
electronics

Article

Hardware Implementation Study of Particle Tracking
Algorithm on FPGAs

Alessandro Gabrielli 1,2,* , Fabrizio Alfonsi 2, Alberto Annovi 3, Alessandra Camplani 4 and Alessandro Cerri 5

����������
�������

Citation: Gabrielli, A.; Alfonsi, F.;

Annovi, A.; Camplani, A.; Cerri, A.

Hardware Implementation Study of

Particle Tracking Algorithm on

FPGAs. Electronics 2021, 10, 2546.

https://doi.org/10.3390/

electronics10202546

Academic Editors: Costas

Psychalinos and Spiros Nikolaidis

Received: 30 August 2021

Accepted: 12 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics and Astronomy, University of Bologna, 40126 Bologna, Italy
2 INFN Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; fabrizio.alfonsi@bo.infn.it
3 INFN Pisa, 56127 Pisa, Italy; alberto.annovi@pi.infn.it
4 Niels Bohr Institute, Copenhagen University, 1165 København, Denmark; alessandra.camplani@cern.ch
5 School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9RH, UK;

a.cerri@sussex.ac.uk
* Correspondence: alessandro.gabrielli@bo.infn.it

Abstract: In recent years, the technological node used to implement FPGA devices has led to
very high performance in terms of computational capacity and in some applications these can
be much more efficient than CPUs or other programmable devices. The clock managers and the
enormous versatility of communication technology through digital transceivers place FPGAs in a
prime position for many applications. For example, from real-time medical image analysis to high
energy physics particle trajectory recognition, where computation time can be crucial, the benefits
of using frontier FPGA capabilities are even more relevant. This paper shows an example of FPGA
hardware implementation, via a firmware design, of a complex analytical algorithm: The Hough
transform. This is a mathematical spatial transformation used here to facilitate on-the-fly recognition
of the trajectories of ionising particles as they pass through the so-called tracker apparatus within
high-energy physics detectors. This is a general study to demonstrate that this technique is not only
implementable via software-based systems, but can also be exploited using consumer hardware
devices. In this context the latter are known as hardware accelerators. In this article in particular,
the Xilinx UltraScale+ FPGA is investigated as it belongs to one of the frontier family devices on
the market. These FPGAs make it possible to reach high-speed clock frequencies at the expense
of acceptable energy consumption thanks to the 14 nm technological node used by the vendor.
These devices feature a huge number of gates, high-bandwidth memories, transceivers and other
high-performance electronics in a single chip, enabling the design of large, complex and scalable
architectures. In particular the Xilinx Alveo U250 has been investigated. A target frequency of
250 MHz and a total latency of 30 clock periods have been achieved using only the 17 ÷ 53% of LUTs,
the 8 ÷ 12% of DSPs, the 1 ÷ 3% of Block Rams and a Flip Flop occupancy range of 9 ÷ 28%.

Keywords: Hough transform; particle physics; hardware accelerators; particle tracking algorithms; FPGAs

1. Introduction

High Energy Physics (HEP) aims to understand the structure of elementary particles,
which are the fundamental constituents of matter. The great success of the so-called
Standard Model (SM) has not only given us the interpretation of many interactions between
particles, but also has built a basis for continuing to understand their nature. Beyond
the SM we can begin to deeply explore the origin of matter in the Universe, what dark
matter and dark energy are, the physics of the Big Bang and other untangled structures
of space–time. To do this, the main experiments at the Large Hadron Collider (LHC) at
CERN in Geneva (Switzerland) are now being updated to what is called Phase II high-
luminosity upgrade [1]. In particular, the LHC experiments use detectors to study the
particles produced by collisions in the accelerator. These experiments are carried out by
huge collaborations of scientists from all over the world. Each experiment is unique and

Electronics 2021, 10, 2546. https://doi.org/10.3390/electronics10202546 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5346-7841
https://orcid.org/0000-0002-1904-6661
https://doi.org/10.3390/electronics10202546
https://doi.org/10.3390/electronics10202546
https://doi.org/10.3390/electronics10202546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10202546
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10202546?type=check_update&version=2

