O
iDG+1)= D) \ ' 1D+ = D)
o Is AI> 0? — IS AUAY > (- (V) 2 o
U At right side of | T UAtleftsideof |+ Atleftsideof | VAt right side of |
' MPR: ; :

L MPR: PwPR: P MPR:
{D(i+1)= D() +AD iDi+)=Di)-AD} ; iD(i+1)= D(j)+AD!

""""" — 7 1 |
!

Update :
V(i-1) = V(@)
&
I(-1) =1(3)

Figure 11. INC algorithm flowchart.

The INC technique can avoid oscillations in a steady state until the conditions (irradi-
ance and temperature) are changed [21]. However, during the transition, the INC strategy
acts analogous to the P&O technique. Hence, the theoretical preference of the Incremental
Conductance algorithm over Perturb and Observe is lost [21,22].

6.1.3. Fractional Open Circuit Voltage MPPT Method

The Fractional Open Circuit Voltage (FOCV) MPPT technique is the least complicated
indirect strategy. The FOCV method is utilized for low power functions. This algorithm
can be actualized handily with digital and analog techniques. The typical block diagram of
the fractional open circuit (FOCV) MPPT technique is depicted in Figure 12.
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Figure 12. Fractional open circuit voltage MPPT strategy block diagram implementation.

The FOCV technique employs the theory that there exists an approximated linear
relation between the maximum power point voltage (Vjpp) and open-circuit voltage (Voc)
of the PV module, as given in Equation (10).

Vmpp = CV X VOC (10)

where Cy signifies the proportionality constant, which depends on the PV module’s
characteristics and climatic circumstances (i.e., temperature and solar insolation) [23]. Cy
value varies in the range [0.71, 0.78] [24].

The FOCV technique has some drawbacks, such as the load having to be isolated
during the interim, debasing the linear relationship between the Vjpp and V¢ with time,
and additional types of equipment are needed to measure V¢ after a specific interval [25].

6.1.4. Fractional Short Circuit Current Technique

The Fractional Short Circuit Current (FSCC) technique is additionally an indirect
technique practically identical to the FOCV method. The FSCC technique is actualized on
the fact that there exists a straight-line relationship between the current at the maximum
power point (Ippp) and the short circuit current (Isc) of the PV module, as demonstrated in
Equation (11) [26]. The block diagram of the FSCC strategy is represented in Figure 13.

Ipmpp = Cp X Isc (11)

where C; denotes the invariable current factor which generally varies between [0.78,
0.92] [27].

]

]

]

K X PI(s) —b: ) -

L

Constant ' PI Controller Duty Cycle
Short Circuit Current Photovoltaic Current

Figure 13. Fractional short-circuit current MPPT strategy schematic diagram.

During the short circuit condition, Vi is zero, resulting in zero output power. Hence,
it is a squander of energy.



Electronics 2021, 10, 2419

12 of 59

Table 1. Recent research work done in the field of conventional MPPT strategies.

Strategies

Control DC-DC

Controller

Authors, Year Involved Parameter Converter Implementation Findings/Remarks
A trade-off between steady-state and dynamic
performance can be easily handled by the
M. H. Osman Traditional, variable-step and two-step strategies.
o 7 two-step size, and Boost . . Improved stability in case of external
et 3162[128]’ variable}istep scale v converter MATLAB/Simulink atrgospheric chartl}ées (i.e., temperature and
irradiation).
Modified algorithms track the MPP in half of
the time taken by traditional P&O.
The utilization of current control causes a fast
response to rapid variations in irradiation.
Momentum-based P&O enhances the tracking
G. A Raiker Momentum- Ir\j&)ep}::ry e?ll.Trging the stephsize qfllthg P&O
ot al. [29] ’ based P&O + VandI Boost TMS320F28379D, " while preserving the oscillation
001 voltage directed Converter C2000 series controller magnitude. . o )
current control Change to traditional P&O is simply carried
out by employing a storage variable.
Oscillations attenuated by 30% and following
speed incremented by a factor of two.
In terms of efficiency and tracking power, the
. drift-free technique presents better results in
S. Manna, gq?vfe ntlonaé, contrast with the other two strategies.
etal. [30], undt_ ree, an Du Boost MATLAB/Simulink Power loss decreases as the drift-free P&O
2021 pdated, P&O converter method can trace several radiation profil
MPPT methods. protes
accurately with a small perturbation from the
MPP.
Vpy and Ipy serve as breakpoint data for the
Variable Step Size LUT strategy. Hence, there is no need for
) Zero Oscillation skilled knowledge and trained data in
P.E. Sarika, i implementing the VSS ZOPO-LUT algorithm.
P&O (i.e., VSS Boost . . implementing the g
et 3%2[8117 ZOPO)+ Look-Up Du converter MATLAB/Simulink The strategy responds quickly. Thus, the
Table (LUT) method demonstrates less tracking time.
technique The proposed algorithm exhibits almost zero
oscillations around MPP.
To overcome the problem of choosing step size,
the notion of variable step size is introduced.
D. Ounnas, . Step size and MATLAB/Simulink, Right decision judgment is verified by utilizing
etal. [32], Mosiiglte: INC psrmitted Boost and Arduino mega permitted error during a sudden change in
2021 8y error converter board solar insolation level.
Fast convergence to reach the MPP with fewer
oscillations.
The likelihood to change the preliminary
constraint during the search procedure is a
significant benefit of this method.
This method successfully improves the search
. i, dynamics of the pulse position modulation.
I\Q/[t ﬁe[b;gl}t Improved INC I g AL Boost MATLAB/Simulink Hence, the proposed strategy gives a practical
2021 algorithm veav converter solution, notably for provinces with repetitive

solar irradiance and high insolation change.
An insightful approach is needed to select the
fair values for the ideal working of the
proposed method.
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Table 1. Cont.

Authors, Year

Strategies
Involved

Control
Parameter

DC-DC
Converter

Controller
Implementation

Findings/Remarks

M. A.B.
Siddique,
etal. [34],

2021

Linearly modified
INC-MPPT
method

2
o
2=

Boost
converter

MATLAB/Simulink

The proposed technique conveys zero
oscillation in the yield power of the solar
photovoltaics system during MPP tracking.
Accurate and efficient MPP tracking of the PV
system.

More reliable MPPT strategy.

M. N. Ali,
etal. [35],
2021

Variable step INC
+FLC MPPT
method

Boost
converter

MATLAB/Simulink

FLC block is utilized for changing the step size
of the voltage of the INC MPPT strategy per
the fuzzy inputs.

Duty cycle adjusts the Vpy by the variable step
INC method.

The suggested algorithm improves the Ppy and
decreases the convergence time during
changing climatic conditions.

D. Baimel,
et al. [36],
2019

Semi-pilot cell
(SPC) FOCV and
Semi-pilot panel

(SPP) FOCV
strategy

Voc

Buck-Boost
converter

MATLAB/Simulink

Replacement of pilot cell by SPC aids in power
loss reduction during measurement of
open-circuit voltage.

SPP FOCV and SPC FOCV MPPT algorithms
can accurately assess the Vypp. Hence, the
overall efficiency of the PV system is enhanced.
SPP-FOCYV is not intended to be implemented
during PSCs.

M. Krishnan
M, et al. [37],
2019

FOCV + P&O
MPPT algorithms

Voc

Buck
converter

MATLAB/Simulink

Rapid MPP tracking.

Reduction in perturbation magnitude during
P&O tracking mode improves the PV system’s
efficiency and lessens the oscillation around
MPP without affecting the tracking speed.

No need for an external sensor to sense Voc
during varying climatic conditions.

K. R. Bharath,

et al. [38],
2017

Improved FOCV
technique

Experimentally
calculated
factor; k

Buck
Converter

AVR supported
ATMegal6

microcontroller

Periodic open-circuit voltage check improves
the algorithm'’s efficiency by briefly impeding
the energy drawn from the PV panel and
supporting a vital switching sequence to the
converter.

Effective when temperature change leads to
variation in Vpc.

A single sensor is employed to sense voltage
and load.

C. B. N. Fapi,
etal. [39],
2021

Enhanced FSCC
MPPT strategy

Boost
Converter

Matlab/Simulink +

Control Desk Software

+ DS1104 control
board

Direct detection of the Isc by basically reading
the Ipy through decrement and increment in
solar irradiance.

During changing atmospheric conditions, the
proposed algorithm shows a short following
time and increases power production.

H. A. Sher,
etal. [40],
2015

Modified FSCC
MPPT technique

?’—Y error
SC

Buck-Boost
converter

Matlab /Simulink +
dSPACE DS1104

based controller board

The strategy consists of two loops: standard
loop and Ipy loop.

The suggested algorithm eliminates the need of
the irradiance sensor.

Cost-effective alternative for low price solar PV
appliance without compromising on the energy
loss.

Note: Du—Duty cycle, Voc—Open circuit voltage, [py—PV array current, [sc—Short circuit current.

6.2. Meta-Heuristic Techniques

The classification of the meta-heuristic algorithm reviewed in this article is illustrated
in Figure 14.
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Figure 14. Categorization of reviewed meta-heuristic strategies.

6.2.1. Swarm Intelligence Methods

This section sub-part explains each swarm intelligence technique in a detailed manner.
Additionally, at last, current work related to these algorithms is tabulated in Table 2.

(a)  Particle Swarm Optimization Method

The Particle Swarm Optimization (PSO) technique is among the most widely used
random search methods. The PSO strategy maximizes the nonlinear continuous functions.
The PSO strategy was suggested by Eberhart and Kennedy in 1995 [41].

The functioning rule of the PSO algorithm is demonstrated after the natural demeanor
of fish schooling and flock gathering [42]. In this strategy, numerous collaborative birds are
employed, and each bird signifies a particle.

Each particle has its fitness value in the search space, which is mapped by a position
vector and velocity vector. Furthermore, each particle utilizes its fitness value to choose
the direction and distance of its step. After that, each particle proposed a resolution by
trading the information obtained in its particular search process to find the best solution.
The primary flowchart of PSO methodology is depicted in Figure 15.
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Swarm reached the
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Figure 15. Typical PSO MPPT technique flowchart.

The PSO method initializes with a group of random solutions (position and velocity
for each particle) in the search arena. After each iteration, particles change their fitness
value by employing an intellectual, social trade-off. The trade-off leads to a change in the
individual best (P pes) and neighborhood’s (characterized as the entire populace or as the
subset of it) best position (Pg pest)-

Every particle remembers the individual best of all particles in addition to the global
best position. Thus, the swarm attempts to find the best solution by refreshing the position
and velocity after every cycle. Subsequently, each particle rapidly converges to the global



Electronics 2021, 10, 2419

16 of 59

maxima. The refreshing conditions [43] for the position (X) and velocity (V) of the nth
molecule for the kth cycle are given in Equations (12) and (13).

Vn (k + 1) = (UVn (k) + 5101 (Pp, best—k — Xn (k)) + 5202 (Pg, best — Xn (k)) (12)

Xn(k+1) = Xu(k) + Vu(k+1) (13)
n=1,2,3...,N

where k signifies the iteration count; X, corresponds to the position of the nth particle;
Vi indicates the velocity of the nth particle; w represents the inertia burden; s1, s, denote
the social and cognitive acceleration coefficients, respectively; p1, p2 indicate the arbitrary
variables and their assessments are uniformly distributed between zero and one; P pest.i
signifies the individual optimal position of the nth particle at the kth iteration; Pg pes
implies the swarm—optimum position. If an extempore situation, such as the condition in
Equation (14) of initialization, was satisfied, then the method update is in accordance with
Equation (15).

Ft(Xn 1) > Ft(Pp,bestfk) (14)

Pp,best—k = Xn—k (15)

where Ft shows the target function needed to be maximized.

