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Abstract: Convolutional neural networks and the per-pixel loss function have shown their potential
to be the best combination for super-resolving severely degraded images. However, there are still
challenges, such as the massive number of parameters requiring prohibitive memory and vast
computing and storage resources as well as time-consuming training and testing. What is more,
the per-pixel loss measured by L2 and the Peak Signal-to-Noise Ratio do not correlate well with
human perception of image quality, since L2 simply does not capture the intricate characteristics
of human visual systems. To address these issues, we propose an effective two-stage hourglass
network with multi-task co-optimization, which enables the entire network to focus on training
and testing time and inherent image patterns such as local luminance, contrast, structure and
data distribution. Moreover, to avoid overwhelming memory overheads, our model is capable of
performing real-time single image multi-scale super-resolution, so it is memory-friendly, meaning
that memory space is utilized efficiently. In addition, in order to best use the underlying structure
and perception of image quality and the intermediate estimates during the inference process, we
introduce a cross-scale training strategy with 2×, 3× and 4× image super-resolution. This effective
multi-task two-stage network with the cross-scale strategy for multi-scale image super-resolution is
named EMTCM. Quantitative and qualitative experiment results show that the proposed EMTCM
network outperforms state-of-the-art methods in recovering high-quality images.

Keywords: CNN; per-pixel loss; HVS; EMTCM; multi-task co-optimization; cross-scale training

1. Introduction

Image super-resolution (SR) is the process of recovering a high-resolution (HR) image
from a low resolution (LR) image. This important computer vision task has found many
real-world applications, including medical imaging [1–3], surveillance and security [4–6].
Despite the considerable success in CNN-based SR methods [7–14], they face the follow-
ing issues:

(1) How HR images are degraded is unknown and the degradation process can be
affected by various factors (e.g., defocusing, compression artefacts, anisotropic degrada-
tion, sensor and speckle noise). This makes learning to map from LR to HR images an
ill-posed problem, since there exist infinitely many HR images that can be downscaled to
the same LR image [15]. In other words, the number of possible functions mapping LR to
HR images can be extremely large, thus severely limiting learning performance. Moreover,
the solution space increases exponentially with the increase of scale factors. High magni-
fications aggravate the problem of networks’ time and resource consumption. Although
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generative adversarial networks (GANs) can improve the performance of single image
super-resolution (SISR) [16], they suffer from training instability. Efforts have been devoted
to stabilizing GAN training, such as introducing various regularization terms [17–19], han-
dling complex losses [16,20,21] and adding training recipes [22]. However, these models
usually have an enormous number of parameters, require vast computing and storage
resources and have long training and testing time.

(2) Despite the successful collaboration between the CNN and per-pixel loss (L2), there
exist some limitations. The L2 measure correlates poorly with image quality perceived
by a human observer [23]. The use of L2 assumes that the impact of noise is independent
of the local characteristics of the image. However, the sensitivity of human visual sys-
tems (HVS) [24] to noise depends on local luminance, contrast and structure [17]. Moreover,
the L2 loss should be considered under the assumption of white Gaussian noise, but the
validity of this assumption is generally unknown.

To resolve the above issues, we develop an effective multi-task two-stage network with
a cross-scale training strategy for multi-scale image SR. The proposed network is called
EMTCM, which is memory-friendly since memory space is utilized efficiently. Our EMTCM
network is able to gradually extract features, thereby decreasing channel dimensions
and reducing the time of training and testing, while achieving real-time image SR. The
contributions of this work are three-fold, summarized as follows.

First, We propose a simple yet effective SISR model, which is scalable and has the best
combination in terms of functionality for image SR. Our EMTCM network goes beyond the
widely used bicubic degradation assumption. It can be readily implemented in real time
and works for multi-scale SR in a two-stage hourglass model, thus making a substantial
step forward in developing a CNN-based super-resolver for real-world applications.

Second, we propose a multi-task co-optimization method without calculating pixel-
wise L2 loss for training and optimizing the entire network. Specifically, this method
focuses on local huminace, contrast, structure and fitting data distribution. It not only
improves the performance of the quantitative metric, Peak Signal-to-Noise Ratio (PSNR),
but also produces visually desirable results on LR images.