Electronics 2021, 10, 2546 2 of 12

characterized by its detectors and the way in which the generated data are analyzed. In
general, the data obtained through the detectors were filtered and grouped into physical
Events [2]. Then, a complex off-line reconstruction put together the Events belonging to a
common time slot, to make sure that they were generated almost simultaneously, being
products of a common interaction. The Trigger [3] is an electronic system dedicated to the
selection of potential physical data, among the huge amount of noise. More specifically, this
Trigger is also a complex system made up of many internal components. The first of these,
the one that makes the first selection, can be made of an electronic pattern recognition
apparatus. It can also be composed of a relatively simple and fast analog device or it can
be constituted by a more complex programmable digital system built with commercial
components such as CPUs, GPUs and/or FPGAs. The study presented in this paper
describes a recognition system based on the Hough Transform (HT) [4,5], implemented
on a frontier FPGA. The proposed recognition system reads out that data originated in a
detection system located close to the beam lines: The Tracker [6,7]. In addition, for HEP
experiments that take years for the construction of the entire apparatus, it is not possible to
test the hardware in a real environment in advance with respect to the final commissioning.
These experiments are unique systems that cannot be fully reproduced elsewhere. However,
parts of the system can be evaluated in advance using demonstrators that are used as proofs
of concepts. With this study we have demonstrated, through post-layout simulations and
performance comparisons, that the entire system can be implemented on a single FPGA.
This is a proof of concept obtained in advance without incurring the high costs of this
frontier electronics.

2. Hough Transform as Pattern Recognition Algorithm

The HT in general is a known extraction technique mainly implemented in image
analysis and digital image processing. Over recent years other studies have proposed hard-
ware implementations of the HT [8,9], but using smaller FPGAs and less aggressive target
performance. The thousands of lanes processed in parallel in this design is something never
investigated and this is to fulfill the specifications of the HEP experiments at CERN, which
are unique in the field of physics research. Here, the HT algorithm is used as a tracking
method for pattern recognition. In more details, it is used to extract trajectories, straight
or curved lines within digital images representing the particle space. Figure 1 shows the
concept: Let us imagine to have a beam of particles, moving focused clockwise and anti
clockwise in an accelerator like the CERN, close to the speed of light. These particles move
in opposite directions along what we define z coordinate. Then, the interaction point where
these two beams collide defines not only the origin for the z coordinate but also explicits
the transverse plane x, y where the products of the particle interactions are spread out in
any direction. Among these, we consider only the orthogonal tracks with respect to the
beam line. Hence, the new particles of interest, originated by the collisions, are studied
on a bi-dimensional space that we represent as a x, y plane, orthogonal to the beam line.
On this plane the trajectories represent the particle paths crossing the detectors. If the
particles are charged—many of them are—and embedded in a magnetic field, they can
describe a circular or helicoidal track that should be detected immediately in the Tracker,
the innermost portion of the whole detector [6,7]. Left side of the Figure 1 shows this. Then,
using the straight line expression:

y = m · x + Q (1)

the line parameters can be converted in terms of slope m and intercept Q, as

m =
y−Q

x
(2)

Electronics 2021, 10, 2546 3 of 12

and the Formula (2) can be rewritten as

Aq
Pt

=
φ0− ϕ

r
(3)

being r =
√

x2 + y2 the radius in the Coordinate Space (CS), ϕ = arcsin y
x the angle of the

straight line with respect to the horizontal axis, again the CS, and φ0 the angle at the origin
of any other straight line crossing the (x, y) or (r, ϕ) pair. Figure 1 shows these lines with
different φ0 angles crossing in one point. Only one of these lines share the ϕ = φ0 angle with
the other bundle of straight lines crossing in other points. φ0 ∈ [0÷ 2π] and Aq

Pt are divided
here in bins for histogram plots. In Formula (3), Aq

Pt represents the particle momentum Pt
in kg · m/s, the charge q in Coulomb, including a unity constant factor A that turns the
units of Aq

Pt in rad/m. The process to execute the Formula (3) for all the Hits of an input
Event is here called Forward Computation.

Figure 1. Example of Hough transform based on the straight line formula y = x ·m + Q. The plot on
the left shows the Coordinate Space, the right plot the Hough Space.