Although the traditional PSO strategy can track the global maximum power point
GMPP under all cases, its overall tracking speed is slower than the common INC method for
certain cases [44]. Various variations of the PSO procedure can be procured by consolidating
it with other developmental techniques. There is a pattern in exploration to make a cross
variety of the PSO algorithm to improve the general advancement of the computation.
Some used variations of the PSO estimation are introduced in [44—46].

Applications: PSO strategy discovered its first application in the field of neural
network training. From that point forward, it has been utilized in a wide assortment of
fields like power systems, telecommunications, configuration, power frameworks, control,
and numerous others. A PSO algorithm has been employed in the following cases, such as
the Min—Max issues and different advancement problems.

(b)  Ant Colony Optimization Strategy

The Ant Colony Optimization (ACO) strategy is the ant systems’ most distinguished
and effective substitution. Macro Dorigo first proposed the ant system in 1992 [47]. Later,
further enhancements were done by Gambardella in1997 to ant systems [48].

The ACO technique is inspired by the cooperative searching conduct of ants searching
for the shortest route between their colony and source food. The trail-laying and trail-
following conduct of ants is the foundation of the ACO strategy. The flowchart of the ACO
algorithm is depicted in Figure 16.
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Figure 16. Flowchart of the ACO strategy.

At first, ants wander in random directions. When one or more ants come across the
food source, they re-visit their province (with food), while leaving behind pheromone trails.
Ants use pheromone as a means of communication. The pheromone consists of specific
synthetic substances delivered by living beings to impart messages or signs to different
individuals of a similar species. If other ants discover such a path, they follow the route to
the food source contrary to meandering arbitrarily. When they re-visit their province, they
also leave pheromones, resulting in enriching the current pheromone intensity. Pheromone
evaporates with time, in this way reducing the strength of the pheromone. Eventually, the
ants adjust and locate the briefest course to the food source.

The process begins by considering a single colony of (artificial) ants placed arbitrarily
in that colony. Let there be N parameters indicating ants. Each ant in the population entices
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another ant with its magnetic force. Contingent upon the attractive force, the ants relocate
from the lower strength zone to the higher strength zone. After every iteration cycle,
the appealing power is determined. As per the results, ants move towards the optimum
solution.

At first, consider an issue where N parameters (artificial ants) are to be optimized
such that Z > N. Z symbolizes the initially generated random solutions and is stored in
the solution chronicle. Then the result is positioned as per their fitness value Ft(s;), as
demonstrated in Equation (16).

Ft(sl) < Ft(Sz) < Ft(s3) ... < Ft(sn) (16)

Likewise, new arrangements are formed by sampling the Gaussian Kernel function to
ascertain the ants’ positions by following Equation (17).

(e’
7
e 2(ok) (17)

z ) z
Gi(x) = )} wigi(x) = ) wi
l k=1 S 021

where G;(x) denotes the Gaussian kernel for the ith dimension of the solution;

wy indicates the weight factor for the kth solution;
gi represents the kth sub-Gaussian function for the ith dimension;

;i symbolizes the ith dimensional standard deviation for the kth solution;
fil signifies the ith means value for the kth solution.

Utilizing Z initial solutions, the computation for the standard deviation, mean value,
and weight factor can be done following Equations (18)—(20), respectively.
Standard Deviation:

5 sl
g (18)
k k; 71

where € symbolizes the convergence rate.
Mean Value:

o= {yg ﬁ;‘(,...,ﬁ;} - {sa,...,sf{,...,s;} (19)
Weight:
1 -
Wy = ————e¢ 292 20
N (20)

where ¢ represents the best optimal operating solution.
The probability value of selecting the kth Gaussian function can be evaluated using
Equation (21).
Wk
Z
]:

P = (21)

1Wj

The examining cycle will be continued as per the number of parameters to be enhanced.
Create Y new solutions that sum up to the Z initial solutions. Then, the Z + Y solutions need
to be positioned in the search area. Later, Z’s best arrangements are re-established once
more. In this way, the whole cycle is re-hashed for the necessary number of iterations [49].

The ACO method effectively tracks the global MPP dissimilar to the traditional
optimization techniques. The ACO algorithm has a higher convergence rate. In addition,
ACO requires a lesser number of iterations to get the result. Hence, the ACO method is
more advantageous compared to other algorithms.

Applications: The ACO method is naturally appropriate for discrete value optimiza-
tion problems [50]. Furthermore, ACO can handle continuous value optimization. How-
ever, the design vector in the continuous value problem ought to be transformed into
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little discrete advances. Moreover, ACO discusses earlier works with input-output map-
ping only like all other algorithms. Therefore, subsidiary data of objective work is not
fundamental.

(c)  Artificial Bee Colony Technique

The Artificial Bee Colony (ABC) method is centered on the honey bees’ intelligent
foraging conduct. The ABC algorithm was proposed by Dervis Karaboga in 2005 to improve
the polynomial mathematical issues [51]. The ABC strategy is sensibly a modern stochastic
algorithm for global optimization. The fundamental flowchart of the ABC strategy is
depicted in Figure 17.

BEGIN

Set the control factors:
(SN, MCN, Ts)
Initialize the Employed Bees’
locations ( ie. Initial duty cycles)

Inifializati- as described by (22)

on Phase

Evaluate the initial duty cycle “4——————y

!

Modify the Employed Bees’ duty cycle as per Re-initialize the duty
Employed (22), then evaluate. them; cycle as per (22)
Bees Phase —> Apply the greedy selection process; &
Compute: The probability of selection of cycle =1

each food source (i.e. p;) as described by (24)

Recruit the Onlooker Bees’;
Evaluate their duty cycles;
Apply the greedy selection process

Is there is a sudden change in

e Ty Best solution is found

STOP

Onlooker
Bees Phase

Ascertain the abandoned duty cycles for

NO the Scont Bees’; Dyest= best duty cycle attained
Replace and re-evaluate them as per (22) so far

Scout Bees
Phase

A A —

l 7}
Memorize the global best Duty

cycle achieved so far;
cycle = cycle +1

YES

Is power remains
unchanged (i.e. MCN)?

Figure 17. Flowchart of the ABC technique.

The honey bees live within the frame of the province (i.e., in the hives). The honey
bees can communicate with one another utilizing pheromone (chemical trade) and the
waggle dance. If any bee discovers the nourishment source, and it brings back some food
to the province, it trades off the food source location through a waggle dance. The strength
and span of the waggle dance demonstrate the extravagance of the food source found. The
waggling moves change from one group of species to another group.

The ABC strategy divides the artificial bees into the following three classes: employed
bees, onlooker bees, and scouts. Half of the honey bee province consists of employed bees
and another half of the onlooker bees. The objective of the entire ant group is to locate the
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optimum source of nectar, signifying the food. Initially, employed honey bees search for a
food source, return to the hive and share their data through the waggle dance moves. The
onlooker honey bees attempt to discover a food source by watching the employed honey
bee’s waggle dance, whereas scout honey bees look for new food sources haphazardly. The
communication of honey bees is subject to the quality of the food source. The likelihood of
sharing the data by employed bees is straightforwardly relative to the productivity of food
sources. In this way;, artificial honey bees communicate and coordinate among themselves
to obtain optimal solutions in a brief time [52,53].

To simplify the ABC solution process, mathematically and logically, the following
assumptions have to be considered [54]:

i.  In the solution course, the sources reached by the bees in the food search relate to
the possible optimum values. In the ABC strategy, the nectar amount is computed.
The nectar idea is utilized in light of the nature of the solution values gainedfrom the
sources.

ii.  The nectar (food) in each source must be taken by only one employer bee. For this
situation, the absolute number of food sources and employer bees are considered
equivalent.

The ABC algorithm employed the following steps to track the GMPP:

Step-1 [Initialization Phase]: Randomly build Ns food source in the search space. The larger
the group is, the better is the performance of the algorithm. To distribute all the employed
bees corresponding to each unique food source as per Equation (22), each solution X; is an
n-dimensional vector.

Xi,j = Xmin,i + rand[O, 1} (Xmax,i - Xmin,i) (22)
i=1,23,...,N;;j=1,23,...,n

where 71 specifies the number of optimization parameters; X4 ; and X,,;,, ; indicate the
maximum and the minimum value of the nth dimension, respectively.

Step-2 (Employed Bee Phase): The aim is to follow the food source position with maximum
nectar available (i.e., GMPP) in the search area. Each employed bee advances its new
position (V;;) in the proximity space using the old position value (X;) to keep safely in
memory, as per Equation (23).

WJ:XM+%KXM—XM)k:L23P”NS (23)

where X indicates the randomly selected food source other than Xj, i.e., k should be
different from ‘i’; &; indicates the random number between them [—1, 1].

When the employed honey bee investigates another food source location, it uses the
greedy selection strategy. This strategy involves a comparison of the amount of nectar
present at the old and new positions. Thus, it preserves a better solution.

Step-3 (Onlooker Bee Phase): According to the information (i.e., the nectars in the food
sources) conveyed by the employed bees to the onlooker bees with the assistance of a
waggle dance, onlooker bees perform the probabilistic selection process for the selection
of food sources (solutions). The probability of selection of each food source is computed
using Equation (24).

@:ﬁﬁﬂgﬂ:Lzauqm (24)
Yot (xi)

where f(x) represents the fitness factor as per the food resource.

Step-4 (Scout Bee Phase): As per Equation (24), scout bees can discover new promising
solutions around the selected food source. In any case, the fitness value of a food source
remains unenhanced for the given step even after the inspection of the whole search area by
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employed and onlooker bees. In the next step, the corresponding employed bees become
scout bees, and the scout bees look for new possible solutions, utilizing Equation (22).
Step-5 (Conclusion Phase): The entire procedure ceases when there is no further improve-
ment in the output power. However, when there is a fluctuation in the output power, the
process will reinitiate. The fluctuation effect can be because of solar insolation changes.
Such changes in insolation are represented by the inequality condition, represented in
Equation (25).

P,, — P,
po T Tpoold > APyy% (25)

va, old

The GMPP search will again start if the above-mentioned criterion in (25) is satisfied.
Hence, the ABC strategy can indeed distinguish the genuine MPP regardless of partial
shading conditions.

(d)  Grey Wolf Optimization Technique

The Grey Wolf Optimization (GWO) technique was advised by Mirjalili et al. in the
year 2014. The GWO strategy is inspired by grey wolves’ social hierarchy and hunting
conduct in nature [55]. Generally, grey wolves prefer to live in a pack. The average grey
wolf pack size is in the [5,12] range. Based on the social dominance attribute, the grey
wolves are categorized into four types, as per the hierarchical sequence shown in Figure 18.
At the top, Alpha (&) wolves are the pioneers and are hence considered to be the fittest
solution for a given optimization issue. Beta p’) wolves come after & wolves” and help
the & wolves in obligations. Therefore, ' wolves can substitute & wolves if they die. The
second last category consists of the delta (5) wolves, which constitute the hunters, keepers,
and explorers of the pack. Hence, ' and &' wolves stand for the second and third-best
solutions, respectively. The last category is Omega (') wolves. () wolves are the young
members of the pack, and hence represent the remaining solutions [56]. The dominance
of wolves decreases in correspondence to the decrease in the rank of wolves from the top
to the bottom in a hierarchical sequence. The primary flowchart of the GWO strategy is
depicted in Figure 19.

e Leaders

e Assist the leaders

* Hunters, Keepers
and Explorers

* Young
Memebrs

8\ O TN Q‘

Figure 18. The hierarchical sequence of grey wolves.
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Figure 19. Flowchart of the GWO MPPT algorithm.