Third, with a memory-friendly encoder, a recovery decoder and the cross-scale training
strategy, the proposed EMTCM network can avoid large amounts of memory overheads
and attain strong performance. As the memory-friendly encoder can gradually learn high-
frequency feature maps, channel dimensions are decreased. In order to solve problems of
the local receptive field, we impose a sufficient number of convolution layers with a long
skip connection operator to capture an input image’s high-level information.

2. Related Works

CNN-based methods: SRCNN [25] was the first work to use CNN to solve SISR, which
has a three-layer. C.Dong et al. [26] explored the impact of depth on SISR and empirically
showed that the difficulty of training deeper model hinders the performance improvement
of CNN super-resolvers. To address those problems, VDSR [7] with residual learning
strategy was proposed. At the same time, VDSR can handle multi-scales super-resolution
in a single model. Furthermore, Zhang et al. [27] showed that CNN-based methods mainly
model the prior information and they empirically demonstrated that they can handle
multi-scales super-resolution in a single model. Nevertheless, in spite of the achieved
superior performance compared to the state-of-the-art methods, those methods not only
suffer from overwhelming memory overheads but also hinder the effective expansion of
receptive field.

To avoid overwhelming memory overheads, some researchers directly applied an
end-to-end network that took original LR images as input and adopted an upscaling op-
eration at the end of the network. A deconvolution layer at the end of the network to
perform upsampling was adopted by Dong et al. [28]. An efficient sub-pixel convolution
was proposed by Shi et al. [29] to upscale the LR feature maps into HR images. A Lapla-
cian pyramid SISR network (LapSRN) [13] that took an original LR image as input and
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progressively predicted the sub-band residuals with transposed convolutions in a coarse-
to-fine manner. To improve the HVS at a significant scale factor, a generative adversarial
network [30] based super-resolution (SRGAN) method was proposed by Ledig et al. [9].
However, CNN-based methods or GANs and SISR suffer from notoriously difficult super-
resolution on the problem of overwhelming memory overheads, training instability.Various
CNN-based methods for SISR are always used to solve the widely-used settings of bicubic
degradation, thus neglecting their limited applicability for practical scenarios. However,
model-based optimization framework [31–33] can go beyond bicubic degradation. For
example, Zhang et al. proposed [33], which can address the widely-used Gaussian degra-
dation as in [34]. However, the above methods cannot solve different scales that result in
difficult training and testing. Thus, it is desirable to learn a single and real-time SISR model
which can address multi-scales. This paper attempts to give a positive answer.

Pixel-wise loss: The loss layer, despite being the effective driver of the network’s
learning, has received little attention from the image processing research community. The
choice of the cost function generally defaults to the squared L2 norm of the error [25,35,36].
This is understandable, considering many desirable properties that this norm possesses.
There is also a less well-founded but just as relevant reason for the continued popularity of
L2, that is, standard neural network packages, such as Caffe [37], only offer implementa-
tions for this metric. However, with the development of other frameworks (e.g., Pytorch
and Tensorflow), we can impose a multi-task co-optimizing strategy to further improve
the performance of SISR. Wang et al. [38] apply SSIM, observing that the scale at which
local structure should be analyzed is a function of factors such as the image-to-observer
distance. To account for these factors, they propose MS-SSIM, a multi-scale version of
SSIM that weighs SSIM computed at different scales according to the sensitivity of the HVS.
Experimental results show the superiority of SSIM-based indexes over L2. However, the
SSIM does not provide quantitative improvement. We thus design a multi-task training
strategy that can meet the requirement of quantitative and qualitative improvement.

3. Methods

Our single image super-resolution is composed of a two-stage hourglass network,
including a memory-friendly encoder and recovery decoder. Here we impose a deconvolu-
tion layer that achieves 2×, 3×, 4× super-resolution, yet our methodology can be applied
for higher upsampling goals. As aforementioned, we bootstrap the super-resolution process
by a multi-task co-optimizing method to focus on different inherent patterns of an image
such as local luminance, contrast, structure and fitting the ground-truth data distribution.
Meanwhile, we impose cross-scale training strategy to improve performance further. Our
memory-friendly encoder approach progressively extracts high-level feature maps and
decreases the channel dimension, thus avoiding the overwhelming memory overheads.

