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Abstract: Historical network traffic retrieval, both at the packet and flow level, has been applied in
many fields of network security, such as network traffic analysis and network forensics. To retrieve
specific packets from a vast number of packet traces, it is an effective solution to build indexes
for the query attributes. However, it brings challenges of storage consumption and construction
time overhead for packet indexing. To address these challenges, we propose an efficient indexing
scheme called IndexWM based on the wavelet matrix data structure for packet indexing. Moreover,
we design a packet storage format based on the PcapNG format for our network traffic collection
and retrieval system, which can speed up the extraction of index data from packet traces. Offline
experiments on randomly generated network traffic and actual network traffic are performed to
evaluate the performance of the proposed indexing scheme. We choose an open-source and widely
used bitmap indexing scheme, FastBit, for comparison. Apart from the native bitmap compression
method Word-Aligned Hybrid (WAH), we implement an efficient bitmap compression method
Scope-Extended COMPAX (SECOMPAX) in FastBit for performance evaluation. The comparison
results show that our scheme outperforms the selected bitmap indexing schemes in terms of time
consumption, storage consumption and retrieval efficiency.

Keywords: network traffic retrieval; packet storage format; packet indexing; wavelet matrix

1. Introduction

With the rapid development of the Internet in recent years, network traffic has in-
creased dramatically, which also brings more challenges to network security due to the
openness of the Internet. The monitoring and analysis of network traffic have become one
of the critical approaches to ensure network security. Most network monitoring applica-
tions, such as intrusion detection, firewall and so on, obtain threat information through
real-time analysis of the network traffic and perform corresponding actions without storing
the network traffic. However, in some cases, it is very convenient to record all the content of
network traffic, including packet or flow entries, network sessions, application-layer logs,
etc. In this way, the network managers are able to conduct retrospective analyses of the
network behaviors and application data that have occurred. The archiving and retrieval of
network traffic is becoming increasingly essential in anomaly detection, network forensics
and many other research fields.

The design of packet storage format has practical significance for network traffic
retrieval. A comparative analysis of the packet storage formats used for network forensics
can be found in Reference [1]. Libpcap [2] is a standard packet file format. The Pcap
file format is straightforward but not suitable for an extension. Pcap Next-Generation
(PcapNG) [3], which has high scalability and the ability to append data, is a new file format
evolved from the Pcap format for packet dumping. In other words, we can append some
non-standard custom blocks to the original file without affecting the compatibility and
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integrity of the dump file. Applications such as Wireshark and Tcpdump will still process
packets in the dump file correctly.

Traditional network traffic analysis tools, such as Tcpdump and Wireshark [4], use a
linear search algorithm to find the matched packets. It is necessary to scan the entire file for
matching when performing a query operation. Thus, the complexity of the query increases
linearly with the size of the original file. To improve the retrieval efficiency, indexing for
the query attributes has become a widely used scheme.

Several methods for the archiving and retrieving of network traffic have been pro-
posed, such as TelegraphCQ [5], Hyperion [6], Time Machine [7], TIFAflow [8] and Index-
Trie [9]. These methods record packet or flow entries and build indexes for various query
fields. Meanwhile, the offsets of the packet or flow entries in the trace files are recorded.
When executing a query operation, the index files are retrieved according to the query
attribute to get the number of the matched entries. Then the address offsets can be obtained
through the mapping relationship between the entry number and the address offset. It is
easy to extract packet or flow entries from the original trace file with these offsets. However,
building indexes based on multiple fields in the packet header will not only consume a
large amount of storage space but also slow down the speed of retrieval. Moreover, disk
I/O is easy to become a bottleneck. In order to reduce the storage consumption of the index
data and improve retrieval efficiency as much as possible, several data structures have
been applied to index and retrieve the network traffic. For example, B+ Tree was used in
References [10,11], and bitmap was used in References [12–15].

The main challenges of network traffic collection and retrieval systems include fast
indexing, efficient archiving and fast retrieval. To achieve fast indexing and efficient
archiving, there is a need to choose an efficient data structure that can quickly build indexes
with low storage consumption. Fast retrieval requires that the system can retrieve specific
packets from a large number of packet traces at a high speed. In this paper, we implement
a network traffic collection and retrieval system. First, we present the architecture of our
system and design a packet storage format based on the PcapNG. Then, an indexing scheme
based on the wavelet matrix data structure is proposed to solve the challenges faced by the
network traffic collection and retrieval system. The rest of the paper is organized as follows:
Section 2 introduces the related work. Section 3 gives a brief overview of the wavelet
matrix data structure used for packet indexing. Section 4 presents our implementation,
which includes the architecture of the proposed network traffic collection and retrieval
system, the storage format of packet trace files and the indexing scheme. Section 5 shows
the performance evaluation results. Section 6 concludes this paper.

2. Related Works

With the increasing demand for collecting large amounts of network traffic, the
retrieval of historical network traffic has become a major challenge. Many indexing schemes
have been proposed for the retrieval of network traffic. The main data structures used in
these schemes include hash, B+ tree and bitmap.