Other than the social order of wolves, aggregate hunting also significantly involves
the social conduct of grey wolves. Based on this, the mathematical model of the GWO
algorithm considers the following measure [56]: social hierarchy, tracking and encircling,
hunting, searching, and attacking the prey as follows:

i.  Social Hierarchy:

To model the hierarchical system of wolves in the GWO technique, assume the fittest
solution as the alpha (&) followed by beta (f’) and delta (') as the second and third best
solutions, respectively. The remaining candidate solutions are supposed to be omega (w).
In this way, the hunting process is guided by alpha, beta, and delta wolves, while the
omega wolves follow them.

ii. Tracking and Encircling the prey:

During the hunting process, grey wolves usually encircle prey. The mathematical
functions stated in Equations (26) and (27) indicate the encircling process. Equation (26)

N
estimates the distance vector D of a wolf from prey.

— - = —

D = |B.Xp., (i) — Xp(i) (26)
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= - - =
Xp(i+1) = Xpg, (i) — A.D 27)

— —
where ‘i" indicates the current iteration; Xp signifies the prey vector; Xp_, denotes the
- -
grey wolf (GW) position vector; A, B are the coefficient vectors computed utilizing

Equations (28) and (29), respectively.

R
A=2dr—ad (28)
—
B =2r (29)

where 71, 72 stand for the arbitrary variables in the range [0, 1], and during each iteration,
‘d’” linearly decreases from 2 to 0.
iii. Hunting:

H

Based on the random vectors (r_l) and r;), a wolf can reach any position between the
points.

Initially, the first three finest solutions (i.e., the location of alpha, beta, and delta
wolves) are stored. As per the best solution knowledge, other searching wolves update
their position. Therefore, a grey wolf can upgrade its location in any random direction by
employing (30).

— - = =
Dy = |B1. Xa X’
— - =
D; = |Bs. Xg—x‘
— — - =
X1 =Xa — A1.Dqg
— — - =
Xy —X‘B*Az Dﬁ
— — - =

X)+ X5 + X
—
x(i+1):71+;Jr 3 (30)

iv.  Attack the prey:

As the ‘d’ linearly decreases from 2 to 0 in each cycle. Therefore, when the |A| < 1
condition is satisfied, the prey halts at a fixed position, following which the grey wolves
attack the prey.

v.  Search for a prey:

When the |A| > 1 condition is reached, grey wolves are forced to search the target.
This process depicts the exploration method, where the wolves move away from each other
in search of prey, and later move towards each other to attack the prey.

The implementation of the GWO strategy for MPPT tracking starts by assuming the
initial positions of wolves (X) and the best location (Py,) of them [57]. In this optimization
process, ‘i’ iterations are employed to determine the best position of the wolf. Hence, in
the ith iteration, there will be ith iteration values for the position of N wolf pack, i.e., XM,
X2 -+ Xgi, -+, Xn,i- Therefore, this technique focuses on determining the next iteration
value of the location for wolves (particles). In this way, the wolves get closer to their
objective, i.e., the maximum power.

(e)  Emperor Penguin Optimization MPPT Technique

Emperor penguins gather during the Antarctic winter for their survival. Thousands
of emperor penguins gather in huge colonies during breeding and spend their lives in
open ice throughout the winter season. The emperor penguins have neighbors who are
selected arbitrarily in the herd [58]. The EPO is motivated by the social gathering conduct
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of emperor penguins. They position themselves on a polygon-shaped grid periphery
during the gathering. The wind that flows around the huddle is determined to find the
huddle border line around a polygon. Since emperor penguins’ habitat is on the Antarctic
continent, the low temperature throughout the winter makes their survival difficult. They
flock in a huddle to maintain their body temperature at an appropriate limit necessary
for their survival. Gathering behavior is shown by emperor penguins only. It depends on
many attributes, for example, distance, temperature, and efficacious penguins throughout
the herd. Maximizing the ambient temperature in the huddle is the crucial motive of the
emperor penguins’ gathering [59]. The basic flowchart of the GWO algorithm is exhibited
in Figure 20.
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rand2, rand3, p, TM, C, E, SF(C).
m, T, & w

|

Generate initial values for key parameters B(x),
&
Compute their corresponding fitness values
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L ]
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~NO solution B(x+1)

v

Determine the new best optimal solution
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Observe the fitness array to establish the optimum fitness
&
display its corresponding result.
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Figure 20. Flowchart to implement the EPO strategy.
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The following steps describe the huddling conduct of emperor penguins:
i Identify and set the huddle boundary of emperor penguins’;
ii. Measurementof the temperature profile of the herd;
iii. Calculationof the distance between emperor penguins. The distance is responsible
forexploration and exploitation;
iv. The effective mover (the best optimal solution) is procured;
V. Reposition of the effective mover.

A temperature profile with different locations guides exploration and exploitation for
emperor penguins. Temperature (TM) relies on the radius of the herd polygon p as follows:

Op>1

Lp<i1 (31)

-]

Moreover, TM, a temperature parameter, identifies the exploration and the exploita-
tion as stated in Equation (32).

MX

Mo =TM = 53— Mx

(32)
where TMj indicates the temperature profile of the herd; MX symbolizes the maximum
total count of iterations; PX denotes the present iteration.

Subsequently, for the herd boundary identification, the distance between the emperor
penguins and the best optimal solution d is calculated as follows:

d = SF(C)Bey(x) — E x B(x) (33)

where SF(C) describes the social forces of emperor penguins; B(x) represents the recent
position vector of the emperor penguin; C and E are anti-collision factors between neighbors;
Bep(x) corresponds to the vector of the best optimal solutions discovered.
C and E are accountable for tuning the distance (d) and can be computed using
Equations (34) and (35).
E =rand 2 (34)

C = m(TMy +PG(te)) x rand 3 — TM (35)

where m stands for the movement parameter that upholds a gap between search agents for
collision evasion whose estimation is taken as 2; PG(te) indicates the polygon grid accuracy
by evaluating the difference between emperor penguins; rand2 belongs to (0, 1) and rand
3 lies in the interval (0, 1). SF(C) directs the way towards the best optimal hunt agent,
computed using Equation (36), and the position is updated by utilizing Equation (37).

2
SF(C) = (\/Te"@-e™¥) (36)

B(x+1) = Bep(x) —C xd (37)

where T and w indicate the restrain parameters for better exploration and exploitation. T
lies between (2 and 3), and w varies from 1.5 to 2; B(x + 1) signifies the n following the
modified location of the emperor penguin.

The steps involved in EPO execution are as follows:

Step 1: Initialize rand2, rand3, p, TM, TM,, C, E, SF(C), m, T, and w.

Step 2: Develop initial values for essential parameters like B(x). Then, estimate theirequiva-
lentfitness values.

Step 3: Set the initial best optimal solution among the initially calculated fitness values.
Step 4: Begin the first iteration by computing the new values of TMy, SF(C), PG(te), and C.
Step 5: Compute the value of d. Then, operate it in the best solution; Be,(x) function
toevaluate the newly updated solution B(x + 1).
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Step 6: Evaluate the new best optimal solution and save it in Bey(x). Furthermore, save the
corresponding best fitness.

Step 7: Check for maximum iteration count if it has not been reached. Then, replicate until
the maximum number of iterations is achieved.

Step 8: Notice the fitness array to establish the optimum fitness in it. Later,present it in the
corresponding result.

() Salp Swarm Algorithms

A salp swarm algorithms (SSA) is a recent bio-inspired meta-heuristic optimization
algorithm. The SSA strategy was suggested by Mirjalili et al. in 2017. The SSA imitates
the swarm behavior of the salps, as depicted in Figure 21. Salps are gelatinous zooplank-
ton with barrel-shaped bodies. Salps” habitat is the deep warm ocean. They move by
contracting and there by pumping water through their jellylike bodies. Salp moves by
forming chains in which the leaders show the way to the whole population while followers
follow the leaders. The forefront salps in the chain are known as the leaders, and followers
constitute the remaining salps [60]. The flowchart of the SSA technique is illustrated in
Figure 22.

= -i._ Follower Salps E
R :
-\ : C— :
Leader Salp : ~ :
: ~ !
: s N :
. 3 %
: I \ :
E _ g Follower Salp \ 1
H _ ‘ :
: / : 5
: / . :
: ) ) ) / :
' ‘\ Direction of motion . :
- e i ]
: ~ 7 1
. ) — — / H

Figure 21. Salp chain (or a swarm of salps).

Initially, update the candidate solutions for the leader and then update the followers’
candidate solutions by making use of the solutions obtained for leaders. In L, ; consider
m=1,2,...,Mandt=1,2,..., N, which signifies initial candidate solutions for the whole
chain. Here, M and N symbolize the size of the salp chain and the number of decision
variables, respectively.
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Figure 22. Flowchart of the SSA MPPT strategy.

Candidate Solution for the leaders:

The candidate solutions for the leaders are updated by employing Equation (38).
L™ = Pr+dqy((L¢™ — L )da + Ly )ds > 0.5 (38)
Lm’tnew =P —d ((Lt+ — Lt_)dz + Lt_)dg < 0.5

where Ly, /" is the updated candidate solution for Ly, ; P; is the food source position,

Ls* and L;~ signify the maximum and minimum values of Decemberision variables, d; is
adjusted duringiterations, and d, and d3 are random numbers distributed uniformly in the
range [0, 1],as per Equation (39)

dy = 2¢~ (/1) (39)

where I indicate the maximum count of the iterations, ‘i” denote the current iteration.
Candidate Solutions for Followers:
The candidate solution of the leaders assists in updating the candidate solutions for
the followers. Equation (40) estimates the new candidate solutions for the followers.

L tnew _ Lmﬂ‘ + mel,t
" — Zmt @ mm— b

, 5 (40)
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where Ly, /**“ denotes the updated candidate solution for the follower L, . In case candi-
date solutions of the whole chain violate the minimum and maximum values of decision
variables even after modification as suggested in Equations(38) and (40), there is a need
to reinitialize the candidate solutions at the respective minimum and maximum values of
decision variables [61].

Steps involved in implementing the SSA technique:

Step_1: Initialize salps” population Ly, ; such thatm=1,2,... ,M,andt=1,2,... ,N.
Step_2: Assess thewhole population

Step_3: Identifythe fittest salp, i.e., P

Step_4: Modify d; using Equation (39)

Step_b: Update candidate solutions for leaders using (38)

Step_6: Update candidate solutions for followers using (40)

Step_7: Modify the candidate solutions breaching the maximum and minimum values of
Decemberision variables

Step 8: Print the corresponding result.

(g)  Jaya Algorithm

The Jaya Algorithm (JA) was proposed by R. Venkata Rao in 2015 [62]. The JA strategy
is an easy global optimization technique. The JA assists in solving the constrained and
unconstrained issues. As there is no learning phase involved in the JA technique, it can
implement a parameter-free system, since there is no learning phase involved [63].

The JA helps in solving a specific problem by chasing the best solution while discarding
the worst solution. Furthermore, this algorithm requires few constraints like population
size, number of design variables, and the total count of generations. The flowchart of JA is
demonstrated in Figure 23.

The working rule of the JA strategy involves the following steps:

Step_1: Initialization of the population size, the total count of designed variables, and the
termination condition.

Step_2: Repeat Step3 to Step5 until the termination condition is fulfilled.

Step_3: Evaluate the solutions for the objective function.

The prime aim of the optimization problem is to minimize or maximize the objective
function (here obj_{f(y)). At the ith iteration, N indicates the total count of candidate solution
(ie,u=1,23,...,N)and M represents the total count of design variables (ie.,v=1, 2,3,

., M). Moreover, for the ith iteration count, obj_f(y)pest and obj_£f(y)worst indicate the best
and worst solutions among the individuals. Let Y}, pes; ; and Yy, yorst,i stand for the best and
worst solutions for the uth design variable at the ith iteration, respectively. The random
numbers rq 5, ; and rq ;; lie in the range [0, 1]. The random numbers aid in the movement of
the candidates. These direct candidates toward the best solution and away from the worst
solution by UtﬂiZing "u,i (Yu,best,i - |Yu,v,i|) and (_rZ,z;,i (Yu,wost,i - |Yu,v,i D)f respeCtiveIY'

Step_4: Compute the modified solution utilizing Equation (41).