Through this change of coordinates we move from the particle space x, y to what we
call parameter or Hough Space (HS) (Aq

Pt , φ0). It is shown that the straight lines in the CS
turn into points in the HS. It is also shown that each point in the CS, as it can belong to an
infinite bundle of straight lines, turns into a straight line in the HS. Right part of Figure 1
shows this. Hence, if we look at a given number of points in the CS that compose a straight
line, as all these share the same slope and intercept, all these turn into a single point (Aq

Pt ,
φ0) in the HS. Thus, by recognizing and extracting which points in the HS are parametrized
by a given (Aq

Pt , φ0) pair, we can identify which original tracks, parametrized by (x, y) or (r,
φ) couples, are compatible with that pair. Given this concept, the HT algorithm proposed
here is based on the filling the HS with a huge number of straight lines. These lines are
generated, for each (r, φ) couple, and for each input channel, by carrying out all the possible
values of the φ0 angle (see below). In this way for each φ0 angle inserted in the Formula (3),
a correspondent momentum Aq

Pt is calculated. Again, this is repeated for all the Hits of the
input channels. It should be noted that φ0 ∈ [0÷ 2π] and Aq

Pt are divided here in bins for
histogram plots.

In the reality, every HEP experiment deals with a given number of input-output
specifications provided by software simulations. What we do here is to emulate the
behaviour and performance of a physical apparatus in advance, providing all the expected
physical parameters before the system is built. The main system performance is the track

Electronics 2021, 10, 2546 4 of 12

recognition capability, which is the number of detected tracks over the total number of
expected tracks to be found. In this study the parameters that we are using to emulate a
physical pattern recognition of real trajectories are summarized below.

• Eight input data channels, originated by the Tracker.
• The eight channels, in parallel, provide up to 500 inputs for a total number of data up

to 4000 pair: These are called input Hits.
• Each of the eight channels provides integer number for the x and y CS couples,

digitized using 18 bits.
• Each Hit is also provided on-the-fly with the CS pairs in the polar representation,

besides the cartesian. The polar data are (r, φ) represented respectively with 12 and
16 digital bits.

• The system is targeted to work at a clock frequency of 250 MHz.
• For each input Hit 1200 φ0 angles are created to cover the desired spread of angles in

the HS (1200 bins so using 11 bits).
• The momenta Aq

Pt of the HT Formula (3) are binned in 64 bins, so using 6 digital bits.

Figure 2 shows a reduced bin representation of all the tracks reconstructed using
the HT Formula (3) and the consequent HS space. The hardware block that holds the
HS space is called Accumulator, a 3D histogram binned horizontally along 1200 φ0 angles
and vertically along 64 Aq

Pt momenta. A physical Event is represented by a pair (φ0, Aq
Pt)

nominated as candidate Road, (φ0, Aq
Pt)Road. The Accumulator is filled by applying the Hough

Formula (3) to the whole set of inputs Hits (r, φ) pairs from the physics experiment. In
particular, each pair (r, φ) defines a straight line in the Accumulator, drawn along the bins,
as shown in Figure 2. The Accumulator can be imagined like a set of individual Towers.
Figure 3 shows an example of a 3D picture of the Accumulator filled up with many straight
lines crossing in a (φ0, Aq

Pt)Road. In this example the Road is the only Tower 8 high.

Figure 2. Hough Space after executing HT Formula (3): Example with electron-Volt eV and charge q
set to 1 units.

Electronics 2021, 10, 2546 5 of 12

Figure 3. 3D plot of the Hough Space after executing the HT Formula (3).

Each Tower is composed of eight elements (indicized with n) that hold the information
of whether that Tower has been touched at least by one line originated by the n-th input
channel.

For example, if a Hit belonging to the 5th input channel generates through the HT
Formula (3) a line crossing the Accumulator and passing through the n-th row, m-th column,
the Tower identified at n-th row (representing one of the 64 Aq

Pt) and the m-th column
(representing one of the 1200 φ0) is updated with a “1” in its 5th floor. This is done for all
the Towers touched by that straight lines. This is shown in the Figure 4 using colored cubes.
Each colour, in fact, represents a layer/input channel (floor).

Figure 4. 3D view of the Accumulator with a candidate Road.

In the Figure 4 the numbers 6, 7, 8, 7, 6 mean that, in this case, a Road is detected when
adjacent Towers of the Accumulator contribute with these numbers to the sequence of counts,
hence there is a sequence of Towers 6, 7, 8, 7, 6 high.