• Hash: Hash index uses a certain hash algorithm to convert the key value into a hash
value. According to the hash value, the location for an entry to be inserted or queried
can be found immediately. Therefore, it has a very fast speed. Linked lists are the
most commonly used method to resolve hash conflicts. Inevitably, as the number
of entries increases, hash collisions will become more frequent. This will result in a
significant reduction in retrieval efficiency. Moreover, a hash index cannot support
range queries and union queries. In Reference [7], S. Kornexl and V. Paxson et al.
proposed a typical hash-based indexing scheme Time Machine for the archiving and
retrieval of the network traffic stream. It could greatly reduce the recorded volume
based on the heavy-tailed characteristics of network traffic. Due to the characteristics
of hash, Time Machine was faced with the problem that the retrieval efficiency will be
significantly reduced with the increase of network traffic.
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• B+ Tree: B+ tree has been widely used in relational database management systems,
such as MySQL and SQL Server. Compared with the hash index, the B+ tree index
has good support for range queries. However, the B+ tree is not suitable for indexing
columns with many duplicate values. For network traffic retrieval, some commonly
used indexed attributes, such as the destination port, typically contain a large number
of duplicate values. In References [10,11], the B+ tree was used to build indexes for
network traffic. According to the evaluation results in Reference [10], the performance
of indexing for network traffic using B+ trees is up to 40 K records per second. Hence,
the indexing efficiency of the B+ tree cannot meet the requirements of the current 10G
or even higher network links.

• Bitmap: Indexing for packets with bitmaps is a popular way to solve the problem of
network traffic retrieval. Many indexing schemes based on bitmaps, such as pcapIn-
dex [12], FastBit [13] and NET-FLi [14], have been studied. Bitmap index maps a key
value to a bit vector which contains 0 or 1. Table 1 illustrates a bitmap example. Bitmap
index supports efficient queries and can easily handle complex queries. However,
the disadvantage of the bitmap index is that it takes up much storage space when
handling a large number of records. To address this challenge, many bitmap compres-
sion algorithms have been proposed. In Reference [16], Wu et al. proposed the WAH
algorithm. For further compression on the basis of WAH, many variants of WAH have
been proposed, including Position List WAH (PLWAH) [17], Compressed ‘n’ Com-
posable Integer Set (CONCISE) [18], Compressed Adaptive Index (COMPAX) [14],
SECOMPAX [19], Byte Aligned Hybrid (BAH) [20] and Compressing Dirty Snippet
(CODIS) [21]. Some of them are already applied in network traffic archival and re-
trieval. In Reference [22], Chen et al. presented a survey of different traffic archival
and retrieval systems and various bitmap index compression algorithms.

Table 1. Bitmap index example.

RowID Value
Bitmap Index

=1 =2 =3 =4

1 4 0 0 0 1
2 2 0 1 0 0
3 3 0 0 1 0
4 1 1 0 0 0
5 3 0 0 1 0

FastBit is an open-source data processing library, which offers a set of searching
functions supported by compressed bitmap indexes. FastBit uses the basic WAH for
bitmap compression, and it is the most widely used bitmap index technique. For example,
it has been used in several network traffic archiving and retrieval systems proposed in
References [8,23,24]. In Reference [25], Fusco et al. presented the real-time bitmap index
WAH for network traffic. In Reference [14], COMPAX was applied for the indexing of
streaming network traffic. Although bitmaps have been compressed by various methods,
the usage of storage space and retrieval efficiency still cannot meet the requirements of
high-speed network links.

3. Overview of Wavelet Matrix

In this paper, the proposed indexing scheme is implemented based on the wavelet
matrix data structure introduced by Claude et al. in Reference [26]. This section provides a
concise description of the wavelet matrix. The wavelet matrix is an alternative representa-
tion for large alphabets that retains all the properties of wavelet trees but is significantly
faster [26]. Therefore, we first give a brief overview of the wavelet tree [27,28] before
illustrating the usage of the wavelet matrix.
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3.1. Wavelet Tree

The wavelet tree is a compact and efficient data structure that converts a string into
a balanced binary tree composed of bit vectors. It was introduced by Grossi, Gupta and
Vitter in Reference [27]. According to the Reference [28], the wavelet tree data structure
has been adopted in various applications, such as basic and weighted point grids, sets
of rectangles, strings, inverted indexes, document retrieval indexes, full-text indexes and
so on.

Let S = {a1, a2, · · · , an} represents a sequence of symbols ai ∈ Σ, where Σ is an
alphabet with the size σ. Three basic operations, namely rank, select and access, are defined
for wavelet tree. For sequence S, ranka(S, i) the operation returns the number of times that
the symbol a appears in the sequence S from the start position to position i, selecta(S, j)
the operation returns the position of the j-th occurrence of symbol a in S, and access(S, i)
operation retrieves the symbol at position i in S.

Figure 1 shows an example of the balanced wavelet tree constructed from the sequence
S = {1521863875843287}. At the root node, the alphabet Σ = {1, 2, 3, 4, 5, 6, 7, 8} of S can
be divided into two parts, Σl = {1, 2, 3, 4} and Σr = {5, 6, 7, 8}. The symbols belonging
to the alphabet Σl in S are marked with “0”, and the symbols belonging to the alpha-
bet Σr are marked with “1”. Thus, the sequence S can be encoded as the bit sequence
{0100110111100011} at the root node. In the bitmap of each node, a 0 bit means the corre-
sponding symbol belongs to the left subtree of this node, and a 1 bit means that it belongs
to the right subtree. This procedure is executed recursively at each node until reaching the
leaf node.
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Figure 1. The wavelet tree for sequence S = {1521863875843278}.

A balanced wavelet tree constructed from sequence S has σ leaves and has a height
lg σ. At each level, n bits are required to represent the bit sequence. In this basic form,
the space required by wavelet tree is n lg σ + o(n lg σ) + O(σ lg n) bits. Using the bitmap
implementation in Reference [29], these three operations described above are performed in
time O(lg σ). It can be seen that the execution time has nothing to do with the length of
sequence S. It is only related to the alphabet size σ. However, the space consumption will
increase significantly for large alphabets because extra O(σ lg n) bits are required to store
the topology of the tree. It is significant to remove the O(σ lg n) bits used for pointers for
large alphabets. The wavelet matrix proposed is a good solution for this purpose.