Y/u,v,i = Ty, + 1,0, i(Yu, best, i — |Yu,v,i |) — 12,0, i(Yu, wost, i |Yu,v,i ‘) (41)

Step_5: Update the previous solution, if Y’;, ,; > Y’,, ,, ;. Otherwise, the previous solution is
retained.
Step_6: Display the final best solution.

The Jaya algorithm is better than conventional techniques regarding efficiency and
tracking time parameters during the PSC conditions.
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Figure 23. Flowchart of the JA MPPT strategy.

Table 2. The latest research work in the domain of swarm intelligence MPPT techniques.

Authors, Year

Control

Strategies
Parameter

Involved

DC-DC
Converter

Controller
Implementation

Findings/Remarks

L. Zaghba, et al.
[64], 2021

PSO + FLC MPPT

algorithm Fuzzy gain

Boost converter MATLAB/Simulink

In the PSO-Fuzzy method, the PSO strategy
finds the gain of the controllers.

The suggested hybrid algorithm operates at
the high tracking speed and shows low
oscillation at GMPP compared to classical
methods.

Z.E. Hariz, et al.

[65], 2021

PID
regulatory
parameters

PSO + GA + P&O
MPPT method

Buck-Boost

converter MATLAB/Simulink

In the hybrid strategy considering the merits
of P&O, PSO, and the GA methods, PSO is
applied to generate the first population of
the GA to decrease the GA technique search
space.

GA method selects the parameters of the PID
regulators to optimize the Ppy.

The proposed hybrid strategy offers fewer
ripples, stabilization, and undershoot time in
contrast to the PSO and GA techniques
during rapidly changing atmospheric
conditions.
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Table 2. Cont.

Authors, Year

Strategies
Involved

Control
Parameter

DC-DC
Converter

Controller
Implementation

Findings/Remarks

G. Krishnan,
etal. [66], 2020

Modified ACO
MPPT technique

Du
variation

Boost converter

MATLAB/Simulink

In the initial few tracking stages, the
population size of the ants is kept constant to
promote the effective food searching process.
Hence, it prevents the possibility of trapping
in the local minima.

Locations far from the immediate optimal
solution (i.e., inefficient) are removed in the
following search process. Such a reduction
process reduces the computational time.

The enhanced scheme provides a low
tracking time and small power ripples.

K. Rajalashmi,
etal. [67],2018

Ant colony
optimization
based on new
pheromone
update (ACO
NPU)

Buck-Boost

converter

MATLAB/Simulink

ACO NPU strategy refreshes the pheromone
in the midst of the search process, advancing
the ants to move towards the GMPP.

The proposed algorithm employs a sporadic
dispersal look for search progression.
Improved accuracy and tracking speed are
the advancements shown by the proposed
method compared to the traditional ACO.

C. Gonzalez-
Castario, et al.
[68], 2021

Novel ABC MPPT
strategy

Boost converter

Digital signal
controller (DSC): TI
28069M and

high-speed simulator:

PLECS RT Box

The proposed novel method requires merely
10% data of the PV module for the training
stage.

Digital implementation of the novel ABC
strategy is easy.

Two nested control loops (current loop as
internal and voltage loop as outer) aids in
regulating the Vpy, minimize the
steady-state error under varying
temperature and solar insolation conditions.

M. R. Fanani,
etal. [69], 2020

ABC MPPT
strategy

Zeta converter

PSIM Simulator

Zeta converter employment in the MPPT
framework results in high accuracy
compared to the no-MPPT and traditional
human psychology optimization methods.
Reduction in the GMPP tracking time.

F. R. Hasan,
etal. [70], 2021

GWO with
constant power
generation (CPG)
MPPT strategy

Power limit

SEPIC
converter

PSIM software

GWO MPPT-CPG algorithm prevents the
occurrence of overvoltage at the load side
during varying irradiance conditions.

J. Jayaudhaya,
et al. [57], 2020

Multi-objective
GWO method

Du

Boost converter

MATLAB/Simulink

Closed-loop control of the PV battery system
by utilizing the GWO algorithm is
implemented, which improved the power
extraction from the PV array.

M. A. Sameh,
etal. [59], 2021

EPO MPPT
strategy

Boost converter

MATLAB/Simulink

and PI controller

The consequences of the PSCs on the PV
system can be minimized by employing
optimal primary duty cycle settings.

For efficient performance of the system
under dynamic PSCs, tuning the gains of the
duty cycle, PI controller, and the
second-order amplifier (SOA) is necessary.
The proposed EPO algorithm works
effectively for system parameter
optimization.

Including energy terms in objective function
leads to enhancement in tracking speed in
contrast with the function considering only
output power terms.

Ease of implementation.
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Table 2. Cont.

Strategies

Authors, Year Involved

Control DC-DC Controller

Parameter Converter Implementation Findings/Remarks

M.N. L

Jamaludin, et al. SSIO MEPT
[71], 2021 algorithm

. The proposed algorithm works efficiently
under dynamic irradiance conditions as well
as PSC conditions.

. Merely a few steps are required to follow the
GMPP. Additionally, it has a simple structure

S to deal with dynamic conditions.
I%Aﬁg%z%gz/%%u]ggg' . SSA methods surpass the widespread
Buck-Boost controller, Code meta-heuristic strategies in all matters,
converter Composer Studio prominently in terms of accuracy and
(CCS) tracking speed.

. The consequences of the PSCs on the PV
system can be minimized by employing
optimal primary duty cycles settings.

. During various atmospheric conditions, SSO
algorithm efficiency exceeds 99%.

Du

A.F. Mirza, SSO MPPT
etal. [72],2020 strategy

. The suggested SSO algorithm is 20-30%
quicker than the standard strategies such as
PSO, CS, ABC, etc.

Buck-Boost MATLAB/Simulink, . Short settling times and fast-tracking speeds
converter Atmel ATMEGA-2560 enable the proposed scheme to save power

in a transient state.

. It also prevents ripples and over-shoot
conditions.

H. Deboucha, Modified JA
etal. [73], 2020 MPPT method

. The proposed Jaya strategy requires only a
single tuning parameter need. Hence,
algorithm implementation becomes easy,
particularly during PSCs.

dSPACE . GMPP detection involves a few iterations
Du Boost converter CP1104-TMS320F240 only, thus reducing the tracking time.
DSP . Modified Jaya algorithm eliminates the
steady-state oscillations.

. The highest achievable efficiency of the

algorithm is 99%.

6.2.2. Bio-Inspired Algorithm

The following sub-section thoroughly discusses the bio-inspired MPPT techniques.
Furthermore, the recent research work related to these methods in the MPPT domain is
encapsulated in Table 3.

(a)  Cuckoo Search MPPT Technique

The Cuckoo Search (CS) technique was suggested by Xin-She Yang and Suash Deb in
2009 [74]. The cuckoo species’ parasitic impersonation strategy (brood-parasitism) [75] is
the inspiration behind the CS strategy. Brood parasitism is the conduct of a few cuckoo
birds like Tapera. Generally, brood parasitism is classified as intra-explicit, synergetic, and
nest takeover [76]. Tapera is a wise winged animal that mirrors the host fowls fit. The fiddle
and shading tricks are a part of the host fowl strategy, hence prompting next-generation
survival. The CS technique is an efficient meta-heuristic tool for optimization purposes.
The flowchart of the CS strategy is illustrated in Figure 24.
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Figure 24. Flowchart of Cuckoo Search technique.

The cuckoo bird comes under the category of parasitic living beings. The cuckoo
lays its eggs inside the other flying creatures’ nests as opposed to constructing their nests.
Initially, the cuckoo female birds will fly haphazardly to look for the host species’ nest with
comparable egg attributes to their own. Afterward, it will pick the best nest with the end
goal that their eggs have the most obvious opportunity to bring forth and hence, produce
another age of cuckoo. The cuckoo bird will make a few attempts to help the incubating
chance by deliberately laying their eggs in a decent position. Sometimes, the cuckoo may
throw species eggs from the nest. Host birds could be easily tricked and acknowledge
the unfamiliar eggs. By chance, if the host bird finds out about the alien eggs, then the
unloading of the eggs outside the nest is sure. In the worst scenario, the host bird may
destroy the nest, destroying the alien eggs.

For implementing the CS strategy, the following three idealized standards are utilized.
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i.  Each cuckoo bird lays a single egg at a time and puts it in a haphazardly selected
host nest;

ii.  The nest withthe best high-quality eggs (i.e., the optimal solutions) will carry forward
the next generation of cuckoos;

iii. The total count of the accessible host nests is fixed in the search space. The likelihood
that the host bird will find the foreign egg is denoted by Py, which lies in the range
(0<Pr<1).

In the CS strategy implementation, cuckoo birds symbolize the particles relegated to
discover the solution. The cuckoo bird’s eggs represent the solution for the present iteration
concerning an optimization issue.

The search for the nest is equivalent to the search for food. As Lev{ flight is possibly
the most widely recognized model for choosing the walks and directions, it hence later
demonstrates certain numerical functions [77]. The Levy flight is like a chaotic walk
wherein the progression lengths have a probability distribution while steps characterize
the progression lengths. The CS algorithm utilizes the power-law to draw the progression
length from Levy distribution as per the [78].

Levy(y) = L77, (1 <9 <3) (42)

where L denotes the length of the step size, and -y represents the variance, i.e., the power-law

index. Hence, Levjj(7y) function has an infinite variance.
~i+1
Levy flight is characterized by utilizing Equation (43) to generate new solutions (x )

for a cuckoo. -

~1 .

X, = x;" +a(Levy(7)) (43)
where 1 stands for the nth particle, ‘i’ designates the iteration cycle; (a > 0) signifies the
step size related to the optimization problem; symbolizes the operator representing the
entry-wise multiplication for the multidimensional problem.

For MPPT, the Levj flight can be modified as Equation (44) to generate new voltage

samples.
i1

V=V, + & (Levy(7))
\7::rl = \751 +&. (Levy(7))
~ i a N N
Y

where \7; indicates the voltage of the nth particle at the ith iteration; K signifies the
coefficient of Levi) multiplication; and 4, b are calculated by the standard distribution curve
as depicted in (45).

y = N(o, &ﬁ); z= N(o, &5) (45)
where :
o (1"(1+')/)><sin(7r+’_y/2)>7;szl o
r(”T’V) Xy x 27

where I stand for the integral gamma function.

Levj flights are conveyed by all the particles in every iteration cycle till they discover
the GMPP. If all particles converge to a specific solution, then the tracking process will halt
as the best solution is attained.

(b)  Flying Squirrel Search Optimization Strategy

The flying squirrel search optimization (FSSO) was proposed by Nagendra Singh,
Krishna Kumar Gupta, and their colleagues in 2020 [79]. The FSSO strategy impersonates
the powerful search strategy of southern flying squirrels. Additionally, the FSSO emulates
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the squirrels” way of floating headways in the air exhibited in Figure 25. The probable
result vector and the equivalent wellness are alluded to as the stance of a flying squirrel
(FS) and are characteristic of food origin, respectively. Based on wellness worth, the stance
is grouped into three districts addressing sets of the best solution (BS) (hickory nut tree),
close to best solution (CBS) (acorn nut tree), and unplanned solution (US) (ordinary tree).

i Normal Tree

Normal Tree

Acorn Tree

Hicko;'_\'- Tree

Figure 25. Foraging conduct of flying squirrels.