3. Block Diagram of the HT Implementation on FPGA

Figure 5 shows how the HT algorithm has been divided in logic blocks, as they have
been separately designed following the firmware (FM) functional description. We did not
design the inner blocks with a further nested structure, hence each block is here presented

Electronics 2021, 10, 2546 6 of 12

with a behavioural description only. We have used a low-level of abstraction approach for
the FM development, so not using predefined vendor macro blocks and with no high-level
synthesis [10]. We wanted a FM description at the level of the individual components,
simulating the VHDL code in steps. First, the behavioural code was simulated block by
block to make sure the functionality of the system was correct. Then, after synthesizing
and extracting the parasitics from the netlist we run post-synthesis simulations and, finally,
the same approach was used to run post-layout simulations to include all the parasitics
extracted after the layout was produced. The post-synthesis and post-layout simulations
were used mainly to find the limits of operation of the entire circuits in terms of maximum
clock frequency, input to output latency and area occupation on the FPGA. Moreover, we
were able to tune the synthesis and layout steps to better optimize the critical nets and
bottlenecks of the system.

Figure 5. Block diagram of the Hough transform algorithm implemented in FPGA.

Let us summarize briefly the scope of each block of the diagram, after the eight Hits
enter the system (see first left block in the Figure 5). As a caption for the figure, the circuits
based on flip-flops are blue blocks, yellow blocks refer to predefined constant valued that
can be hardwired to logic “0” s and “1” s and can be modified with a new synthesis of
the blocks. For some blocks the latency was a compromise between introducing digital
pipelines [11] to speed up the circuit and the need to reduce the area occupied in the FPGA
layout.

The input data enter in parallel two blocks: The Event Memory Bank and the HT computation.

3.1. Event Memory Bank

This is a bank of Flip-Flops and internal RAM memories used to save the entire set of
Hits that compose one Event. Its size is dimensioned depending on the number of input
channels, Hits and on the number of bits used to represent the data.

3.2. HT Computation

This HT Computation circuit carries out the Formula (3) in parallel for the eight inputs
and for the 1200 bins, performing 9600 operations every clock period. It generates all the
Aq
Pt points that compose all the 9600 straight lines. The FW for this circuit is synthesized in

Look Up Tables (LUTs) as far as the additions/subtractions and in Digital Signal Processing
(DSPs) for multiplications/divisions.

3.3. Accumulator Filler

This circuit updates the Accumulator, once all the Aq
Pt points are calculated from the

Formula (3) for all the inputs, by saving “1” s in the proper positions of the Towers. This is
implemented with LUTs only.

Electronics 2021, 10, 2546 7 of 12

3.4. Accumulator

This is a Flop-Flop based memory, composed of 8-element Towers accounting for
the HS. The Accumulator size is defined by the (φ0, Aq

Pt) bin numbers. For our study we
have investigated the 1200 × 64 size because these have been found as largest numbers
compatible with the resources of the FPGA. However, some smaller configurations have
also been studied, for not launching too long processing times, and are shown in the
next sections.

Accumulator Sectors

A strategy to reduce greatly the FPGA resource utilization is what we call Sector
method. To better share the available electronics components within the FPGA, the HT
Formula (3) is applied in parallel to two different types of data. In more detail, r and φ are
fixed values while φ0 increases linearly in steps. This can be expressed via the Formula:

(
Aq
Pt

)n =
φ0(n−1) − ϕ

r
+

∆φ0
r

(4)

being φ0n = ∆φ0 · n, with n ∈ [0; 1200] and ∆φ0 is the constant width of the φ0 bins. Here
φ00 is the angle of the first bin. In other words we calculate the Aq

Pt value for the first bin
then we reitarate n times an addition of a constant value expressing the horizontal step
∆φ0 of the line. The Accumulator is hence divided in Sectors of equal ranges alongside φ0.
By applying this strategy we reduce the computational logic as we need only mathematical
sums to carry out the multiplications ∆φ0

r . This circuit is implemented using DSPs to
calculate the division in the first bin, then all the other sectors are implemented using
LUTs only, as these are carried out with additions. In any case all these computations are
executed in parallel.

3.5. Sliding Windows

As the Accumulator becomes easily too big to be processed within one clock period, to
identify all the candidate Roads, it is scanned in successive smaller windows, one at a time.
Of course, the greater the number of the windows, the smaller the circuit at the expense of
a longer latency. This circuit is synthesized using LUTs only.