3.1. EMTCM

Inspired by [28], we choose the CNN-based method as our basic approach. However,
in the supervised model based on traditional image SR such as SRCNN, the image needs
to be processed and interpolated to the desired size, and SRCNN model learns mapping in
high dimensional space, leading to time-consuming and computing-consuming problem.
Therefore, we create an end-to-end EMTCM to solve aforementioned weakness. As shown
Figure 1, our overall network is a two-stage hourglass architecture, including a memory-
friendly encoder and a recovery decoder. What is more, we impose a number of residual
blocks with long skip connection in order to solve the problem of CNN’s local receptive
field and enhance the capability of model feature representation.
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Figure 1. Overall framework of proposed two-stage EMTCM methods. The architecture of EMTCM is composed of two
networks, Memory-Friendly Encoder and Recovery Decoder.

A Memory-Friendly Encoder: as shown in Figure 1, our memory-friendly encoder
consists of two stages—Coarse Extractor G and Memory Friendly Module F. Each stage
stacks several convolution layers. Coarse Extractor G is a coarse network, which is a
network with a simple structure and can restore a coarse HR image. Specifically, the
module G takes the original LR image ILR as input without interpolation, performs a series
of convolutions and extracts coarse feature maps. The coarse feature maps are treated as
high-dimensional feature vectors, leading overwhelming memory overheads. Therefore,
the high-dimensional feature vector can be formulated by:

FHV = G(I
LR
) (1)

where G(·) denotes the coarse extractor operation, which consists of a series of convolution
layers, I

LR
is the degraded low-resolution image and FHV denotes the high-dimensional

feature vectors extracted by G, serving as the inputs to the memory-friendly module.
As aforementioned, our EMTCM model takes the original LR image as the input

through G with a sufficient number of convolution layers, thus becoming high dimen-
sional vectors. The convolution operators result in a prohibitive memory of EMTCM.
Therefore, we apply a memory-friendly module F that gradually extracts higher feature
maps while decreasing the channel dimension. The low-dimensional feature vectors can
be formulated by

FLV = F(FHV) = F(G(I
LR
)) (2)

where FLV is given by the function F(·) which takes FHV in (1) as the input and gradually
extracts higher information while decreasing the channel dimension.

As aforementioned, even though we impose an end-to-end architecture to infer the
overall network, the LR image is extracted by high-dimensional feature vector, leading
prohibitive memory. Therefore, we apply two coherent efforts and innovations to avoid
the problem of notoriously prohibitive memory. On the one hand, a naive option directly
takes raw pixel without any interpolation as input, but it still cannot sufficiently solve
the problem of overwhelming memory and computation. On the other hand, we build
a memory-friendly module to fix the weakness of the first effort. EMTCM with mutual
collaboration between en-to-end network and memory-friendly can solve prohibitive
memory and computation.

Recovery Decoder: as shown in Figure 1 right, we propose a recovery decoder, fol-
lowing the memory-recovery encoder, including mapping module M, recovery module
R and a deconv layer De. In mapping module, we impose a sufficient number of CNN
to capture more context information of LR in order to avoid the inherent weakness of
local receptive field of CNN operation. However, that could cause the loss of feature
resolution, fine details and gradient vanishing or gradient exploding. Another parallel way
to effectively address the above issue is to apply a residual block with long skip connection.
By doing so, we can capture more high-level information to guide the network to generate



Electronics 2021, 10, 2434 5 of 12

super-resolver results. Meanwhile, we can relieve the inherent weakness of CNN. Here we
define M function, as below:

FHL = M(FLV) = M(F(G(ILR))) (3)

where FHL is given by the function M(·) that maps FLV in (2) to FHL. FHL is the high-level
information and the foundation of our multi-task co-training strategy.

