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Abstract: Machine Learning prediction algorithms have made significant contributions in today’s
world, leading to increased usage in various domains. However, as ML algorithms surge, the need
for transparent and interpretable models becomes essential. Visual representations have shown to be
instrumental in addressing such an issue, allowing users to grasp models’ inner workings. Despite
their popularity, visualization techniques still present visual scalability limitations, mainly when
applied to analyze popular and complex models, such as Random Forests (RF). In this work, we
propose Random Forest Similarity Map (RFMap), a scalable interactive visual analytics tool designed to
analyze RF ensemble models. RFMap focuses on explaining the inner working mechanism of models
through different views describing individual data instance predictions, providing an overview of the
entire forest of trees, and highlighting instance input feature values. The interactive nature of RFMap
allows users to visually interpret model errors and decisions, establishing the necessary confidence
and user trust in RF models and improving performance.

Keywords: Random Forest; classification model visualization; explainable artificial intelligence
(XAI); dimensionality reduction

1. Introduction

Machine Learning (ML) algorithms have seen widespread usage in numerous fields
over the past few years. From music recommendations [1] to understanding whether or not
a patient has a severe infectious disease [2], ML has become a part of our day-to-day life. ML
algorithms’ strong predictive capability has triggered many organizations to rely on these
techniques for effective data-driven decision-making. Specifically, in ML, the demand for
solving classification problems has been significant, usually involving assigning appropriate
class labels to new and unseen instances [3]. For instance, typical classification problems
would be the identification of fault or non-fault power equipment [4,5] or the real-time
anomaly classification in IoT-based systems [6].

However, with the increase in the complexity of problems and dataset features, better
algorithms are necessary to derive accurate models. The need to have better predictive
performance in real-life use cases often leads to an intrinsic problem: interpreting the
produced results [7]. For instance, COMPAS (Correctional Offender Management Profiling
for Alternative Sanctions), a software for judging the likelihood of a criminal defendant
becoming a recidivist, has been widely criticized for its biased racial decisions [8]. It was
observed from the algorithm results that people of color were at greater risk of recidivism
than white defendants, and the reasons are not clear since race is not used for prediction.
Since ML techniques have become ubiquitous, especially in crucial decision-making involv-
ing humans, there is a considerable demand to explain the complex algorithm workability
and help decision-makers gain confidence and trust in the algorithm [9].
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Visualization has been a natural choice for users to understand the black-box nature
of complex ML algorithms [10]. In recent times, visual metaphors such as Node-Link
diagrams [11], Decision Tables [12], and Matrix views [13,14] have been widely used
to interpret models. However, these techniques are prone to scalability issues and can
often not capture an algorithm’s overall working mechanisms since they are usually
designed to inform particular predictions. This hinders the user from acquiring a holistic
picture of the model and can lead to misinterpretations. The issue is particularly seen with
ensemble models such as Random Forests (RF) [14,15], which is a collection of decision
trees, and visualizing every tree in a human interpretable form is complex. Another issue
happens when auditing results. With the current existing approaches [14,15], the local
interpretability focus on presenting only the decision paths (or logic rules) used to classify
an instance, which is not helpful enough for most of the ML models, specifically for those
based on multiple trees such as RF [16]. The problem, in this case, is losing the context,
which is deemed one of the essential aspects of visual analytics tasks.

To address these issues, we propose Random Forest Similarity Map (RFMap), a scal-
able and interactive visual analytics tool to represent the knowledge learned (rules) by
an RF model and allow for result interpretation. Our visual representations are based
on dimensionality-reduction techniques [17,18], enabling users to analyze entire models
globally and allowing auditing of individual instances or a cluster of instances locally
to explain how a specific decision was made without losing the forest’s global context.
A similar approach has been widely used to understand certain aspects of Deep Neural
Networks (DNNs), for example, projecting data using network activations to calculate sim-
ilarity [19,20]. Our work takes inspiration from these applications and uses DR techniques
to display relationships among instances (and rules) from the perspective of a particular
RF model.

The remainder of the paper is organized as follows: in Section 2, we present the litera-
ture review of ML model explainability strategies, general visualization techniques used in
model interpretation, and visualizations of RF models. Section 3 presents background infor-
mation on RF, design goals, and analytical tasks supported by our solution. Additionally,
RFMap is introduced in detail. In Section 4, we explain the workability of our technique
using two different user scenarios and show how our system helps in the interpretation
of entire RF models and local instances while maintaining the global context. Finally, we
discuss and present our technique’s limitations and draw conclusions in Section 5.

2. Related Work

As ML algorithms garner more attention with time, the need for Explainable AI (XAI)
has also increased substantially. There has been vast progress in the research of explaining
the black-box nature of algorithms using visual representations [13–15], knowledge extrac-
tion methods [13,14,21,22] and influence-based techniques [23,24]. In this work, we focus
on visual representations as the primary medium to interpret ML algorithms.