3.6. Tower Finder

This circuits sets, for each Tower of the Accumulator, a couple of bits to identify if the
number of “1” s in the Tower is lower than 6, 6, 7 or 8. Hence, the system is ready to start
finding the Roads as candidate tracks. As described above, the sequence of 6, 7, 8, 7, 6 is the
minimum set of heights, in adjacent Towers, representing a Roads candidate. This circuit is
synthesized using LUTs only.

3.7. Adders and Comparators

This circuit compares the Roads which have been found, in terms of (φ0, Aq
Pt)Road coordi-

nates, with all the (r, φ) input compatible Hts that were saved into the Event Memory Bank.
This compatibility is asserted by performing the HT Formula (3), in a reverse manner. In
fact this process, namely the Backward Computation, carries out the mathematical expression:

(
Aq
Pt

)Road −
Aq
Pt

= (
Aq
Pt

)Road − (
φ0Road − ϕ

r
) (5)

In other terms we insert the φ0Road and the Hit numbers (r, φ) in the Formula (3), so
we extract the Aq

Pt value and compare it to the Aq
Pt Road. This process is done in parallel for

the entire Event composed of the 4000 Hits saved in the Event Memory Bank. This circuit is
synthezized in DSPs for the divisions and LUTs for the additions.

Electronics 2021, 10, 2546 8 of 12

3.8. Hit Extractor

This circuit, depending on the result of the Backward Computation HT Formula (5),
hence depending on the difference (Aq

Pt)Road −
Aq
Pt has the capability to accept or reject the

Hit coordinates (r, φ) as Hit candidates for that Road. This circuit is synthesized using
LUTs only.

3.9. Circular Output Buffer

This simply put all the extracted Hits, once have passed the previous selection, in
a circular FIFO memory to be sent to output. This component is connected to a certain
number of UltraScale+ GTH (16.3 Gb/s) transceivers [12] of the FPGA, with a frequency
targeted up to 250 MHz. The Aurora 64b/66b [13] data encoding protocol has been chosen
as standard protocol. This circuit is synthesized using First In Fisrt Out circuits (FIFOs),
i.e., Flip-Flops.

4. Firmware Design

In this project we have used FPGAs and we have designed a firmware (FW) starting
from a low abstraction level of description, without using high-level synthesizers or other
compilers targeted to other types of programmable devices because such a huge system
would not fit, converging with the same performance. In addition, it should be noted
that using other programmable devices as GPUs or CPUs instead of FPGAs we would
not be able to guarantee a fixed latency, as estimated below, and this is a need for HEP
experiments. Hence, the FW design is focused on Formula (3) which generates the straight
lines in the HS Accumulator starting from the physical Hits (r, φ) of the input Event. Figure 6
shows how the FW has been segmented to optimize the synthesis process.

Figure 6. Overview of the HT firmware logic.

We use an example to describe a case of tracks coming from a 8-layer detector and an
Accumulator composed of 1200 φ0 · 64 Aq

Pt bins according to simulations that validate these
numbers to fit the required detection efficiency.

Figure 7 shows the Sliding Window process for the selection of a small section (window)
of the Accumulator. This is scanned to identify for the Roads, in successive steps and as
this process is a recursive parallel task to share FPGA electronics components. In parallel
with the Road extraction the Backward Computation task is performed by running again the
Hough Formula (5) for all the input Hits saved in the Event Memory Bank. Only those Hits
that match the Formula (5) are extracted and sent out after being queued in the Circular
Output Buffer.

Electronics 2021, 10, 2546 9 of 12

Figure 7. The Sliding Windows approach: The red rectangles are scanned along the Accumulator.

FW Synthesis and Place & Route

We have configured the Block Diagram of Figure 5 to optimize the HT algorithm synthe-
sis on the Alveo U250 Xilinx UltraScale+ FPGA device to push a parallel implementation
on the electronics resources (CLBs/LUTs, RAMs, DSPs). This is why the Accumulator is
scanned via logic Sliding Windows that use a parallel implementation of the Accumulator
Sectors. In addition, the synthesis Timing Constraint matching has been achieved by indi-
vidual management of internal critical circuits paths. Figure 8 shows a pictorial example
of the layout of the entire HT algorithm. In this example eight clock trees have been used
separately as they are asynchronous: These are partially emphasized in different colours.

Figure 8. Critical paths management in the FW. The logic has been divided and placed in different
Super Logic Regions depending on the clock trees (different colours in the Figure).