As the following, we apply a recovery module R after the M module. In R module, we
aim to increase the channel dimension of low-dimensional feature map vectors. Although,
M module reduces the channel dimension of high-dimensional feature vectors for the sake
of the computational efficiency, if we generate the HR image directly from low-dimensional
feature vectors, the final performance quality will be poor. Therefore, we apply recovery
module to boost performance further. It is defined as:

FR = R(FHL) = R(M(F(G(ILR)))) (4)

where R denotes the recovery module function. FR is obtained by function R(·) that
recovers the resolution of the feature maps. FR is significant for attaining final visual super
resolution images.

The last module is Upsampling Operation. The operation is the learning based on
upsampling Transposed Convolution Layer De, also known as deconvolution layer, which
tries to perform a transformation opposite a normal convolution, i.e., to predict the possible
input based on feature maps of the output size of convolutional layers. Specifically, it
improves the image resolution by expanding the image by inserting zero values and
performing convolution. Since the transposed convolution layer can enlarge the image size
in an end-to-end manner while maintaining a connectivity pattern compatible with vanilla
convolution, we impose deconv as learning-based upsampling method. Then the output is
directly the reconstructed HR image. The deconvolution layer learns a set of upsampling
kernels for the input feature maps. These kernels are diverse and meaningful. If we force
these kernels to be identical, the parameters will be used inefficiently (equal to summing
up the input feature maps as one). The final result is expressed as:

ISR = De(FR) = De(R(M(F(G(ILR))))) (5)

where De denotes the Transposed Convolution Operation and ISR is the final output of the
EMTCM model.

3.2. Multi-Task Co-Optimization Strategy

Image super-resolution tasks in the SISR domain benefit from the currently best
collaboration between CNN-based and pixel wise loss. However, the collaboration seems
like not the best partner in SISR. This is because there are some disadvantages to both
of them. Meanwhile, in the span of just a couple of years, neural networks have been
employed for virtually every computer vision and image processing task known to the
research community. Much research has focused on the definition of new architectures that
are better suited to a specific problem. A large effort was also made to understand the inner
mechanisms of neural networks and what their intrinsic limitations are. However, loss
function as an effective driver of network’s learning has attracted little attention within
the SISR research community: most CNN-based methods impose pixel wise L2 loss. Note
that L2 loss and the Peak Signal-to-Noise Ratio, PSNR, do not correlate well with human’s
perception of image quality: L2 is a single-task to just optimize PSNR. Here, we introduce
a multi-task co-optimizing strategy to fix the aforementioned weakness. Interestingly,
adding the multi-task co-optimizing strategy can improve performance. Therefore, that
makes it a natural idea to incorporate multi-take co-optimizing strategy into EMTCM,
which may help it capture more useful and meaningful information. Specifically, we
construct a multi-task of super-resolution, instead of L2 loss. That makes EMTCM focus on
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inherent pattern of images, including local luminance, contrast, structure and fitting the
ground-truth data distribution.

HVS task: Human visual system correlates well with inherent pattern of images,
including local luminance, contrast and structure. Moreover, SSIM loss can force the
overall network to focus on inherent pattern of images and is proven effective in recovering
high-field images. Hence we introduce the SSIM loss to generate realistic images. We
define the SSIM loss as:

LHVS(θEMTCM, X) =
N

∑
n=1

1 − SSIM(X, X̂) (6)

where the network EMTCM is parameterized by θEMTCM, SSIM(X, X̂) is a spatial similarity
map between X and X̂. X is ground-truth HR image and X̂ is the last step to finally
output ILR.

Fitting ground-truth data distribution task: Another task co-optimizing is to fit ground-
truth data distribution. In order to fix the weakness of SSIM loss, we introduce Cross
Entropy Loss as fine-tuning strategy to fit the distribution of HR. We define Cross Entropy
Loss, as follows:

LFD(θEMTCM, X) = −∑
n

pX(n) log p̂X(n) (7)

where pX denotes the ground-truth probability distribution of image , p̂X stands for the
output probability distribution produced by EMTCM based on X. n stands for batch size
of training data.