3.2. Wavelet Matrix

Compared with the wavelet tree, the wavelet matrix employs a simpler mapping
mechanism from one level to the next. Specifically, all the symbols that are marked with
“0” at each level go left, and the rest goes right. For each level, a single value zl is stored to
mark the number of zeros in level l. Figure 2a,b show the wavelet tree without pointers
and the wavelet matrix for the sequence in Figure 1, respectively.
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In order to further illustrate the usage of the wavelet matrix, we give a description
of the three basic operations for sequence S in detail. Let Bl represents the bitmap at
level l and i = i0. To perform the access(S, i) the operation, the first step is to check the
value of B0(i0). If B0(i) = 0, then the corresponding position i1 at the next level is set to
rank0(B0, i0). Otherwise, i1 is set to z0 + rank1(B0, i0). Next, a similar operation can be
performed at the next level. This procedure is repeated until reaching the leaf node. The
value at the leaf node is the result of access(S, i).

For the computation of ranka(S, i), the scope of position from 0 to position i should be
tracked step by step. Initially, p0 = 0 and i = i0. At each level l, pl is mapped to pl+1 and il
is mapped to il+1. If the symbol a is marked as “0”, then pl+1 is set to rank0(Bl , pl) and il+1
is set to rank0(Bl , il). Otherwise, pl+1 = zl + rank1(Bl , pl) and il+1 = zl + rank1(Bl , il). The
procedure is repeated until arriving at the leaf level. Thus, the final result of ranka(S, i) is
il − pl . Compared with the standard wavelet tree, the rank operation needs an extra binary
rank operation for the wavelet matrix. This is because the position pl needs to be tracked.
It can be accelerated by storing an array C, in which C[a] points to the start position of the
symbol a in the array of leaves. Thus, the final return value of ranka(S, i) is il − C[a].

The select is the inverse operation of rank. For the operation selecta(S, j), starting
from the leaf node corresponding to the symbol a, an upward tracking of the position
of a needs to be done. If the position jl of symbol a at level l is mapped from a “0” in
level Bl−1, the corresponding position jl−1 is select0(Bl , jl). Otherwise, the position jl−1 is
select1(Bl , jl − zl). The position j0 at the root, a bitmap is the final result.

Algorithm 1 gives the pseudocode for the three basic operations on the wavelet matrix.
label(v) denotes the symbol at the leaf node v and markl(a) denotes the corresponding bit
of symbol a at level l.

Just like the wavelet tree, the wavelet matrix is also an excellent index data structure.
It is very suitable for the compressed representation of data, which is achieved by using
specific coding on the bitmap or changing the shape of the tree. At the same time, it
supports three fast basic operations: rank, select and access. These properties of the wavelet
matrix make it very useful for packet indexing in the case of high-volume network traffic.
Our work is dedicated to extracting packet fields from network packet traces and then
indexing these fields for the fast retrieval of network traffic. We will give a detailed
description of our index scheme based on the wavelet matrix in Section 4.
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Algorithm 1 Wavelet matrix algorithms: on the wavelet matrix of sequence S, access(0, i) returns
S[i]; rank(0, a, i) returns ranka(S, i); and select(a, j) returns selecta(S, j).

access(l, i) rank(l, a, i) select(a, j)
if reach a leaf node v then if reach a leaf node v then l ← lg(σ)

return label(v) return i− C[a] j← j + C[a]
end if end if while l ≥ 0 do
if Bl(i) = 0 then if markl(a) = 0 then if markl(a) = 0 then

i← rank0(Bl , i) i← rank0(Bl , i) j← select0(Bl , j)
else else else

i← zl + rank1(Bl , i) i← zl + rank1(Bl , i) j← select1(Bl , j− zl)
end if end if end if
return access(l + 1, i) return rank(l + 1, a, i) l ← l − 1

end while
return j

4. Implementation

In this section, we first introduce the architecture of our network traffic collection
and retrieval system and the function of each module in the system. Then we show the
design of the packet storage format based on the PcapNG format. Finally, we give the
implementation details of the proposed indexing scheme called IndexWM.

4.1. System Architecture

In this part, we present the architecture of the proposed network traffic collection and
retrieval system in detail. As illustrated in Figure 3, the system consists of four function
modules: Collection Module, Storage Module, Indexing Module and Retrieval Module.
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Figure 3. The architecture of the network traffic collection and retrieval system.

The collection module obtains real-time network traffic from the network interface
or obtains network packets from the packet trace files stored on the disk. In addition,
this module performs session reassemble to eliminate the influences of packet disorder,
retransmission and fragmentation on subsequent analysis, analyzes application layer
protocols and generates application logs. The storage module is used for recording raw
packets, flow information and application layer logs. The raw packets are stored in a
custom format based on PcapNG. Application layer logs contain application data, which
can be used for the analysis of historical network behaviors. The indexing module extracts
index data from the packet trace files and builds indexes for packets. The retrieval module



Electronics 2021, 10, 191 7 of 19

receives queries from users and retrieves the indexes associated with the query attributes
to obtain the numbers and offsets of the matched packets. With these offsets, the system
can easily extract the matched packets from the packet trace files. Usually, queries are
generated based on the application logs.

4.2. Packet Storage Format

Here we first give a concise introduction of the Pcap Next-Generation (PcapNG) File
Format [3]. A PcapNG format file must start with a Section Header Block (SHB). Generally,
the whole file contains only one section header block, but there can be more than one
Header Block in a dump file. A typical PcapNG file structure is composed of a Section
Header Block (SHB), a single Interface Description Block (IDB) and several Enhanced
Packet Blocks (EPBs). The PcapNG file format possesses good extensibility and portability.
Meanwhile, it supports appending data to the end of the given file without affecting the
readability of the file.