The main basic rules for matching the Timing Constraints during the synthesis refer
to the Flip Flops Hold and Setup times which must be respected. In particular, if the Setup
time is somewhere not fulfilled, in general, the problem can be fixed by reducing the clock
frequency, when this is possible. By contrast, if what is not fulfilled is the Hold-Time and the
synthesis process reports Hold-Time Violations, the circuit will not work at any frequency at
all. This is why we put a particular effort to cure the description of the critical nets, starting
from the VHDL code, and we have provided Timing Constraints in terms of Hold-Time and
Max-FanOut before running the synthesis. We also reduced the number of LUTs among
the Flip Flops sharing the same state machine, by adding pipeline stages so to facilitate
the Place and Route efficiency. In addition, we have separated the main complex logic
functions, those with high-input/low-output numbers by implementing different logic

Electronics 2021, 10, 2546 10 of 12

circuits and paths, by using Register Transfer Logic (RTL) VHDL description. Moreover,
the management of the Super Logic Regions (SLR) [14] in the Virtex UltraScale+ FPGA
has been evaluated as a crucial step to be applied for driving the logic blocks to specific
layout locations. In fact, it is obvious that interconnections between different SLRs are
slower that those within an individual SLR. For this reason we avoided implementing
high-speed critical nets, dense and fast buses in different SLRs. For example, we have
adopted this strategy in the data transmission with Dual Clock FIFOs, which are FPGA
internal programmable COREs allowing to connect two different clock domains. The FW in
fact, as it has been designed and constrained exploiting eight clock domains, left the Place
and Route tool the freedom to choose the best compromise to match the Timing Constraints
without excessively expanding the network. Table 1 summarizes some implementation
numbers that have been chosen for making performance comparisons. It is shown how the
use of SLRs affects the system performance. In particular, these numbers refer a different
use case of FW implementation. In fact, by reducing the Accumulator binning in terms of
(Aq

Pt , φ0) the overall synthesis and Place and Route can better adapt to match the constraints.
All tested examples have been implemented using the Alveo U250 device. Failed nets in
the Table 1 indicate the nets that, after the Place and Route task do not match the Setup Time.
By violating the Setup Time the circuit can again work, as long as the clock speed is reduced,
or as long as these nets are routed again.

Table 1. Examples of FW implementation after the Place and Route.

Device Firmware Version Setup
WNS (ns) Failed Nets/Total Nets

Max Freq./
Targeted Freq.
(MHz)

Development
Strategy

Alveo
U250

Accumulator 216 qA/Pt by
64 φ0, 800 hits

−0.673 4000/610,000 214/250 Without SLRs

Alveo
U250

Accumulator 222 qA/Pt by
72 φ0, 800 hits

−0.254 4200/795,000 235/250 With SLRs

Alveo
U250

Accumulator 216 qA/Pt by
216 φ0, 800 hits

−3.776 104,000/1,582,000 128/250 Without SLRs

Alveo
U250

Accumulator 222 qA/Pt by
224 φ0, 800 hits

−0.441 52/1,769,000 225/250 With SLRs

The maximum achievable frequency, shown with Formula (6), has been estimated
by following the XILINX user guide [12,14] and validated by the post-layout simulations,
those most accurate simulations carried out by including the parasitic parameters extracted
after the design is closed. In fact, the Worst Negative Slack (WNS) for the Setup time
extracted in the synthesis routing report lead us to estimate a:

Max Frequency =
1000

Tclock −WNS
MHz =

1000
4 + 0.5 ns

MHz = 222.2 MHz (6)

We can also give an estimation of the total input ITT and output OTT maximum
throughput, shown with Formulas (7) and (8). In particular, the ITT is the data stream per
second which enter the system: Eight channels load one Hit per clock period and each Hit
(r, ϕ) is composed of 12 + 16 = 28 bits.