Multi-task co-optimizing strategy: the combination of two losses can achieve the goal
of multi-task co-optimizing and improve performance further. Based on the two tasks and
loss introduced above, we define the overall loss of our EMTCM super-resolution model
as follows:

LEMTCM(θEMTCM, X) = LHVS(θEMTCM, X) + βLFD(θEMTCM, X) (8)

where LEMTCM(θ_EMTCM, X) is the multi-task co-optimizing overall loss of EMTCM, β
is a trade-off parameter that balances overall objective loss in order to fine-tune model. We
set the β = 0.0001.

4. Results
4.1. Datasets

We conduct experiments on two widely used datasets: 91-images and General-100.
Specifically, 91-image has 91 images and General-100 dataset contains 100 bmp-format
images (with no compression). The size of the newly introduced 100 images ranges from
710 × 704 (large) to 131 × 112 (small). They are all of good quality with clear edges but
fewer smooth regions (e.g., sky and ocean), thus they are very suitable for the training.
However, as deep learning generally benefits from big data, 91-image and General-100
are not enough for training phase. In order to address data-hungry, we carry out data
augmentation as in [39]. We augment data 19 times for both datasets from scaling and
rotation two ways. (i) Scaling: each image is downscaled with the factor 0.6, 0,7, 0.8 and
0.9. (ii) Rotation: each image is rotated with the degree of 270, 90 and 180.

To prepare the training data, we first downsample the original training images by the
desired scaling factors to form the LR images. Then we crop the LR training images into a
set of f × f-pixel sub-images with a stride n. The corresponding HR sub-images (with size
((s f 2)) are also cropped from the ground truth images. These LR/HR sub-image pairs are
the primary training data. Test and validation datasets: we select Set5, Set14, BSD200 as
test datasets. Another 20 images from the validation set of the BSD500 dataset are selected
for validation.

Metrics: PSNR and SSIM are of the most popular metrics in super resolution. Therefore,
we adopt them as performance measures and compute them on the Y channel of YCbCr.
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4.2. Implement Details

Training Datasets Strategy: We adopt the 91-image dataset for training. In addition,
we also explore a two-step training strategy. First, we train a network from scratch with
the 91-image dataset. Then, when the training is saturated, we add the General-100 dataset
for fine-tuning. With this strategy, the training converges much earlier than training
with the two datasets from the beginning. When training with the 91-image dataset, the
learning rate of the convolution layers is set to be 10−3 and that of the deconvolution layer
is 10−4. Then during fine-tuning, the learning rate of all layers is reduced by half. For
initialization, the weights of the convolution filters are initialized with the method designed
for PReLU. Meanwhile, we set β = 0.0001 for trade-off parameter to fine-tuning further.
Our experiments are implemented on Pytorch 1.0.0 with NVIDIA TITAN RTX (24G).

Cross-Scale Training Strategy: Our EMTCM can be further trained in a cross-scale
way with a cross-scale feature promotion promoting method. Specifically, we firstly have
obtained a well-trained EMTCM under the upscaling factor 3, we then train the network for
×2 on the basis of that for ×3. To be specific, the parameters of G, F, M, R convolution filters
in the well-trained EMTCM are shared to the four modules aforementioned EMTCM of ×2.
During training, we only fine-tune the deconvolution layer on the 91-image and General-
100 datasets of ×2. We conduct the same way for ×4 experiment. By dong so, EMTCM can
learn a better representation across different scales and receive the exchanged features from
other scales by up/down-shared parameters, In such a design, the information transferred
from the basic information is exchanged across each scale, which achieves a more powerful
feature representation. This cross-scale training strategy further improves the performance
of our approach.

Network Architecture: here we describe more details of our EMTCM networks. Given
input LR images, LR features are extracted by G. In G module, the size and number of filter
are 5 × 5 and 56. It denotes Conv(5,56,1). Then through F module, which consists of 12 con-
volution layers, it decreases the channel dimension of features. F denotes Conv(1,12,56).F is
followed by M, which consists of nine residual blocks with long skip connection to capture
more high-level information. M denotes 9Conv(1,12,12). After M module is R module,
which consists of 56 convolution layers. R denotes Conv(1,56,12). Finally, SR images are
recovered by deconvolutional layer with kernel size of 9. De denotes Deconv(9,1,56).