As described in Section 4.1, the collection module carries out a deep analysis of the
network traffic to get some metadata information of packets, such as timestamp, payload
length and application layer protocol. By attaching some specific metadata information to
the packet trace file, the difficulty of extracting index data will be significantly reduced for
the indexing module. Therefore, we introduce a custom packet storage format based on the
PcapNG format. In our design, we add options that include some metadata information
to the SHB and EPBs. At the same time, a Timestamp Index Block (TIB) is defined and
appended to the end of the trace file. The packet storage format we designed is shown in
Figure 4. Next, we will give a detailed description of this format.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 19 
 

 

data from the packet trace files and builds indexes for packets. The retrieval module re-

ceives queries from users and retrieves the indexes associated with the query attributes to 

obtain the numbers and offsets of the matched packets. With these offsets, the system can 

easily extract the matched packets from the packet trace files. Usually, queries are gener-

ated based on the application logs. 

4.2. Packet Storage Format 

Here we first give a concise introduction of the Pcap Next-Generation (PcapNG) File 

Format [3]. A PcapNG format file must start with a Section Header Block (SHB). Gener-

ally, the whole file contains only one section header block, but there can be more than one 

Header Block in a dump file. A typical PcapNG file structure is composed of a Section 

Header Block (SHB), a single Interface Description Block (IDB) and several Enhanced 

Packet Blocks (EPBs). The PcapNG file format possesses good extensibility and portabil-

ity. Meanwhile, it supports appending data to the end of the given file without affecting 

the readability of the file. 

As described in Section 4.1, the collection module carries out a deep analysis of the 

network traffic to get some metadata information of packets, such as timestamp, payload 

length and application layer protocol. By attaching some specific metadata information to 

the packet trace file, the difficulty of extracting index data will be significantly reduced 

for the indexing module. Therefore, we introduce a custom packet storage format based 

on the PcapNG format. In our design, we add options that include some metadata infor-

mation to the SHB and EPBs. At the same time, a Timestamp Index Block (TIB) is defined 

and appended to the end of the trace file. The packet storage format we designed is shown 

in Figure 4. Next, we will give a detailed description of this format. 

 

Figure 4. The packet storage format. 

The option added to an SHB is some file description information, including, but not 

limited to, magic number, file generation time and packet capture device information. For 

each EPB, we embed an option that contains the description information of the packet or 

flow entry. The description information includes, but is not limited to VLAN Tag, layer 3 

protocol (L3_Proto), layer 3 offset (L3_Offset), layer 4 protocol (L4_Proto), layer 4 offset 

(L4_Offset), Payload Length (PayloadLen), Application Layer Protocol (App_Proto), Ses-

sion ID, etc. The specific format of the EPB option can be flexibly defined according to the 

practical system requirements. Thus, there is no need to parse packets again when we 

build indexes for packets. The retrieval module is facing the problem of how to retrieve 

packets quickly in a huge number of packets and how to limit the scope of retrieval, 

thereby enhancing the efficiency of packet retrieval. Generally, the packet retrieval condi-

tions contain the start and end timestamp information, but it is not a good idea to build 

indexes for the timestamp of every packet. To solve this problem, we design a Timestamp 

Index Block (TIB) that contains the packet number and the corresponding timestamp in-

formation. The TIB is appended to the end of the file. Figure 5 shows the format of TIB. 

SHB IDB EPB EPB ... EPB EPB TIBEPB
Option OptionOption Option Option Option

Figure 4. The packet storage format.

The option added to an SHB is some file description information, including, but not
limited to, magic number, file generation time and packet capture device information. For
each EPB, we embed an option that contains the description information of the packet
or flow entry. The description information includes, but is not limited to VLAN Tag,
layer 3 protocol (L3_Proto), layer 3 offset (L3_Offset), layer 4 protocol (L4_Proto), layer 4
offset (L4_Offset), Payload Length (PayloadLen), Application Layer Protocol (App_Proto),
Session ID, etc. The specific format of the EPB option can be flexibly defined according to
the practical system requirements. Thus, there is no need to parse packets again when we
build indexes for packets. The retrieval module is facing the problem of how to retrieve
packets quickly in a huge number of packets and how to limit the scope of retrieval, thereby
enhancing the efficiency of packet retrieval. Generally, the packet retrieval conditions
contain the start and end timestamp information, but it is not a good idea to build indexes
for the timestamp of every packet. To solve this problem, we design a Timestamp Index
Block (TIB) that contains the packet number and the corresponding timestamp information.
The TIB is appended to the end of the file. Figure 5 shows the format of TIB.
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Now we explain the steps of recording packets with the proposed packet storage
format in detail. We first create an SHB with a file description option and a single IDB.
Then, for each received packet, we create an EPB to record the content of the packet.
Meanwhile, an option that contains packet description information is added to the EPB.
The above process of writing EPB will be repeated until no packets arrive or the file size
reaches the set threshold. Starting from the first packet, we record the current packet
number and timestamp every N packets and add them to the TIB. The value of N can be
adjusted according to the file size threshold. Anyway, the number and timestamp of the
last packet must be written to the TIB. Finally, we append the TIB to the end of the file.