2.1. General Explainability Strategies

In the literature survey of existing explainability strategies, Adadi et al. [25] catego-
rize the methods primarily into: (i) complexity-based (ii) scope-based (iii) model-based.
The complexity of a model tends to be directly proportional to its interpretation. Hence,
the nature of a model in terms of its complexion is non-trivial in explaining it. Various
knowledge extraction techniques with an intuition of reducing complexity in models, specif-
ically in black-box algorithms such as Artificial Neural Networks (ANN), have proven
efficient. In this regard, rule-based knowledge extraction methods have leaped toward
approximating complex models using simpler, interpretable ones. Humbird et al. [26],
presents a technique to build deep feed-forward neural networks based on decision
trees, thus allowing the construction of model surrogates that are easy to understand.
Letham et al. [27] proposed an explainable method (Bayesian rule lists) based on decision
lists (consisting of if-then statements), making predictive models more interpretable to
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humans. Mashayekhi et al. [28] present another way of extracting rules specifically from
Random Forest (RF) models. They employ optimization strategies, specifically ‘hill climb-
ing algorithm’ to select valuable rules instead of all the rules, thus allowing them to deal
with scalability issues. In our work, we use rule-based extraction techniques to interpret
black-box models, but our main focus lies on being able to represent the rules using visual
metaphors and not on the knowledge extraction part.

Another strategy takes into consideration the global or local scope of models. In gen-
eral, a model’s global scope targets explaining the entire model logic [27,29–31] to help a
human understand models’ internal behavior. Global explanations touch on the factors
such as understanding how a model makes judgments, what features were involved in the
decision-making process, and knowledge (decision paths, weights, etc.) learned by the
model. On the other hand, local interpretation is about explaining a particular instance and
its resulting predictions [32]. Taking inspiration from these techniques, we present a system
that explains the local instances and preserves the overall global structure, helping users
keep a perspective of how a complex model has learned knowledge, therefore reducing the
cognitive load on users.

The third strategy touches upon a model’s nature, i.e., it is being agnostic or specific.
Model-agnostic explanation techniques apply to all models irrespective of their nature [25,33].
In contrast, model-specific strategies are limited to a particular model and generally apply
to simpler models in structure, such as Decision Trees or linear models. However, recent
research has allowed for the distillation of complex models so they can be converted into
simpler forms and hence be transparent [34]. This enables explanations from a particular
model perspective, which helps in touching upon that model’s specifics. For this research,
our target is aiding users in understanding the black-box nature of ‘RF models’.

2.2. Visualization for Interpreting Models

Visual metaphors have been seen to address the problem of interpreting ML algo-
rithms for quite some time. In recent years, numerous visual analytics systems have been
developed to explain the inner workings of a model [35,36], extracting information from
a model for post hoc interpretability [13,15,25] or enabling performance diagnosis for
building more accurate models [37–39]. Naturally, visual representations have been an
optimal choice when explaining complex ML models.

Fred Hohman et al. [20] propose a visual analytics system for deep neural networks
(DNN) that summarizes the activation aggregations from all classes to help to under-
stand the critical neurons contributing to a particular classification using dimensionality-
reduction techniques. They also provide a graph representation of the ’neuron-influenced’
aggregations to show the relationship between different neurons that finally leads to a pre-
diction [20]. In another line of work, Zahavy et al. [40] use a 3D t-SNE to visualize the state
transitions of the learned policies from a Deep-Q network used in reinforcement learning.
ActiVis [19] is another system deployed across Facebook to interpret the black-box nature of
deep neural networks. They use a 2D projection to explain instance activation using t-SNE
and place instances with similar activation values together. Cantareira et al. [41] introduce
an approach to exploring a neural network’s hidden layer activities and simplifying the
inner working mechanism of such complex networks. Their novel technique focuses on
comparing projections derived from multiple stages in a neural network and visualizing
the differences in perception. Taking a similar approach to ours, Rauber et al. [42] focus
on improving classification systems. They present projection-based visualizations that
help developers interpret interesting insights in a classification model and improve these
systems through feature selection.

In general, these point-based visualization techniques have been focused on explaining
deep neural networks. On the other hand, RFMap is specific to RF models. It allows users
to understand the data instances and the decision paths of a forest using 2D dimensionality-
reduction techniques, making RFMap easily interpretable and scalable.
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2.3. Random Forest Visualization

An RF model consists of many decision trees that function together as an ensemble.
Each tree model makes its predictions (vote), and the class with the greatest number of
votes is considered to be the final predicted class [43]. Such a massive collection of decision
trees and their underlying working mechanism makes the model black box in nature.
Hence, visualizing the entire forest of trees to make it interpretable for users is an ongoing
research problem. The ability to represent a forest of decision trees to explain each tree’s
structure and properties is daunting. Hansch et al. [44] propose an interactive visualization
system based on a botanical approach to interpret and improve RF models. They emphasize
that the factors that lead to an increase or decrease in an RF model performance are not
easy to express as scalars. Hence, visualizing the entire RF model with all the decision trees
can help in better interpretation. However, their work applies only to RF models based
on binary trees. Moreover, the scalability of the forest visualization is a concern when
thousands of decision trees are used.