4.3. Results and Analysis

We compare the proposed EMTCM method with state-of-the-art SISR methods. Table 1
lists the quantitative evaluation results on 91 images using SSIM. Tables 2 and 3 show
the PSNR and testing time in different scales, respectively. It can be observed that our
EMTCM method achieves the best PSNR. Moreover, the speed of EMTCM is the fastest of
all, satisfying the real time requirement. Table 4 shows the result of PSNR on datasets 91-
image and General-100. Thus, EMTCM achieves comparable performance to SISR methods
which perform PSNR-oriented tasks. This indicates that our EMTCM method is able to
preserve pixel-wise accuracy while increasing the perceptual quality of super-resolved
images. We also give a parameter comparison between EMTCM and state-of-the-art SR
methods to demonstrate that our EMTCM is an effective memory-friendly network. Details
are reported in Table 5, where we can see the high efficiency of parameter use in our
EMTCM method compared with other models of SR.

We visualize some SR results of different methods [13,14,26,28,33,40–43] as shown in
Figures 2–5. We see that EMTCM recovers correct details while other methods fail in giving
pleasant results. This indicates that our method is able to produce more stable SR results
than other methods. Note that our method has a significant advantage in handling large
pose and rotation variations. The reason is that EMTCM is not only a PSNR-oriented task;
it is also a HVS-oriented task. Hence, EMTCM can predict progressively more accurate
feature maps to guide the reconstruction in each step. Therefore, our method performs
better in preserving facial structures and generating better details even though images have
large pose and rotation. Furthermore, EMTCM produces more realistic textures of images.
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Therefore, the qualitative comparison with state-of-the-art face SR methods demonstrates
the powerful generative ability of our methods.

4.4. Ablation Study

We further implement an ablation study to measure the effectiveness of the co-
optimizing strategy. On the one hand, in order to validate the effectiveness of the HVS
task, we remove the HVS loss. This model is called EMTCM-HVS, which is equivalent to
a single task without SSIM loss. On the other hand, we remove the fitting ground-truth
data distribution to evaluate the effects of the proposed CE loss. This model is named
EMTCM-FD. The PSNR on the 91-image dataset is presented in Table 6, where it is clear
that when the EMTCM network loses a task, SR quality deteriorates since its ability to
capture meaningful configuration weakens.

Table 1. The results of SSIM on three test datasets.

Test Dataset Scale KK SRF SRCNN FSRCNN Ours

Set5
2 0.9511 0.9556 0.9521 0.9558 0.9632
3 0.9033 0.9098 0.9033 0.9140 0.9258
4 0.8541 0.8600 0.8530 0.8657 0.8823

Set14
2 0.9026 0.9074 0.9039 0.9088 0.9152
3 0.8132 0.8206 0.8145 0.8242 0.8420
4 0.7419 0.7497 0.7413 0.7535 0.8065

BSD200
2 0.9000 0.9053 0.9287 0.9074 0.9201
3 0.8016 0.8095 0.8038 0.8137 0.8374
4 0.7282 0.7368 0.7291 0.7398 0.7596

Table 2. The results of PSNR (dB) on three test datasets. All models are trained on the 91-image
dataset.

Test Dataset Scale SRF SRCNN SRCNN-EX SCN FSRCNN Ours

Set5
2 36.84 36.33 36.67 36.67 36.94 37.15
3 32.73 32.45 32.83 33.04 33.06 33.73
4 30.35 30.15 30.45 30.82 30.55 30.85

Set14
2 32.46 32.15 32.35 32.48 32.54 32.33
3 29.12 29.01 29.26 29.37 29.37 29.90
4 27.14 27.21 27.44 27.62 27.50 27.67

BSD200
2 31.57 31.34 31.53 31.63 31.73 34.05
3 28.40 28.27 28.47 28.54 28.55 29.54
4 36.55 26.72 26.88 27.02 26.92 28.14

Table 3. The results of the testing time (in second) on three test datasets. All models are trained on
the 91-image dataset.