The FSSO strategy exploits the collaboration feature of the flying squirrels. Moreover,
the stances of FSs are updated irrespective of the hunter’s presence. The aforementioned
cooperative feature among FSs is the reason for the convergence attribute. This strategy
guide by the following steps:

Step1: CBS moves towards the course chosen by the globally leading solution;
Step2: Part of USs progress towards the Optimum Solution (OS);
Step3: The surplus US progresses towards CBS.

The following assumptions are taken into consideration while implementing the FSSO
strategy for MPPT:
n

The aim (food point of supply) resembles the PV power yield (Ppy).
[

The choice variable, i.e., the stance, is considered a duty ratio (D) of the converter
employed in the MPPT technique.

The FSSO strategy is appropriately custom-fitted by wiping out the presence of
hunters to lessen the time to reach the GMPP.

The FSSO strategy flowchart is exhibited in Figure 26.
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Figure 26. Flowchart of the FSSO MPPT strategy.
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The FSSO strategy implementation considers the following step measures:

Starting: At first, the N number of FSs is situated at various positions. These posi-
tions in the solution arena are the precise estimations of the converter’s duty ratio per
Equation (47).

(i - 1)(Dmax - Dmin) .

D; = D,y ;
1 mm+ N

=1,23,...,N (47)

Here, ‘i’ indicate the iteration count; Dy, and D,,;,, depict the maximum and minimum
values of the converter’s duty ratio, usually taken as 10% and 90% of allowable duty in the
ratio for the boost application. The duty ratio (D;) can vary in between (0, 0.5).

Wellness Evaluation: In this progression, the converter is progressively working with
every duty ratio (i.e., the stance of every FS). For every duty ratio (D), the characteristic of a
food source represents the immediate PV power yield Ppy /(D) This progression is repeated
for all duty cycles, while the goal wellness function (F) for the MPPT is characterized as:

F(D) = max(Ppy(D)) (48)

Declaration and Categorization: The duty ratio corresponding to the maximum PV
power yield is pronounced as the hickory tree. Acorn trees are viewed as the best stances
of the FS. The left-behind FSs reside on the typical trees.

Stance update:The duty cycle update is conveyed in the wake of checking the occa-
sional observing condition. If (O- — O,,;,) the duty cycles are refreshed utilizing (i) and
(ii). From that point, wellness is assessed.

i.  Occasional observing conditions: Occasional observing conditions prevent the al-
gorithm from being caught in local maxima. For a solitary dimensional space, the
periodic consistent (O¢) and its base worth (O,,;,,) is estimated by:

OL = |X.,— X
{ C | at ht| (49)

__ _ 10e
Omin = 3651/ (im/25)

Here, X, and Xj,; address squirrels stance at hickory and acorn trees, individually;
‘i’ symbolizes the current cycle count, and i, denotes the maximum number of cycles
permitted.

The Levy distribution is employed for better hunt arena investigation. Thus, moving
the duty ratio of (FSs on ordinary trees) OTFS.

Xl = xi, +d (50)

Here, X, address the squirrel stance at ordinary tree and d indicates the step distance, and
the utilizing Levy distribution is introduced as:

d=¢e| Y| (X~ Xor) (51)
z

==

Here, v addresses the Levy index, and € addresses the step coefficient whose values are 1.5
and 1.25, individually. At the same time, y and z are decided from the standard distribution
curve, as per Equations (59) and (60).

ii.  Groove contemporized: The hickory tree squirrels abide in their stance. Although, the
acorn tree squirrels navigate to approach the hickory tree. However, the erratically
chosen squirrel ETFS from ordinary trees navigate toward the hickory tree, while the
leftover (NTFS — ETFS) is pushed toward the acorn tree. The comparing duty ratios
are refreshed as per the following conditions:
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Dzintrl = Dj; + Hehy <D;:lt - D;t) (52)
ijl = Dj; + Hehy <Di1t - Dét) (53)
Di! = Dl + Hehy (Dl — Diy ) (54)

Here H. and h; address the hovering constant and hovering distances individually. The
estimation of H. is held to 1.90 after thorough imitations. The hovering distance h; is

estimated as follows: .
h; = h
{ d Cm taII:10< (55)

— &
tan x= T,

where zj, signifies the zenith loss after hovering, its value is estimated to be 8 m; ¢, stands
for the measuring factor whose value is chosen as 18 to keep h; somewhere in the range of
0.5 and 1.11 to restrict the distress in Equations (52)—(54).Whereas, F,and F, represent the
force of the haul and the rise, individually, which are determined as:

Fy = 5pav*ACy,
56
{ FT = %pavaCr ( )

where p, is the air density whose estimation is taken as 1.204 kg/m?; v represents the
velocity of a squirrel, whose estimation is taken as 5.25 m/s; furthermore, A is the surface
area of the body, which is chosen as 154 cm?; Cy, is the haul coefficient which is chosen

as 0.6, and C, indicates the rise coefficient whose value is chosen arbitrarily between
[0.675, 1.5] [80].

iii. Convergence Resolution: If the adjustment instance of every FSs evolves into a
diminutive ratherthan an edge. Moreover, if the maximum count of iteration has
arrived, then in such a case, the improved algorithm is ended and yields the duty
cycle at the point at which the converter works while following GMPP.

iv.  Re-Initialization:As the MPPT strategy is the time variation advancement, the fre-
quently changing climate conditions harm the wellness esteem. In the circumstances
mentioned above, the FSs stances (i.e., duty ratio) will reinitialize to look for the new
GMPP once more. The duty ratio will reinitialize by accompanying the limitation
condition as inEquation (57). The reinitialization is in the wake of distinguishing the
change in insolation.

pitl _ pi '
Aﬂ%ﬁTﬂizAPOn%) (57)
PV

(c)  Owl search Algorithm (OSA)

Owls are nocturnal. Irrespective of this, they are skilled predators. They have an
auditory system with distinct anatomical features. This feature helps them to hear a sound
in one ear before the other. Hence, they can easily detect quarries’” location in the search
arena. Furthermore, time and intensity differences in sound wave arrival play a crucial
role in estimating their distance to their prey, as illustrated in Figure 27 [81]. The owl
search algorithm (OSA) simulates the owl’s hunting method, i.e., relying on the hearing
ability in the dark rather than sight to locate the prey. The OSA technique starts with a
random arrangement of owls in a search space. This arrangement represents a random set
of solutions in a p-dimensional search arena. Here, p indicates the number of variables to
be resolved. Matrix (d X p) stores the computed results, as shown in Equation (58).

Wi - Wl,p
dxp= : (58)

Wii - Wd,p
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where W, ; signifies the jy, initial position (variable) of the ny, (the owl), which is deter-
mined using a uniform distribution, as given in Equation (59):

W, =W + Rp(o,l) X (Wu — WL) (59)

where Wy;, Wy, symbolize the upper and lower bounds for the ny, owl (W,), respectively;
Rp(0,1) signifies a random number between [0, 1].

Intensity at the surface
of the sphere;

1= P/ 410r?

Sphere area
A=
&

Source power; P

er

Source

The energy twice as far from the source is
spread over four times the area, hence
intensity will become one-fourth,

Figure 27. Inverse-square law of sound intensity.

After the application of the random solution, parameter evaluation helps in tracking
the optimum solution. Thus, the evaluated parameter aids in enhancing the result in the
next cycle. The parameter updates the position of a particular n;;, owl for a specific fitness
function T, as represented in Equation (60).

(k=)
Here k, f stand for the maximum and minimum values of the fitness function output saved

up to the current iteration. The distance between the current solution and the optimum
solution for each owl is computed using Equation (61).

Cn = ||Wn/M2|| (61)

Here M signifies the best location of the prey (i.e., the optimum solution). Therefore, only
the fittest owl can reach it.
Another parameter is calculated by utilizing Equation (62).

D= 62

Lastly, for the next iteration, the position update of the owls is done by employing Equation
(63).

; Poa < 0.5

Wyt = Wy! + p x Dy |BM — Wy,! 63)
; Poa = 0.5

W't = W,,' — pu x Dy |[BM — Wy,
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where p,, stands for the probability of the quarry movement (optimum solution); § in-
dicates an arbitrary number uniformly distributed in the range [0, 0.5]; i symbolizes the
function constantly decreasing linearly from 1.9 to 0; p,, is set to zero since MPP does
not change each cycle (An = 0.0001 s). The constants § and u are chosen to be 0.5 and 1.5,
respectively [82].

(d)  Firefly Algorithm (FFA)

Fireflies are also nocturnal and have a specific light pattern that they use to communi-
cate with each other. Each species has the color of the light they produce. Attraction among
the fireflies governs the search pattern of the FFA. The FFA was developed by Xin-She Yang
while working in Cambridge in 2008. The attractiveness is equivalent to the brightness. A
dim firefly moves toward a brighter firefly. Whereas, if the brightness level of the firefly is
the same as that of a particular firefly, it will move randomly [83]. The typical flowchart of
the firefly algorithm is demonstrated in Figure 28.

-

» Initialize the firefly population

l

For each firefly: Compute the fitness value
& -+
Set the best fitness value

|

Update the light intensity of fireflies
using attraction

'

As per attractive parameters, decide
the direction of movement of fireflies

!

Organize the position of the fireflies
&
Get the fittest firefly

s Convergence criterion
met?

nitial operating conditions -
changed?

Figure 28. Flowchart of Firefly MPPT strategy.

The FFA strategy has primarily two roles of flickering,

To entice other fireflies.
To lure their prey.

The shine of the fireflies accompanied by the value of the objective function governs
the charisma of fireflies. The attraction value of y depends on the estimation of other
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fireflies. The attraction will differ in accordance with the distance (d;;) between the firefly i

and firefly j. The attraction of y can be obtained byemploying Equation (64).
a2

i = poe” P (64)

where d indicates the distance between the two fireflies; jig symbolizes the attraction when

d = 0 or the initial appeal; j lies in the range [0.1, 10]; the distance between the two fireflies
i and j at the positions r; and r; can be computed by utilizing Equation (65).

n
dif: ’ri - r]'|: ¢ 21 (Fipm — ”j,m)z (65)
m=

where r; ,, and 7} ,; denote m-components in the spatial coordinates of the ith firefly and the
jth firefly; n denotes the dimension number. Since the MPPT problem is a 1-dimensional
case, hence d = 1 is utilized. Brighter fireflies entice the dull fireflies, which govern the
movement of dull fireflies as per Equation (66).

ri=rip(ri—rj) + £<m”d B D (66)

Here £ indicates a random parameter in the range [0, 1]; rand signifies a random disturbance
value in between 0 to 1. Generally, large £ leads to the global search, whereas small £ leads
to the local search [84].

Table 3. Bio-inspired MPPT algorithms recent research work.

Authors, Year

Strategies
Involved

DC-DC
Converter

Controller
Implementation

Control

Parameter Findings/Remarks

S. Akram, et al.

[85], 2021

Direct control CS
method

. Direct control CS technique is structured by
removing the two PI controllers (i.e., voltage
and current controllers) from the traditional
CS method.

. Increment in the accuracy and convergence
speed in comparison with the direct control
method.

Du - MATLAB/Simulink

A. Raj, et al.
[86], 2021

Improved PSO
and CS MPPT
algorithms

. The combination of a soft computing MPPT
control framework with an efficient power
converter enhances the performance of the
PV systems.

. In the case of the PSCs, the examined CS
MPPT arrangement produces improved
results compared to the conventional
algorithms.

Du Boost converter MATLAB

N. Singh, et al.
[79], 2020

FSSO MPPT
strategy

. Absence of realization of predator leads to
faster convergence by the FSSO strategy.

. In most of cases, the tracking efficiency of the
proposed algorithm is highest.

. The suggested algorithm can be
implemented on different infrastructure, and
hence it is system independent.