4.3. Indexing Scheme
4.3.1. Indexing

Based on the wavelet matrix data structure, we propose an indexing scheme called
IndexWM. Let us first introduce the attributes used for indexing. Although any field
in a packet can be used as an index attribute, there are some common index attributes
including timestamp, source IP address (SRCIP), destination IP address (DSTIP), source
port (SPORT), destination port (DPORT), layer 4 protocol (L4_Proto), payload length
(PayloadLen), application layer protocol (App_Proto) and so on. In this paper, we select
the classical 5-tuples: SRCIP, DSTIP, SPORT, DPORT and L4_Proto as index attributes
to simplify the implementation and evaluation. As shown in Figure 6, the first step of
indexing is to extract the values of the index attributes from the original packet trace file. In
our implementation, the packet trace file is achieved in the format described in Section 4.2.
As a result, the process of extracting 5-tuples information is significantly simplified. For
example, if we want to get the IP address of a packet, we only need to obtain the L3 offset
and L3 protocol from the EPB option and then jump to the corresponding position to get
the IP address value according to the L3_Proto format. It is similar to obtain the values of
other fields in the packet. Moreover, we should maintain an array that stores the offsets
of packets. The size of the array is equal to the number of packets. Using the offset in
this array, we can quickly extract the matched packets from the packet trace file. After all
the index data have been extracted from the trace file, we construct a wavelet matrix for
each attribute in 5-tuples. In our implementation, we divide the SRCIP and DSTIP into
four parts to reduce the size of the alphabet, thereby improving the retrieval efficiency of
network traffic. At the end of the trace file, the timestamp and packet number information
in TIB is utilized to index the timestamp.
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Figure 6. Extracting index data from a packet trace file.

In Reference [30], Raman, Raman and Rao proposed the RRR implementation for
bitmap, which could answer rank queries in O(1) time and provide implicit compression
for bit sequences. With the RRR structure, a bitmap can be divided into blocks. It is assumed
that each block is represented by b bits, and f blocks are grouped into a superblock. Each
block can be replaced with a pair of values, namely a class value c and offset value o. The
class value represents the number of 1 s in a block, and the offset value indicates the index
of this block in the RRR table. Figure 7 shows an example of the RRR table. Each superblock
boundary stores the sum of rank queries of previous blocks, which can avoid iterating
the entire RRR sequence to answer the rank queries. For a rank query, we only need to
jump to the corresponding superblock and then iterate over the blocks in this superblock.
Despite the fact that the RRR implementation incurs some performance penalty in practice,
they can significantly reduce the index size. In our indexing scheme, the RRR structure
is employed to represent the bit sequences in the wavelet matrix. The value of b is set to
32, and f is set to 4. Rank operation on a bit sequence is the key step to perform the three
operations described in Section 3.2. The rank operation rank(i) is defined as the number of
set bits (1 s) in the range [0, i]. To calculate rank(i) under the RRR representation, we first
need to calculate the block and superblock corresponding to position i. They are calculated
as ib = i

b and is =
ib
f , respectively. Once the superblock is is obtained, the result is set to

the sum of the rank values before is boundary, which is precalculated and stored at the
boundary. Then we turn to the superblock is for iterative calculation. For each block in this
superblock, we calculate the rank value through the class-offset pair (c, o) and add it to
the result. This procedure is repeated until reaching ib. The final result can be obtained by
adding rankib(j, c) to the previous result, where j = i mod b.
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Figure 7. An example of an RRR table, with a lookup for class c = 2 and offset o = 3.

It is worth noting that the proposed indexing method supports indexing more packet
fields, such as the flag fields in IP or TCP, payload length, and application layer protocol.
The alphabet size of these fields is small, so indexing them does not take up much storage
space. In a word, we can flexibly select fields to build indexes based on the wavelet matrix.

4.3.2. Index Query

In this part, we give the procedure of packet retrieval in detail through an example.
To retrieve specific packets, we first need to query the index files on the disk. Here we
consider two types of queries: single attribute query and multi-attribute query.

A single attribute query refers to the query on a single index attribute. The value of the
query attribute can be a certain value (e.g., SRCIP − “10.10.0.80”) or a range represented
by a wildcard (e.g., SRCIP − “10.10.8. ∗ ”). A multi-attribute query can be regarded
as the intersection or union of several single attribute queries. It means that the multi-
attribute query can be decomposed into several independent subqueries, and the final
query result can be obtained by merging the results of these subqueries. Figure 8 presents
the procedure of packet lookup and extraction in terms of the query: SRCIP = “10.10. ∗ . ∗
” AND DPORT = 80.
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The query in Figure 8 is the intersection of a query on SRCIP and a query on DPORT,
where the value of SRCIP is in the form of wildcards. Obviously, if a certain query
attribute is represented by a wildcard, we do not need to query the corresponding index
file. Therefore, for the example in Figure 8, we only need to pay attention to three index
attributes: the first byte of SRCIP, the second byte of SRCIP and the DPORT. The first step is
to retrieve the corresponding index file to obtain a list of matched packets for each attribute
in the query. Given the wavelet matrix structure described in Section 3.2, the number of
packets that satisfy the query attribute can be obtained by performing the rank() operation.
Then we execute the select() operation iteratively to figure out the packet number of each
matched packet. The list of matched packets for each attribute is represented by a binary
array whose size is the same as the number of packets. Then, the results are merged into a
single consistent list of packet numbers by performing the and operation. In the indexing
phase, we maintain the mapping relationship between the packet number and offset. Thus,
we can easily get the offsets of matched packets, which can be used to extract packets from
the trace file.

Generally speaking, timestamp information is one of the essential attributes of a query.
Without the limitation of the timestamp range, it is difficult to guarantee the efficiency
of retrieval for high-volume network traffic. For the queries related to timestamps, we
deal with them in a different way because the timestamp information is not indexed by
the wavelet matrix. As the packet storage format described in Section 4.2, we create a
timestamp index every N packets and add a custom timestamp index block (TIB) used to
hold these indexes at the end of the trace file. The value of N is set to 10,000 empirically
to reduce the timestamp index data size. This means that we can quickly find the packet
number range matching a given timestamp query through a binary search in the TIB. In
this way, the scope of retrieval is significantly reduced, thereby reducing the number of
times to perform the select() operation for other query attributes.