ITT(
Byte

s
) =

8 · 28 · 250 MHz
8 bit

= 7 GBps (7)

As far as the output OTT throughput we consider 16 output transceivers which run
up to 16 GBps each, using the Aurora encoding. Once a Road has been identified along
with all the original input Hits that have generated it, these Hits, which are still composed

Electronics 2021, 10, 2546 11 of 12

of 28 bits, must be sent out in parallel via the 16 output transceivers. Consequently, the
OTT is given by:

OTT(
Byte

s
) =

16 · 28 · 250 MHz
8 bit

= 14 GBps (8)

It is shown that in this way, as the OTT is larger that the IT and we use an internal
queueing technique based on the Circular Output Buffer, the entire system can stand the
input data stream. In this example, the total Latency of the circuit presented in Figure 5 is
30 clock periods. The total processing time associated to an Event depends on the #Hits, on
the Latency, on the #Roads and naturally on the clock frequency, where:

• #Hits is the total number of input data (Hits) loaded eight at a time;
• #Roads is the total number of identified Roads within a given Event;
• Latency is the number of clock periods from when the entire Event is loaded to when

the first set of Hits belonging to the first Road is sent out.

Table 2 shows as example the internal resources used to implement the design into the
Alveo U250 platform. In fact, to understand how the Accumulator binning scales with the
resource occupancy we have made different implementations and the results proof that the
HT system as we propose can fit a commercial frontier FPGA. The number of transceivers,
24 in the Alveo U250, are fully used to input eight channels and output 16 parallel data
streams after the Circular Outpout Buffer in Figure 5.

Table 2. Alveo U250 resources as from the Place and Route task.

Device Firmware Version
Flip
Flops
(%)

Look-Up
Table (%)

Digital
Signal
Processor (%)

GigaBit
Transceivers
IO (%)

Block
RAM
Memory
(%)

Alveo U250 Accumulator 216 qA/Pt
by 64 φ0, 800 hits

9 17 8 100 1

Alveo U250 Accumulator 222 qA/Pt
by 72 φ0, 800 hits

11 19 8 100 1

Alveo U250 Accumulator 216 qA/Pt
by 216 φ0, 800 hits

24 52 12 100 1

Alveo U250 Accumulator 222 qA/Pt
by 224 φ0, 800 hits

28 53 12 100 3

5. Conclusions

The paper presents an implementation study of the Hough transform algorithm
on a physical FPGA. The Xilinx UltraScale+ family has been chosen as target devices, in
particular the Alveo U250 FPGA. The study started with a firmware specification composed
of 60 φ0 angles, a target clock frequency of 250 MHz, 4000 input Hits acquired in parallel
on eight channels in 500 clock periods, an Acccumulator swept using 40 Sliding Windows
and 20 Accumulator Sectors. The use of FPGAs in this context is driven by the necessity
to reduce data on-the fly during a data acquisition process. For this, FPGA components,
if compared to other programmable devices, can provide at the same time a low and
fixed latency, low power consumption and high throughput and data rate. In this way
high-energy physics experiments can reduce the acquired data flow from one to two
orders of magnitude. In addition, a huge simulation work has been prepared to validate
the firmware: The current status of the Hough transform firmware design is complete
at the RTL abstraction level, synthesizable and we can simulate the whole VHDL code
behaviour. Then, post synthesis and post layout simulations are also available by adding
the parasitic capacitances related to the physical wires and components of the FPGA
internal interconnections. Moreover, a Python based development tool has been created to

Electronics 2021, 10, 2546 12 of 12

emulate the firmware algorithm to test its behaviour on dummy data. Dummy Roads have
been generated within a set of dummy input Hits to simulate the efficiency performance of
the entire architecture at finding candidate tracks among the input data stream. This study
of possible implementations of the Hough transform algorithms on high-energy physics
experiments in not new but, in particular for particle recognition in hardware tracking
systems, has converged to a physical FPGA implementation for the first time. In fact, up to
now, the Hough transform in high-energy physics experiments has only been implemented
using software-based systems.

Author Contributions: Conceptualization, A.G., A.A. and A.C. (Alessandro Cerri); Investigation, F.A.
and A.C. (Alessandra Camplani); Methodology, A.C. (Alessandro Cerri); Resources, A.C. (Alessandro
Cerri); Supervision, A.G., A.A. and A.C. (Alessandro Cerri); Validation, F.A. and A.C. (Alessandra
Camplani). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors acknowledge the support of INFN, Niels Bohr Institute of Copen-
hagen University, STFC and the University of Sussex.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Apollinari, G.; Béjar Alonso, I.; Brüning, O.; Fessia, P.; Lamont, M.; Rossi, L.; Tavian, L. High-Luminosity Large Hadron Collider

(HL-LHC): Technical Design Report V. 0.1; CERN Yellow Report Monographs CERN-2017-007-M; CERN: Geneva, Switzerland,
2017; Volume 4, p. 599.