Quasi-Z-source

Du Converter

MATLAB/Simulink

A. F. Farhan,
etal. [81], 2019

OSA + P&O
MPPT strategy

. Combining the OSA with P&O enhances the
performance of the latter.

. OSA strategy finds the duty cycle value
solutions close to the optimal one, which
aids the P&O in following the MPP quickly
and steadily without oscillations.

. Hybrid algorithm implementation cost is
equal to the conventional P&O algorithm.

Du Boost converter MATLAB/Simulink
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Table 3. Cont.

Authors,

Strategies

Control

DC-DC Controller

Year Involved Parameter Converter Implementation Findings/Remarks
The proposed hybrid scheme improves the
S.N. convergence speed and tracks the MPP
Altamimi, OSA + INC MPPT N accurately during standard temperature
etal. [87], strategy Du Boost converter MATLAB/Simulink conditions with a slight change in it too.
2021 Implementation of the algorithm is easy, and it
prevents oscillations at the MPP.
The modified algorithm eliminates the
undesirable individuals from the group and
performs the exploration process effectively.
Such a modification is possible by modifying
M. Zhang, FA + vaccine the FA strategy iteration term and by adding a
etal. [88], database MPPT Du - MATLAB/Simulink database of vaccines with immune replacement
2020 strategy progression.
The proposed scheme tracking time is less than
FA by 2-3 times.
An enhanced algorithm tracks the MPP more
accurately.
Modified FA strategy increases the
I E h convergence speed by linearly reducing the
. Farzane iy i i i
4 Modified FA L algorithm constants per iteration.
et 31(52[(? oL MPPT method Du Boost converter MATLAB/Simulink The average efficiency of the proposed method

is greater than 99.98% during the PSC
condition.

6.2.3. Artificial Intelligent (AI) Methods

The Al techniques reviewed are grouped as depicted in Figure 29. A comprehensive
review of the Al algorithms is addressed in the following sub-sections, while the latest
work related to these strategies is sum up in the tabular form in Table 4.

Artificial Intelligent Based

Algorithms
Fuzzy Logic Controller Artificial Neural Network Evolutionary Algorithm
(FLC) - 1965 (ANN)- 1943 )

Differential Evolution
(DE)- 1997

Figure 29. Reviewed Al strategy categorization.

(a)  Fuzzy Logic Controller Strategy

Genefic Algorithm
(GA) - 1975

Fuzzy Logic Controller (FLC) is a control system based on fuzzy logic which converts
analog inputs into continuous digital values of0 and 1. For each sample, the FLC strategy
analyzes the PV output power. In each case, the change ratio is more than zero. Then the
algorithm will adjust the duty cycle of the Pulse Width Modulation (PWM) to increase the
voltage. This enhancement in voltage leads to the maximum power ratio outcome to be
zero (A'p/A'v = 0). Whereas, when the change is less than zero, the algorithm modifies the
duty cycle of the PWM to reduce the voltage until the power reaches the pinnacle.
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The error and the change in error are the two inputs of the FLC algorithm. The PWM
signal controls the boost converter and serves as the output of the strategy. The two input
variables: FLC error (E) and error change (9'E), during times samples (k;), can be computed
using Equations (67) and (68), respectively.

Eipy - APpy  Ppv(k) — Ppu(k—1)
(k) = AV Vpy(K) = Vpy(k— 1)

(67)

dE(k) = E(k) — E(k — 1) (68)

Here, Ppy (k) and Vpy (k) symbolize the power and the voltage of the PV panel, respectively.

The FLC strategy consists of three steps: fuzzification, fuzzy rules, and de-fuzzification.
In the first step, the input variables transform into linguistic variables by implementing
various defined membership functions. In the next step, these variables are manipulated
based on the rules “if-then” by applying the desired behavior of the system. Lastly, these
variables are renewed to numerical variables. The membership functions are significant in
affecting the speed and accuracy of FLC [90].

FLC effectively tracks the maximum power point under different ambient condi-
tions. The FLC strategy shows less oscillation around the MPP. Moreover, its response
is faster in comparison with the conventional methods [91]. Furthermore, it has a higher
tracking efficiency in contrast to the traditional MPPT methods [92]. The block diagram
implementation of the FLC strategy is depicted in Figure 30.

--------------------------1

I
I ] ] I
] ]
I i | RuleBase | | l
I ] ] I
] ] I
l ] ] =
| _E : y : =L
- 1 1 = |
N (| Inference | | 1&l: .
CrispInput (N | Fuzzy Iuput | ngine ' Fuzzy Oufput E | Crisp Output
Data | = ) S | Data = Data
a £l
| |
|

l--------------------------

Fuzzy Logic Controller
Figure 30. FLC MPPT strategy control block diagram.

Demerits:

Difficulty in deriving fuzzy rules and this strategy is time-consuming; inability to
automatically learn from the environment; complex calculations; undesirable performance
under PSC; and fuzzy rules directly affect system performance.

(b)  Artificial Neural Network Strategy

The artificial neural network (ANN) is a collection of statistical learning models. The
ANN technique emulates the biological neural network for predicting an accurate output
per input. Neurons are the basic units of the network which are interlinked. Consequently,
neurons process the inflowing data.

A neural network has three layers: input layer, hidden layer, and output layer, as de-
picted in Figure 31. The total count of neurons in each layer is variable and
problem-dependent.
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Irradiance |

Temperature Duty Cycle
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Input Hidden Output
Layer Layer Layer
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Figure 31. Construction of the ANN.

ANN s are operated as maximum power point tracking systems to foretell the optimum
power or voltage produced at a distinct instance. The predicted value acts as a reference
that aids in determining the duty cycle. The input variables take into account the PV
module parameters and atmospheric parameters. Later, hidden layers in the network
process these input variables.

The ANN algorithm provides an enhanced method to diminish the total error (E), as
demonstrated in Equation (69).

E= 1y (0 -ty (69)

2
where I indicates the ith network; O denotes the actual output; t symbolizes the estimated
outcome.

The breeding algorithm is retrospective in nature and drives a blunder. Later, it
feeds back to the output through the input neurons utilizing the centered (covered up)
layer neurons. The total number of hidden neurons present is computed by employing
Equation (70).

Ny = S (Np+ N+ VA 70)

where Nj, stands for the count of hidden neurons; N; symbolizes the total count of the
input neurons injected in the system; N- denotes the total count of output neurons; N;
indicates the total count of training samples.

The hardware and simulation setup helps in collecting essential data. Subsequently,
the dataset is acquired by inputting solar irradiances, temperatures, PV voltage, or current
to the ANN for finding the corresponding Pmax or Vimax output.

These data are converted to the training data. Later, it passes into the designed ANN
to teach it how to perform.

Furthermore, the input data functions transform as the training data for the designed
ANN model. The ANN model teaches itself how to perform. After the training part, the
test datasets evaluate the performance of the designed ANN, and the errors are fedback to
ANN until the weights of all the neurons are adjusted accordingly.

For a particular application, the network needs to be trained by training algorithms.
Hence, the system’s overall performance relies on factors like the training process, activa-
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tion function, and the number of neurons in the hidden layer. Moreover, the quality of the
training datasets defines the accuracy of the network.

The feed-forward topology-based ANN consists of three network layers, which is
discussed in [93]. As per the simulation results, the ANN-based MPPT algorithm is more
accurate than the MPPT algorithm without ANN during solar irradiation and temperature
variation. It is proven to have a better response time and less oscillation around MPP [94].
Artificial Neural Network performance improves with an increase in the number of training
samples.

However, an accurate, standardized, and proper training set is the main limitation for
the ANN to perform optimally without a high training error [95]. ANN requires periodic
tuning to cope with the aging and degradation problem of the solar cells [96].

ANN strategy shows a fast response, fast-tracking speed, small steady-state oscilla-
tions, and there is even no need to re-program it. However, it requires a massive dataset,
which makes its implementation complex and time-consuming.

Evolutionary Computational Strategies
(a)  Genetic Algorithm

Genetic algorithms (GA) are computational models motivated by evolution.GA com-
prises chromosomes. These chromosomes encode the possible solution to a problem. Each
chromosome carries a distinct set of attributes, i.e., a solution for the application of recom-
bination operators to conserve vital information. GA operates as a function optimizer. To
date, GA has been implemented in a broad range of applications. The main reasons for the
popularity of GAs in search and optimization problems are their widespread applicability,
their global perspective, and their inherent parallelism [91]. GA helps in enhancing the PV
voltages and hence generates the maximum power transfer (Pypp). The simulation result
creates an array of data containing voltage (Vpy), power (Ppy), and current (Ipy). In GA,
Vv searches for optimized solutions represented by chromosomes, while Ppv represents
the fitness value of a particular chromosome.

The principal concept is to perform genetic alterations (selection, crossover, mutation,
and insertion) on a population of individuals. Eventually, an ideal individual is obtained,
corresponding to the maximum of the function (i.e., fitness function). The usual flowchart
of GA is depicted in Figure 32.

BEGIN

Generate initial population

Compute the fitness values of individuals

e Selection
o 5 | Generate a new
Is Convergence criterion met? o Crossover )
. population
e Mutation

Output the best individuals

STOP

Figure 32. Flowchart of the GA strategy.
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The steps of GA strategy execution are as follows:

i. Initialization: initially, an arbitrary population with N binary individuals is gen-
erated with a length Decemberision (bits number S, exactness). The population
consists of a binary matrix (71) in which the count of lines addresses the number of
individuals, whereas the column number symbolizes the length of individuals.

oL N .
POP() = & = individuals - opits @1

e  Assessment:

In this appraisal process, the possibility of an individual to be picked is decided by

the fitness function ( f 1.:) value, so it is a crucial step. In the case of MPPT, the fitness
function is the power of the PV module (i.e., Ppy). For each individual, the fitness
function is computed, and then its value is utilized to produce a new generation by
taking the current value as the parent population as per the fitness function.

o  Genetic Functioning:

The operations employed in this step are the foundation of the GA strategy. These
do not reject the probability hypotheses, yet they give fascinating tasks; these tasks
are:

1.  Selection: The selection method employed is known as the roulette wheel
selection. The probability (py) of the kth individual to be picked is computed
by utilizing Equation (72).

_ e 72

2. Crossover: In this operation, reproduction is performed by crossing the pairs
of individuals to produce the novel ones (i.e., children).

3. Mutation: In this process, mutation analogous to the biological one is ap-
plied. The alteration of one or more genes occurs in a chromosome with the
likelihood of change in the random bit from its original form.

4. Insertion: Itis a replacement process in which the new population is integrated
with the previous group of individuals. Later, the individuals withpoor fitness
function values are replaced.

e  Program End:

Eventually, the algorithm produces a new population consisting of the best indi-
viduals. The program will terminate after reaching the desired output as per the
system.

GA has relatively small oscillations and rapid convergence speed, and unlike conven-
tional MPPT, GA-based MPPT is capable of searching GMPP instead of being trapped in
the local MPP [97,98].

(b)  Differential Evolution

A Differential Evolution (DE) strategy was suggested by Storn and Price in 1996,
specifically for global optimization problems [99]. DE execution is simple as it requires
only two parameters, such as a population of particles and a maximum iteration needed to
yield the optimal result. Besides, DE has global search space. Therefore, it is employed to
follow the GMPP in the case of partial shading conditions. Moreover, the mutation stage in
each cycle utilizes distinct attributes of the particles. The flowchart of the DE algorithm is
illustrated in Figure 33.
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BEGIN

Initialize the target vector (i.e.
Duty Cwvcle; D)

11

[ Randomly select three target vectors

+

Compute power (i.e. P,) of the PV
array corresponding to the selected
duty cycles

-

Select the best values Pphoge and Dy, oo
from P, and D, respectively

-

Murtatior:: Obtain donor vector, DV,
through mutation on target vector, D,

™NO l

Crossover: Obtain the trial vector, TV, by
applying crossover of DV, with D,

$

Compute power (i.e. P,_tv) of the PV
array corresponding to TV,

+

Selecriorr: Choose the best value
among TV, and D,

+

Update Duty Cyvcle, D

Is termination criterion met?