4.4. Performance Optimization

The packet storage format designed in this paper is used to speed up the extraction
of index data, and our indexing approach focuses on reducing the storage space and
accelerating the packet retrieval. In this part, we will present some other techniques to
improve the overall performance of the proposed system in Section 4.1.

With the rapid growth of network traffic, the traditional kernel stack is facing the
problem of packet loss on high-speed network links. Thus, a large number of solutions,
either software-based or hardware-based, such as Netmap [31], PF_RING [32], Data Plane
Development Kit (DPDK) [33] and PacketShader [34], have been proposed to accelerate
network packet processing. In the collection module of our system, DPDK is employed
to capture high-speed network traffic. DPDK runs in user space and receives packets
through polling mode, which eliminates the overhead of memory copy between user
mode and kernel mode. The performance is optimized through CPU affinity, huge pages,
memory pool management, lock-free ring queues, prefetching and some other techniques.
To reduce the overhead of dynamic memory allocation, the memory pool in DPDK is used
to pre-allocate memory for our application. Moreover, we focus on making full use of the
multi-core hardware to parallelize different modules in our system. Based on the network
card RSS technology, we distribute network traffic to multiple cores for parallel processing.
The lock-free ring queue proposed in DPDK is exploited for inter-core communication.
There are multiple threads for the indexing module in the system. Each indexing thread
builds an index for an index attribute.

To save storage space, it is necessary to dump the packet trace files and index files to
the disk in a compressed format. Due to the additional performance penalties caused by
compression and decompression, we need to make a tradeoff between space and time. A
comparison of several widely used compression algorithms, including gzip, bzip2, lzma, xz,
lz4 and lzop, is given in Reference [35]. It can be seen from the comparison results that the
lz4 compression algorithm is far superior to other compression algorithms in terms of time
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consumption. For this reason, we choose the lz4 compression algorithm for compression,
although it does not have an advantage in the compression ratio. Usually, the index file
size is much smaller than the original trace file size, so the compression time of the index
file is insignificant.

5. Performance Evaluation

In this section, we present a performance evaluation of the proposed indexing ap-
proach based on the following three metrics: time consumption for indexing, storage
consumption for indexing and query response time. The platform used for our experi-
ments is equipped with an Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40 GHz (Intel, Santa Clara,
California, USA), 16 GB physical memory and 20 TB SAS HDD (TOSHIBA MG04SCA20EN,
Tokyo, Japan). The operation system is Centos 7.4 (kernel version 3.10.0-693.el7.x86_64).
As we know, the bitmap index is the most commonly used approach for packet indexing.
WAH [16] is a representative bitmap compression algorithm. Several algorithms, such
as PLWAH [17], COMPAX [14] and SECOMAX [19], are proposed on the basis of WAH
to achieve further compression. From the results of Reference [19], it can be concluded
that SECOMPAX outperforms other bitmap compression algorithms in terms of index
size. Therefore, we choose WAH and SECOMPAX for performance comparison with the
proposed IndexWM. FastBit [13] is a practical implementation of WAH, which supports
efficient data processing and flexible query. The open-source code of FastBit can be found
on the website (https://sdm.lbl.gov/fastbit/). We also implement SECOMPAX in FastBit.
These two indexing methods are called FastBit-WAH and FastBit-SECOMPAX, respectively.
Then we discuss the performance comparison between our method and pcapIndex [12],
which uses COMPAX [14] for bitmap compression.

In our experiment, we build indexes on five attributes: SRCIP, DSTIP, SPORT, DPORT,
L4_Proto. Six packet trace files, namely P1, P2, P3, P4, P5 and P6, are used for performance
evaluation. P1 and P2 come from the real-time communication data on the egress route of
a research institution, P3, P4 and P5 are randomly generated by Spirent traffic generator,
and P6 is a public traffic data set from [36]. The capture length of P6 is 96 bytes. The details
of the six packet datasets are shown in Table 2. In particular, since P5 and P6 contain more
than 100 million packets, they are used to evaluate the indexing performance as a function
of the number of packets.

Table 2. Description of six sample packet trace files.

Dataset File Size (GB) Number of Packets Average Packet Size (Bytes)

P1 1.1 1,676,198 661.30
P2 2.2 3,036,636 773.43
P3 3.1 9,971,170 325.98
P4 10.0 14,952,785 712.0
P5 27 108,448,597 260.0
P6 8.4 112,414,148 1350.3

We mainly focus on the performance of the indexing and retrieval module in the
proposed system, so we perform only an offline experiment for the evaluation. The
collection module loads the packets from the packet trace files stored on the local disk
instead of obtaining the real-time network traffic from the network interface.

5.1. Time Consumption for Indexing

First of all, we evaluate the time consumption for indexing of the proposed IndexWM,
FastBit-WAH and FastBit-SECOMPAX. In order to eliminate the impact of disk I/O, we
load the index data into memory in advance.