2. Perkins, D.H. Introduction to High Energy Physics; Cambridge University Press: Cambridge, UK, 2000.
3. Ryd, A.; Skinnari, L. Tracking Triggers for the HL-LHC. Annu. Rev. Nucl. Part. Sci. 2020, 70, 171–195. [CrossRef]
4. Hassanein, A.S.; Mohammad, S.; Sameer, M.; Ragab, M.E. A survey on Hough Transform, Theory, Techniques and Applications.

Int. J. Comput. Sci. 2015, 12, 32–58.
5. Mukhopadhyay, P.; Chaudhuria, B.B. A survey of Hough Transform. Pattern Recognit. 2015, 48, 993–1010. [CrossRef]
6. Abeling, K. Expected tracking performance with the HL-LHC ATLAS detector. In Proceedings of the Science PoS(EPS-

HEP2019)177, Ghent, Belgium, 10–17 July 2019; Volume 364.
7. La Rosa, A. The Upgrade of the CMS Tracker at HL-LHC. JPS Conf. Proc. 2021, 34, 010006.
8. Ramesh, N.; Purdy, G.; Purdy, C.; Smith, J. A Hardware Implementation of Hough Transform Based on Parabolic Duality. In

Proceedings of the IEEE 57th Int. Midwest Sym. on Circuits and Systems (MWSCAS), College Station, TX, USA, 3–6 August 2014;
pp. 145–148.

9. Ralston, J.; Ngo, H. Design of an embedded system for real-time lane detection based on the linear Hough transform. In
Proceedings of the SPIE 11736, Real-Time Image Processing and Deep Learning, Online, 12–16 April 2021; Volume 11736.
[CrossRef]

10. Baranov, S. High Level Synthesis of Digital Systems: For Data Path and Control Dominated Systems; ACM Digital Library: Ottawa, ON,
Canada, 2018; p. 207, ISBN 978-1-7750917-1-4.

11. Zhang, J.; Ma, J.; Yan, Z. Identification of Pipeline Circuit Design. Electron. Signal Process. 2015, 97, 71–76.
12. Xilinx, UltraScale and UltraScale+ GTY Transceivers. UltraScale Architecture GTY Transceivers UG578. 2017; p. 446. Available

online: https://www.xilinx.com/support/documentation/user\char_guides/ug578-ultrascale-gty-transceivers.pdf (accessed
on 15 October 2021).

13. Xilinx, Aurora 64B/66B v12.0 LogiCORE IP Product Guide. Vivado Design Suite PG074. 2020; p. 145. Available online:
https://www.xilinx.com/support/documentation/ip\char_documentation/aurora\char_64b66b/v11\char_2/pg074-aurora-
64b66b.pdf (accessed on 15 October 2021).

14. Xilinx, UltraFast DesignMethodology Guide forXilinx FPGAs and SoCs. UG949 (v2021.1). 2020; p. 327. Available online: https:
//www.xilinx.com/support/documentation/sw\char_manuals/xilinx2020\char_1/ug949-vivado-design-methodology.pdf
(accessed on 15 October 2021).

http://doi.org/10.1146/annurev-nucl-020420-093547
http://dx.doi.org/10.1016/j.patcog.2014.08.027
http://dx.doi.org/10.1117/12.2588037
https://www.xilinx.com/support/documentation/user\char _guides/ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/support/documentation/ip\char _documentation/aurora\char _64b66b/v11\char _2/pg074-aurora-64b66b.pdf
https://www.xilinx.com/support/documentation/ip\char _documentation/aurora\char _64b66b/v11\char _2/pg074-aurora-64b66b.pdf
https://www.xilinx.com/support/documentation/sw\char _manuals/xilinx2020\char _1/ug949-vivado-design-methodology.pdf
https://www.xilinx.com/support/documentation/sw\char _manuals/xilinx2020\char _1/ug949-vivado-design-methodology.pdf

	Introduction
	Hough Transform as Pattern Recognition Algorithm
	Block Diagram of the HT Implementation on FPGA
	Event Memory Bank
	HT Computation
	Accumulator Filler
	Accumulator
	Sliding Windows
	Tower Finder
	Adders and Comparators
	Hit Extractor
	Circular Output Buffer

	Firmware Design
	Conclusions
	References