Figure 33. The flowchart of the DE MPPT strategy.

The DC-DC converter’s duty cycle (D) is required to be regulated efficiently to operate
the PV system at the GMPP. Hence, the DE strategy utilizes the duty cycle as the target
vector, Dy.

At first, a two-dimensional target vector is initialized in DE implementation, with Dy,
as the populace for each iteration and generation, as shown in Equation (73). After one
generation, three particles are selected randomly to decrease the DE strategy execution
time.

Dgn;n=1,2,3...N (73)

Subsequently, the chosen duty cycles compute the corresponding power (P,,) of the
PV array. Afterwards, the maximum power in the set of P, is chosen as Py, and the
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relating Dy, is selected as Dy,s;. Next, a mutation factor (M) utilizes the weight distinction
between the two chosen target vectors. Later, the mutated particle, known as the donor
vector (DV}), is formed by adding the weighted deviation to the third target vector. This
interface elucidates the opposition lead between the individuals in life. Hence, the interface
promotes local learning from the distinct attributes of one another in the group. Later, this
leads to the generation of better individuals to guarantee the advancement of society.

The direction of mutation should guarantee the convergence towards Pp,;; which is
achieved by employing comparison depicted in Equation (74).

DV, — Dg,nl — M x |Dg,n2 - Dg,n3 ; Z’f Dg,nl 2 Dpest
g Dgu1 + M X |Dg o — Dg 3l; else.

(74)

where M lies in the range [0, 1].

After mutation, a process known as the crossover is employed to produce the trial
vectors (TV;) by mixing donor vectors and target vectors, as described in Equation (75). In
this process, an arbitrary number (i.e., rand), which lies in the scope of [0, 1], contrasts with
the hybrid rate HR, which lies in the range [0, 1].

(75)

[ DVy; if rand > HR
TV = { D,,; else.

Later, we estimated the powers of the PV array corresponding to trial vectors; P, ry.
Notwithstanding, after the crossover process, the value of TV, may remain the same as D,
and subsequently P, Ty is likewise equivalent to P,,. Hence, the power P,, 1y corresponding
to the duty cycle is different to that of P,, and is estimated again by employing a DC-DC
converter. This interaction assists with lessening the search time.

As forthe correlation, the duty cycle directing the optimum power is utilized as the
new TV as per Equation (76).

Dy = { PrrvIlury 2 B 76)

Therefore, the course of action is continued from the mutation production until a

convergence condition is fulfilled.

Table 4. Previous research is done in the artificial intelligence MPPT strategies domain.

Strategies

Control DC-DC Controller

Authors, Year Involved Parameter Converter Implementation Findings/Remarks
. In terms of optimization of the converter
FLC MPPT output, tracking speed, and oscillations, the
. strategy + High gain GBell function surpasses other fuzzy
T. ?Féz)l](nzoé 2elt al. Gene(rca;gifﬁl Bell PWM feed voltage DC-DC MATLAB/Simulink membership functions.
4 membershi converter . The shape of the GBell membership function
function P offers outst.anding performance for solar
photovoltaic systems.
. The proposed FLC control scheme enhances
the working of the MPPT algorithm,
W.S.E specifically for the grid-connected PV
Abdeliatif, ét al. Mgldgl (f)lrei?hi];c Fuzzy rule Boost Converter MATLAB/Simulink . %ﬁg\ ;Vggfflfzd strategy reduces the

[101], 2021

steady-state oscillations of the power,
voltages, and current, resulting in an
improvement in the framework’s efficiency.
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Table 4. Cont.

Authors, Strategies Control DC-DC Controller

Year Involved Parameter Converter Implementation Findings/Remarks

. The suggested Fuzzy control technique functions in
the stable zone all over the entire span of the PV array.
M. L. Azad, Consequently, it eliminates the fluctuations around
etal. [102], Fuzzy based Du Boost MATLAB/Simulink the MPP.
2020 Strategy variation converter e Despite the intricacies of the proposed Fuzzy strategy,
it could be efficiently executed using a
microcontroller for converters.

. The performance of a PV system can be enhanced by

) Feed-forward employing a powerful power converter and a
A.Raj,etal.  weight updating + Du Boost soft-computer MPPT soft-computer MPPT controller.

[103], 2021 INC method for converter controller e The modified strategy depicts a good steady-state
training I
response and fewer transients.

. The Levenberg-Marquardt algorithm is employed for
training purposes.
A. L Khan " . V and I are taken as input parameters and Du as an
etal. [104]: MO(ihﬁedﬁA NN Du Boost MATLAB/Simulink output parameter in the proposed algorithm.
2021 algorithm converter . The modified method precisely follows the MPP and
the tracking speed is fast compared to conventional
ANN.

. The Fuzzy logic controller is utilized as an MPPT
system optimizer, optimized by PSO and GA solvers.
. GA strategy is employed as the architecture design of
ANN-based MPPT.
M. N. Ali, ANN + e GA-ANN and GA/PSO-FLC-based MPPT techniques
etal. [105], Metaheuristic + Change of Boost MATLAB/Simulink show a noteworthy enhancement in the tracking
2021 Fuzzy—.Loglc Du converter speed and the output DC power.

Techniques . Although the modified strategies are developed for
stand-alone PV systems, it can be used for different
applications, such as irrigation purposes and for
charging an electric vehicle.

. Firstly, the GA method is exploited to track the MPP.
Lastly, to determine the optimal angle of PV array as
per the sun position in the sky.

M. Jamaiti Enh AGA Buck Boost . The PI control loop is eliminated, which is applied to

- Jamat ance Du UCK-BOOS! MATLAB/Simulink influence the duty cycle.

[106], 2021 method converter / . The suggested m}e,th}c,)d outperforms the traditional
hill-climbing strategy in respect of all atmospheric
conditions concerning the steady-state oscillation and
tracking speed.

. ACO searches the sub-space to avoid tapping in local
maxima.
K. H. Chao, . GA is executed to find a feasible solution and prevent
etal. [107], GA + ACO Du Boost MATLAB/Simulink rushed convergence. o
2021 converter e Hybrid GA-ACO convergence time is 50% less than
that of the GA and ACO techniques.
. A cross strategy is stable, accurate, and robust.

. Employing a single-axis tracker enhances the PV
panel output power.
PV panel . A PV system with a fixed array after optimizing its
spatial - MATLAB/Simulink azimuth and slope angles result in an increase in
angel annual energy production by 0.17%, whereas a PV
framework utilizing a single axis following an array
leads to an increment of about 0.92%.

er'ilA %i[}%’] Improved GA
2001 ’ strategy

M.S. . PSO-DE implementation in MPPT problems
Ahmad, . . improved the GMPP of the PV array.
etal. [109], PSO + DE v - MATLAB/Simulink . Noise is canceled in the characteristic curves. Thus, a
2021 smooth curve is obtained in the simulation.




Electronics 2021, 10, 2419

49 of 59

Table 4. Cont.

Authors, Strategies

Control

DC-DC Controller

Year Involved Parameter Converter Implementation Findings/Remarks
A WO method depicts the prominent searching
ability in a wide search zone, while the DE strategy
lessens the meta-heuristic nature and random
constant effects, resulting in a high convergence
K. G. Baby, Opt‘i/vnﬂilaetion Boost . . "SF%eeegfoposed algorithm has a high tracking speed of
et azlb%l()], (WO) + DE MPPT Du Converter MATLAB/Simulink about two to five times greater than other recent
strategies techniques, such as GWO during PSCs and dynamic
conditions.
The hybrid method is system-independent, reliable,
free from initial condition requirements, and quick in
all environmental conditions.
Single- Direct detection of the Isc is by a basic reading of the
ended PSIM Electronic Ipy through decrement and increment in solar
K.S. Tey, Improved DE Target primary- Simulation Software irradiance. i »
et azlb%ll]r MPET strategy vectors inductance and PIC18F4520 During changing atmospheric conditions, the
converter microcontroller. proposed algorithm shows a short following time and
(SEPIC) an increase in power production.

7. Comparison and Analysis

During the uniform irradiance condition, conventional MPPT techniques (i.e., P&O,
INC, FOCV, FSCC, etc.) show an efficiency of 99%. However, the traditional strategy com-
petence deceases under the PSC circumstances because of the multiple peaks in the P-V
curve. Hence, conventional tracking strategies got stuck at the local maxima. Therefore,
to overcome this problem, advanced techniques have been employed such as the meta-
heuristic approaches, hybrids, etc. The fundamental principle of the advanced strategies is
to yield the maximum power irrespective of the change in irradiation. In this review article,
a comparison between the conventional, meta-heuristic, and artificial intelligence algo-
rithms has been made. The comparison of algorithms acknowledges different parameters,
such as strategy complexity, convergence speed, tacking accuracy, PV array dependency,
etc. The pros and cons, applications, and commercial products of the MPPT techniques
are illustrated in Table 5. The comparison of some well-known MPPT strategies based on
various factors is depicted in Table 6.

Table 5. Comparison of different MPPT techniques based on: Pros, Cons, Applications, and Commercial Products.

Classification MPPT Techniques Advantages Disadvantages Applications C(I)J?:’?‘eiziéal
Straight-forward design;
Perturb and observe ease in execution; and Less efficient; oscil}ates Genasun GV Boost
(P&O) ‘work for both around MPP during Stand-alone charge controller
grid-connected and steady-state with MPPT
stand-alone systems
Incremental GO.Od p erforman.ce Implementation is
conductance during fa}st—changmg complex; needs a high Stand-alone -
weather circumstances; . :
(INC) d : P computational capacity
Conventional and good noise rejection
Fractional ) o N Power loss due to
open-circuit voltage Simplicity; utilizes only mtgrrupted system Stand-alone -
(FOCV) one feedback loop operation when the entire
control range is scanned
Less efficient;
Fractional One feedback loop is short-circuit current
short-circuit current employed; and easy proportionality factor Stand-alone -
(FSCQ) computation varies with the PV

module parameters




Electronics 2021, 10, 2419 50 of 59
Table 5. Cont.
Classification MPPT Techniques Advantages Disadvantages Applications C(I),I::)Igszgal
Fast computational
capability; MPP location Morningstar-
Particle swarm for any so;ic of P;\t/hcurve Slow tracking speed; and Trackstar MPPT
optimization regar isi N d?t' initial parameters need to  Grid-connected charge controller,
(PSO) eng:;?g;nee;ﬁyclgrcla’:egns be selected carefully Solar Electric Supply
good dynamic response; (USA)
and reliable
Ant colony Convergence Sl\é[—cl)\l;lrf’lg%—sltgi
optimization 1ndepe;d ent of mcitlal Difficult Implementation Grid-connected SunSaver 15 Amp
(ACO) conditions, an MPPT Solar Charge
convergence rate is fast Controller
Independent of the initial Morningstar SG-4
Artificial bee colony  condition; Fewer control . . SunGuard 4.5 Amp
(ABC) constraints; and a high Complex Implementation ~ Grid-connected PWM Charge
tracking speed Controller 12 V.
CuckE)CoSs)earch Higt}:l ﬁgﬁg%ﬁ%;ﬁ;&wer Unspecified parameters Grid-connected -
Metaheuristi Grey wolf Highly efficient, transient  Initialization is complex;
etaheuristic optimization oscillation elimination, more unknown Grid-connected -
(GWO) and fast constraints
Flying squirrel search Faster convergence, When c.limat@c. conditions
X . & change; re-initialization is .
algorithm Highly efficient, Jed h for th Grid-connected -
(FSSA) system-independent needed to search for the
4 p new GMPP
Emperor penguin It can be employed to
optimization optimize the parameters Initialization dependent Grid-connected -
(EPO) of other algorithms.
Salp swarm . S
algorithm Hllglhlﬁlefﬁment, fast; Computational burden Grid-connected -
(SSA) ighly accurate
Free from strategyspecific
Jaya Algorithm parameters; single Random numbers could : _
Jga) learning phase; few lead to negative solutions Grid-connected
control parameters
. Simple computation; can
Owl sea(r(c)léil)gonthm be used to optimize other  Initialization dependent Grid-connected -
method parameters
Easy computational steps; -,
Firefly algorithm can be implemented Th_e position Of. each .
. firefly varies in a Grid-connected -
(FFA) using low-cost stepwise manner
microcontrollers
A precise mathematical Morning
model is not required
. . A Hardware star-Trackstar MPPT
Fuzzy };ﬁlé)control nl(;o(;iilii r{z;;gn:;:;rf;% implementation cost is Grid-connected charge controller,
bk ’ high Solar Electric Supply,
systems lacking proper USA
models
Good dynamic Small steady-state Morning
Artificial neural performance, oscillation; require other star-Trackstar MPPT
Artificial network fast; tracking accuracy is algorithms for neural Grid-connected charge controller,
Intelligence (ANN) good; no need to be training; periodic tuning Solar EleI.CItSriAC Supply,

re-programmed

required

Genetic algorithm
(GA)