Figure 9a illustrates the comparison results of the indexes building time among
IndexWM, FastBit-WAH and FastBit-SECOMPAX on four different datasets from P1 to P4.
It can be seen that the time consumption of FastBit-WAH is slightly less than that of FastBit-

https://sdm.lbl.gov/fastbit/
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SECOMPAX. Next, we utilize the results of FastBit-WAH to specify the advantages of
IndexWM in terms of time consumption for indexing. The time consumption of IndexWM
for indexing on datasets P1, P2, P3 and P4 is 1.42, 2.08, 6.85 and 10.05 s, respectively, while
the time consumption of FastBit-WAH is 4.21, 8.32, 32.66 and 51.82 s, respectively. Figure 9b
shows the time consumption of these three methods on datasets P5 and P6 as a function of
the number of packets. In our experiment, the number of packets changes from 10 million
to 100 million with an increment of 10 million. For the simulated network traffic P5, the
time consumption of IndexWM ranges from 6.81 s to 68.15 s, while that of FastBit-WAH
ranges from 28.85 s to 289.96 s. For the actual network traffic P6, the time consumed by
IndexWM ranges from 5.86 s to 59.12 s, whereas the time consumed by FastBit-WAH ranges
from 24.12 s to 242.10 s. We can find out that the time consumption of these methods almost
increases linearly with the increasing number of packets. However, in the case of the same
number of packets, it takes less time to build indexes on P6 than on P5 for these three
methods. This is because the randomly generated network traffic P5 has a larger alphabet
size than P6 for index attributes. It can be concluded that IndexWM takes less time to build
indexes than FastBit-WAH by about 68% to 76% for the packet trace files in Table 2. All the
results above demonstrate that the IndexWM consistently outperforms FastBit-WAH and
FastBit-SECOMPAX in terms of the time consumption for indexing.
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5.2. Storage Consumption for Indexing

Indexing can improve the efficiency of packet retrieval, but at the same time, it also
brings additional storage space consumption, which refers to the cost of dumping index
files to disk. Figure 10a illustrates the storage consumption for indexing on the four packet
datasets in Table 2. Compared with FastBit-WAH, FastBit-SECOMPAX reduces the size
of the index for datasets P1, P2, P3 and P4 by about 50%. While compared with the
FastBit-WAH, our IndexWM saves about 58.8%, 63.9%, 74.3% and 74.4% disk space on
datasets P1, P2, P3 and P4, respectively. Figure 10b presents the index size for datasets
P5 and P6 as a function of the number of packets. Next, we take FastBit-SECOMPAX and
IndexWM as examples to explain in detail. For the simulated network traffic P5, the disk
space consumption of IndexWM ranges from 116 MB for 10 million packets to 1159 MB for
100 million packets, while that of FastBit-SECOMPAX ranges from 232 MB to 2318 MB. As
for the actual network traffic P6, the disk space consumed by IndexWM is from 54 MB for
10 million packets to 538 MB for 100 million packets, whereas the disk space consumed by
FastBit-SECOMPAX is from 97 MB for 10 million packets to 967 MB for 100 million packets.
Similar to the time consumption, the storage consumption for indexing also increases
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almost linearly with the increased number of packets. Moreover, these three methods
achieve better performance on P6. This can be explained by the fact that the alphabet size is
smaller, and the compression ratio of bitmaps is higher for actual network traffic. Based on
the above results, IndexWM performs better than FastBit-WAH and FastBit-SECOMPAX in
terms of storage space consumption.
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5.3. Query Response Time

Query response time is one of the most important indicators of packet retrieval effi-
ciency. In our experiment, the query response refers to the number and the corresponding
offset of the packets that meet the query conditions. As shown in Table 3, three types of
queries are considered for the evaluation of query response time. To illustrate the effec-
tiveness and practicality of the proposed indexing scheme for actual network traffic, P2
and P6 are selected for query performance evaluation. For a single attribute query, we
generate a query on each index attribute according to the values of the attribute in our
dataset. The multi-attribute query can be obtained by the intersection or union of several
single-attribute queries. As for the wildcard query, two queries are generated using the
values of SRCIP and DSTIP, respectively. We generate a total of ten queries, including five
single-attribute queries, three multi-attribute queries, and two wildcard queries. These
queries are denoted by A to J, where E = {A∩C}, F = {B∩D} and G = {D∩ E}.

Table 3. Example of three types of queries.

Types Description Examples

Single Exact match on a single attribute SRCIP = “10.10.0.80”

Multiple Exact match on multiple attributes SRCIP = “10.10.0.80”
AND DPORT = 80

Wildcard Wildcard match on a single attribute SRCIP = “10.10.0. ∗ ”

In our experiment, the query time depends on the time to retrieve the indexes and
merge the results, which is usually closely related to the specific encoding method. The
main purpose of various bitmap compression algorithms based on WAH, such as PLWAH,
COMPAX and SECOMPAX, is to reduce the size of the index while ensuring comparable
query efficiency. This can be proved in References [17,19]. Therefore, FastBit-WAH is
selected as a representative comparison scheme to evaluate the query performance. The
results of query response time for various queries on P2 are shown in Figure 11a. In
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experiments using small dataset P2, queries A, B, C, D and E extract 164,982, 90,946, 158,777,
531,774 and 2,878,828 packets from P2, respectively. Query H, which is the intersection of
query D and query E, returns the same number of matched packets as query D. Figure 11b
shows the percentage of matched packets to the total number of packets. It can be seen
from Figure 11a that IndexWM has a faster response speed than FastBit-WAH, especially
for those single-attribute queries that only retrieve a small number of packets, such as
queries A, B and C. The performance gap will become smaller when the query returns
a large number of matched packets. This is because the more packets are extracted, the
more select operations are required for IndexWM. This case is more significant in our
experiments using a large dataset, P6. Figure 12a gives the evaluation results of query
response time on P6. For dataset P6, the total number of packets exceeds 110 million. As
shown in Figure 12b, the percentages of matched packets for single-attribute queries A, B,
C, D and E are 23.38%, 0.48%, 18.88%, 6.70% and 86.2%, respectively. For queries A, C and
E, more than 10 million packets are retrieved. As a result, the response speed of IndexWM
is slower than FastBit-WAH. For queries B, G and I, IndexWM is faster than FastBit-WAH
because the percentage of matched packets is very low.
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According to the above results, we can conclude that IndexWM outperforms FastBit-
WAH in terms of response time when the number of extracted packets is small. However,
the result may be the opposite in the case of extracting a large number of packets. In our
experiment, the timestamp attribute is not taken into consideration. However, in the actual
network traffic collection and retrieval system, the timestamp is usually a necessary query
condition, which can reduce the retrieval range. In most cases, the number within the
timestamp range will not be as high as a million or even higher. Thus, in terms of query
response time, IndexWM is still more efficient than FastBit-WAH in the practical system.