Test Dataset Scale SRF SRCNN SRCNN-EX SCN FSRCNN Ours

Set5
2 2.1 0.18 1.3 0.94 0.068 0.054
3 1.7 0.18 1.3 1.8 0.027 0.023
4 1.5 0.18 1.3 1.2 0.015 0.012

Set14
2 3.9 0.39 2.8 1.7 0.16 0.098
3 2.5 0.39 2.8 3.6 0.061 0.056
4 2.1 0.39 2.8 2.3 0.029 0.018

BSD200
2 3.1 0.23 1.7 1.1 0.098 0.088
3 2.0 0.23 1.7 2.4 0.035 0.030
4 1.7 0.23 1.7 1.4 0.019 0.016



Electronics 2021, 10, 2434 9 of 12

Table 4. The results of PSNR on three datasets in comparison with state-of-the-art methods. EMTCM
is trained on the 91-image and General-100 datasets.

Test Dataset Scale KK A+ SRF SRCNN SCN FSRCNN Ours

Set5
2 36.20 36.55 36.89 36.43 36.93 36.94 37.13
3 32.28 32.59 32.72 32.39 33.10 33.16 33.30
4 30.03 30.28 30.35 30.09 30.86 30.71 30.88

Set14
2 32.11 32.28 32.52 32.18 32.56 32.63 33.08
3 28.94 29.13 29.23 29.00 29.41 29.43 29.73
4 27.14 27.32 27.41 27.20 27.64 27.59 27.73

BSD200
2 31.30 31.44 31.66 31.38 31.63 31.80 33.95
3 28.19 28.36 28.45 28.28 28.54 28.60 29.39
4 26.68 26.83 26.89 26.73 27.02 26.98 27.18

Table 5. Parameter comparison between our EMTCM and state-of-the-art methods to substantiate
the efficacy of our method.

Model Year Parameters

SRCNN 2014 5.73 M
EDSR 2017 40.7 M
RCAN 2018 15.6 M
SAN 2019 15.7 M
IRN 2020 4.35 M
Ours 2021 1.89 M

Figure 2. Qualitative and quantitative comparisons between our EMTCM and state-of-the-art SR
models with the scale factor 3. Best viewed zoomed in.
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Figure 3. Qualitative comparison between our EMTCM and state-of-the-art SR models with the scale
factor 3. (a) HR (b) Bicubic (c) FSRCNN (d) LapSRN (e) VDSR (f) RDN (g) SRFRN (h) Ours. Best
viewed zoomed in.

Figure 4. Qualitative comparison between our EMTCM and state-of-the-art SR models with the scale
factor of 3. (a) HR (b) Bicubic (c) FSRCNN (d) LapSRN (e) VDSR (f) RDN (g) SRFRN (h) Ours. Best
viewed zoomed in.

Figure 5. Qualitative comparison between our EMTCM and state-of-the-art SR models with the scale
factor 3. (a) HR (b) Bicubic (c) SRCNN (d) IRCNN (e) SRMD (f) RDN (g) SRFRN (h) Ours. Best
viewed zoomed in.

Table 6. PSNR under different settings of the loss function on the 91-image dataset with the scale
factor 3.

Settings Set5 et14 BSD200

EMTCM-FD 33.43 29.75 29.20
EMTCM-HVS 33.63 29.82 29.25

EMTCM 33.73 29.90 29.54

5. Conclusions

In this paper, we proposed an effective multi-task two-stage network for multi-scale
image SR. The proposed EMTCM network exploits the the best collaboration between
the CNN and multi-task co-optimization. The memory-friendly encoder in our model
can avoid excessive memory overheads because it gradually extracts high-level features,
which significantly decreases channel dimensions. Moreover, the proposed multi-task
co-optimization method is applied to optimize the entire network. In addition, we utilize
the residual blocks with the long skip connection to capture high-level information. Fur-
thermore, with the cross-scale training strategy, our EMTCM network can further improve
performance by learning different exchange features. Quantitative and qualitative experi-
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ments on benchmark datasets demonstrate the competitive performance of the proposed
EMTCM network, as compared with the state-of-the-art SISR methods.
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