It can be utilized for
optimizing parameters of
other algorithms such
asFLC

Hardware required for its
implementation is costly

Grid-connected

Differential evolution

Convergence
independent of initial
conditions; and fast
convergence

Optimal solution not
guaranteed

Grid-connected
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Table 6. Comparison of MPPT Techniques.
Algorithm MPPT Complexity of Imcloe s];gf‘ta_ Tracking Tracking Analog/Digital Sensed S;;:iey- PV Array

Category Algorithm Algorithm P tion Speed Accuracy &/L1g Parameters Oscillation ~ Dependency
P&O S AFF Slow L A/D V1 La N
C tional INC M EX Moderate M D \A M N
onventiona FOCV S INEX Fast L A/D \% La Y
FSCC M INEX Fast L A/D I M Y
PSO M AFF Moderate M A/D Vv, 1 Var. N
ACO S INEX Fast M D vV, 1 ~Z N
ABC M-C EX Fast M D Vv, 1 ~Z N
CS S-M EX V. Fast H D Vv, 1 ~Z N
M GWO S AFF Moderate H D V, 1 ~Z N
heta FSSO M EX Fast H D V1 ~Z N
euristic EPO C INEX Fast H - Du, T - N
SSA S AFF V. Fast H D Vv, 1 ~Z N
JA S INEX V. Fast H D \% ~Z N
OSA S INEX Fast H - - ~Z N
FFA S AFF Moderate H D V, 1 ~Z N
FLC C AFF Fast V.H D Var. ~Z Y
Artificial ANN M-C EX Moderate V.H D Var. ~Z Y
Intelligence GA C EX Moderate M-H D Var. ~Z N
DE M AFF Moderate M-H D Vv, 1 ~Z N

Note: S—Small, M—Medium, C—Complex, AFF—Affordable, EX—Expensive, INEX—Inexpensive, V.—Very, L—Low, H—High,
A—Analog, D—Digital, V—Voltage, I—Current, Du—Duty Cycle, T—Temperature, Var.—Varies, La—Large, ~Z—Almost Zero,

N—No, and Y—Yes

The parameters considered for evaluation are as follows:
i.  Algorithm Complexity

MPPT technique efficiency relies immensely upon its implementation complexity. It
decides the accuracy of the computations carried out by the strategy to follow the MPPT.
Consequently, the algorithms consisting of simple calculations, such as FSCC, FOCYV, etc.,
have good competence under uniform irradiation conditions, and their execution rate is
fast. However, advanced techniques, such as meta-heuristic and artificial intelligence, have
complex algorithm designs.

ii.  Implementation

While designing the PV framework, choosing the MPPT technique was a crucial deci-
sion. This decision also takes into account the ease in execution of algorithms. Nonetheless,
it profoundly depends on the user’s interest and his knowledge of MPPT handling since
some may like to manage analog circuits while others may be more skillful in handling com-
puterized systems. Moreover, the MPPT algorithm implementation relies on the count of
sensors utilized, the cost, design complexity, and other equipment necessities. Furthermore,
some MPPT algorithms require a particular topology for their implementation. Hence, the
user should be familiar with the various implementation topologies of the algorithms.

iii. Cost

The necessity of sensors is more pronounced when climatic conditions change sud-
denly, as the requirement of sensors and hardware increase in such cases. Additionally,
some MPPT algorithms require current measurements. Hence, such strategies must invest
in the high venture for its hardware execution as current sensors are costly. Furthermore,

the expense of MPPT technique implementation relies upon selecting the circuits, as digital
courses are expensive compared to analog ones.

iv.  Following and Convergence Speed

Solar irradiance does not remain constant throughout the day as it varies accordingly
with the rapid climate changes. Hence, in such a case, partial shading phenomena may be
more pronounced. The PSC leads to multiple peaks in the solar P-V characteristics. Because
of this, there is a decrease in the tracking speed and convergence speed of the PV framework.
The conventional techniques cannot track the true maxima in a single step because these
strategies need iterative advances that sense, compute, and perturbed to follow the GMPP.
Therefore, traditional algorithms have a slow tracking speed and advanced techniques like
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PSO, FLC, etc., are much more efficient for PSC cases. Furthermore, it is essential to take
the tracking and convergence speeds into account when designing PV systems.

8. Simulation Results

The Cuckoo Search (CS) and Jaya algorithm (JA) are implemented in MATLAB
Simulink software version 2021a.Eventually, the output of the system was measured for
varying solar irradiance. The characteristics of the PV module employed in the simulation
are listed in Table 7.

Table 7. Specification of the PV module.

Parameter Value
Number of PV module 4
Maximum Power (Pypp) 35.97 W
Cells per module (Ncj) 36
Open circuit voltage (Voc) 214V
Short-circuit current (Isc) 23A
Voltage at MPP (Vypp) 165V
Current at MPP (Iypp) 218 A
Temperature coefficient of Vo —0.76 (%/°C)
Temperature coefficient of Is 0.7 (%/°C)

The first simulation was performed by taking solar irradiances of the four panels as
1000, 1000, 300, and 300 W/m? at a temperature of 25 °C. The results of the simulation for
CS and JA strategies are illustrated in Figures 34 and 35, respectively. The oscillations from
the start of the simulation settle down when the optimum power point gets tracked.

The simulation results indicate that JA tracks the maximum power point at 0.7 s,
whereas the CS strategy tracks it at 1.2 s. The difference in tracking time signifies that the
JA algorithm tracking speed is faster than the CS strategy. Furthermore, the JA strategy
tracked down the global optimum power point as 67.57 W. However, the CS technique
tracked the MPP as 45 W, which indicates that it is stuck in the local optimum power point.
Thus, the JA strategy is more accurate than the CS technique.

45 T —T T T T T T 45.00 W
15 | 1 | | - - GMPP Tracked T 1

! : : - T : = 2121V

1 — Voltage (V) | ]
1 1

i-

1
1
20 ™
10 T T
1 1
! 1 1 1 1 L ! 1 1

2 — ! ! i : - : = 2124
! I [ l [ T 1 T [—current (1]

0 1 1 1 1 1 1 1 1 1

T
0 I . — r T 1 : T 0.10

(1] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Figure 34. Output power, voltage, and current curve of a PV panel with variations in irradiance as
per the first set, and duty cycle curve controlled using CS algorithm.
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Figure 35. Output power, voltage, and current curve of a PV panel with variation in irradiance as per
the first set, and duty cycle curve controlled using the JA algorithm.

For the second simulation, insolation levels of 1000, 800, 600, 400 and 300 W/m? were
adjusted to the PV panels. Each panel was set to a temperature of 25 °C. The curve for
the variation of the power, voltage, current, and duty cycle with respect to time for the CS
algorithm is depicted in Figure 36. The graph for the power indicates that the maximum
power tracked was 30.36 W, which is less than the one followed in the first case at 1.2 s.
Moreover, the time taken to locate the MPP by the CS strategy is approximately the same
in both cases.

30 T T m T T T T 30.36 W
oY ™~ |
Ll J J GMPP Tracked
0 1 1 1 1 1 1
20 o T 1 T 1 T 1739V
15 \1 J 1% ; -
10 = Y oltage (V)
7 e
0 1 1 I 1 I 1
. ; - T T T T T 174 A
TEN LY [ ]
1 = Current (A)
osk—
0 U] I I I I I
1 T T T T T T
J-L __— Duty Cycle
0.5 f
0 Lrl—l-"' 'l 1 1 1 1 0.159

[=3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (s)

Figure 36. Output power, voltage, and current curve of a PV panel with variation in irradiance as per
the second set, and the duty cycle curve was controlled using the CS algorithm.

9. Future Research Work Recommendations

In this article, nineteen cutting-edge MPPT strategies have been reviewed and com-
pared based on different parameters. Moreover, the advantages and disadvantages of each
algorithm have been comprehensively discussed, and later, the information was arranged
in tabular form. Currently, the PV MPPT algorithm counts exceed more than a hundred,
and each year more than five new optimization algorithms are published. Such extensive
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research works to open the wide area for further reviewing the MPPT algorithms. Hence,
this article updates the review articles by analyzing and assessing the well-known methods
along with some recent strategies. Additionally, this work presents the latest findings in
each algorithm field in the tabulated format.

In the future, the research study can be updated by including;:

i.  Ananalysis of the accuracy of the MPPT techniques during the hot spot process. Since
the last Decemberade, the hot spot has emerged as one of the prominent problems
affecting the efficiency of the MPPT algorithms.

ii.  For the real-time assessment of the MPPT algorithms, the time period should be about
one week/month.

iii. Moreover, hybrid algorithms can be examined in the future. Asfor now hybrid strate-
gies are ina boom, these methods avoid the disadvantage of two or more algorithms
being taken into account. Thus, a combination of different algorithms complements
each other.

10. Conclusions

This analysis gives a thorough review of various optimization techniques used in
MPPT, which can be classified into three groups: Conventional, Meta-heuristic, and Artifi-
cial Intelligence. This article comprises a comprehensive description of operating measures,
along with a flowchart depiction of each MPPT strategy. Later, based on the reviewed arti-
cles, different MPPT strategies with some more recent ones are assessed while considering
the specific factors. The acknowledged factors are algorithm complexity, tracking speed,
cost of implementation, sensed parameters, monitoring accuracy, PV array dependency,
steady-state oscillation, and analog/digital.

Furthermore, the pros and cons of the MPPT methods are discussed and are later mus-
tered in the tabulated form. Besides, this study suggests that employing MPP controllers
is the best way to tackle PSC problems. Hence, this has paved the way for a vast area of
research.

The conventional techniques discussed work fine under uniform irradiance conditions
and have less algorithm complexity. However, the classical algorithm tracking speeds are
slow when compared to the advanced ones. Furthermore, nowadays, intelligent strategies
are more pronounced, as these techniques give the best results during PSCs. Furthermore,
intelligent algorithms provide ease in data storing and are independent of mathematical
computations. On the other hand, meta-heuristic techniques, which are bio-inspired, are
compatible with any solar PV system. These strategies require no prior knowledge of the
PV panel parameters. To encapsulate, this review article will be a valuable reference for an
analyst or a researcher in selecting an MPPT strategy for an explicit purpose.
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