5.4. Performance Evaluation Discussion

According to Reference [26], the basic form of wavelet matrix requires n lg σ + o(n lg σ)
bits of space and can be built in O(n lg σ) time, where n represents the number of packets
and σ represents the alphabet size of the index attribute. As we can see from Figures 9b
and 10b, these two performance metrics are approximatively linear with the number of
packets for the same packet dataset. This is because the alphabet size changes very little
when the number of packets varies from 10 million to 100 million for the same packet
dataset. Besides, all these schemes have better performance on actual network traffic. This
phenomenon is closely related to the statistical characteristics of index attributes in different
packet traces. Taking the DPORT attribute as an example, the alphabet size of DPORT
for 10 million packets in P6 is 32,871, while the size for 10 million packets in P5 increases
to 65,536. This may also lead to a better compression ratio for bitmaps. It is similar to
other index attributes. Figure 9a,b shows that the wavelet matrix can be built within 1 s
for one million packets. Compared to the bitmap index schemes, this can meet the short
construction time requirement of our network traffic collection and retrieval system. As
illustrated in Figure 10a,b, the index data size of IndexWM corresponds to about 1% to 3%
compared to the volume of the original packet traces in Table 2.

As described in Section 4.3, retrieving specific packets from the indexes requires
performing a rank operation and several select operations on the wavelet matrix. These
two operations can be performed in time O(lg σ). It is obvious that the cost is only related
to the alphabet size. Considering the query response time of a single-attribute query on a
single field, it depends on the number of extracted packets, which determines the number
of times that the select operation is performed. However, in practice, query results are
usually obtained by combining the results of multiple subqueries. For example, if we query
on SRCIP with a certain value, we need to retrieve the index files corresponding to the four
bytes of SRCIP and merge the results. This will incur extra time overhead associated with
the number of packets. Figure 11a indicates that IndexWM takes less retrieving time than
FastBit-WAH in the case of extracting a small number of packets. However, as shown in
Figure 12a, the performance of IndexWM decreases significantly if the number of extracted
packets increases dramatically. In this case, FastBit-WAH has a better performance than
IndexWM. To avoid this, the timestamp is one of the essential query attributes in our
implementation for the purpose of reducing the retrieval scope. Thus, IndexWM will
become a good solution for retrieving specific packets from a limited retrieval scope.

PcapIndex [12] is an efficient tool for packet indexing. Since the performance com-
parison results of WAH and COMPAX are provided in Reference [12], we can make an
indirect comparison with pcapIndex. For storage consumption, pcapIndex is up to about
50% smaller than FastBit, and our IndexWM is about 60% to 75% smaller than FastBit. In
terms of the time consumption for indexing, pcapIndex requires about 5% less time than
FastBit, whereas IndexWM requires about 68% to 76% less time than FastBit. The query re-
sponse time depends on the specific query, but IndexWM shows a remarkable performance
improvement for retrieving a small number of packets compared to FastBit. Considering
these three performance metrics, it is clear that our IndexWM also outperforms pcapIndex
for packet indexing.

Compared to popular bitmap indexing algorithms, our indexing scheme IndexWM
performs better, especially in terms of storage consumption and construction time. It is
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well known that bitmap indexing has high retrieval efficiency because it supports efficient
bitwise operations between different bitmap indexes. The proposed IndexWM has compa-
rable or even better performance when extracting a small number of packets. Typically,
our system only retrieves only a small number of packets within a small timestamp range.
In this case, our system can achieve high retrieval efficiency. From what has been dis-
cussed above, we can conclude that IndexWM is perfectly viable for packet indexing in the
network traffic collection and retrieval system.

6. Conclusions

Nowadays, network attacks are becoming increasingly sophisticated, which makes
them often unable to be detected in real time. Therefore, it is becoming increasingly
necessary to record all the content of network traffic for retrospective analysis. Historical
network traffic retrieval is becoming increasingly essential in network monitoring, network
forensics and many other research fields. In order to quickly retrieve specific packets
from high-volume network traffic, indexing for packets has proven to be a highly effective
solution, but it brings challenges of storage consumption and construction time for indexes.
The wavelet matrix is a compact and efficient data structure to represent a sequence
and answer some queries on it. In this paper, we propose an efficient indexing scheme
IndexWM based on the wavelet matrix to achieve short construction time, low storage
consumption and high retrieval efficiency. Moreover, we design a packet storage format
based on PcapNG to reduce the difficulty of extracting index data from packet trace files
and reduce the scope of retrieval by appending timestamp indexes to the end of the file.
Based on the above optimization schemes, we implemented the network traffic collection
and retrieval system. We use different types of network traffic, such as actual network
traffic from a research institution and network traffic generated by Spirent, to evaluate
the performance of the proposed IndexWM. The results indicate that IndexWM requires
about 68% to 76% less time than FastBit-WAH and saves about 60% to 75% storage space
compared to FastBit-WAH. Moreover, even for large datasets, the IndexWM has excellent
retrieval efficiency when only extracting a small number of packets. We can conclude
that the proposed IndexWM performs significantly better than FastBit-WAH and FastBit-
SECOMPAX in terms of the indexing rate, storage consumption and retrieval efficiency. In
the future, we will select more fields in packets for indexing, enabling fine-grained and
flexible queries. The corresponding wavelet matrix is expected to be small in size and has a
simple structure because each of these fields has a small alphabet size.
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