To show the correlation between the decision trees in an RF model and data instances,
Breiman and Wald [45] presented a multidimensional scaling (MDS)-based projection
strategy. They use proximity measure, which is inherent to the RF algorithm, to display the
clusters formed among the trained instances and allow for outlier identification. In our
technique, we use their ‘proximity measure’ as a distance metric to project our instances.
However, we extend their method to build a visual representation that allows for the
explanation of class separability and enables local inspection of the instances by preserving
the context of the forest. Lau et al. [46] uses a method of aggregation for the collection of
trees based on the number of appearances of a feature at node positions. They focus on
feature importance and interaction to derive information on variables applied at each tree
node. However, these tasks become challenging as they increase the number of feature
variables. Additionally, their system cannot handle tree depths greater than 8, which makes
it practically non-usable.

Popolin Neto et al. [14] present a matrix-based visual metaphor, named ExMatrix,
to aid in the global and local interpretation of RF models. They propose a method to extract
each tree’s decision path as rules and use the matrix visualization together with properties
such as certainty of rules, coverage, voting committee decision to make interpretation
easy for users. Although ExMatrix presents a single view of decision paths and their
associated properties, they do not allow users to compare and see similarities or differences
(i.e., proximity) between the various decision paths. Ming et al. [13] introduces a model-
agnostic, rule-based visual analytics system, named RuleMatrix that targets the explanation
of black-box models using model induction techniques and presents a matrix-based visual
metaphor. However, RuleMatrix is not scalable when it comes to visualizing thousands
of rules.

Closely related to our work is iForest [15]. iForest incorporates different visual repre-
sentations into a platform that aims at explaining an RF model. Although iForest visualizes
decision paths for a specific prediction, they fail to preserve the global context among the
entire forest of trees when supporting analysis of local predictions. This is critical in the case
of RF models since it allows users to gain insights into the knowledge learned in different
parts of the forest, giving a holistic picture of the entire decision-making process. Our work
specifically focuses on this aspect and allows users to understand the decision paths used
by an instance while keeping the entire forest of trees in context. Our technique can also
handle models with thousands of decision trees, thus addressing visual scalability issues,
which is observed in techniques such as iForest [15], ExMatrix [14] and RuleMatrix [13].

3. Random Forest Similarity Map
3.1. Background

A classification process involves developing a model, i.e., function F by taking a dataset
X = {x1,. . . ,xN} of size N and their labeled classes Y = {y1,. . . ,yN} along with their features F
= {f1,. . . ,fM} to predict the class yn for new unseen instances xn. As part of the classification
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process, the dataset X is divided into two subsets, Xtrain and Xtest. The function F is trained on
Xtrain and the trained function is then applied to Xtest [14] for valiadation. A Random Forest
(RF) classification model consists of individual decision trees DT1,. . . ,DTk as ensembles [43].
Each decision tree is trained on a random subset of samples with replacements derived from
the training data along with a randomly selected sets of features. The resulting predictions
from individual decision trees are then put through a voting process and the class receiving
highest votes is considered to be the final predicted class [43,47].

To aid in the interpretation of RF models, our technique uses rule-based knowledge
extraction procedures [14], transforming ‘decision paths’ of a tree into logic rules R = {r1,. . . ,rz}.
A decision path is a path starting from the root node to the leaf node in a single decision tree,
and the outcome from the leaf node determines the predicted class C after it goes through the
voting process. A logic rule is extracted from a decision path (root to a leaf node) combining
the conjunction of the logical test (feature ≤ value) from each node in the path [14,15,48]. Each
leaf node generates a unique decision path and leads to different logic rules. Along with
the extracted logical rules R, we also derive two other important properties using Popolin
Neto et al.’s [14] vector extraction technique for supporting the interpretation of the rules—rule
coverage and certainty. Rule coverage (rcov

z ) is defined as the value obtained after dividing
the number of instances in Xtrain that belongs to the rule class rclass

z by the total number of
instances of rclass

z in the set Xtrain. Rule certainty (rcert
z ) is the vector of each class probabilities

that is derived from the decision path, i.e., the leaf. Since an RF model usually comprises
many decision trees, using the decision path, as a rule, comes as an effective choice when
visualizing the entire forest of trees, therefore allowing us to design scalable and easy-to-
interpret visual metaphors.

3.2. Design Goals

After reviewing the literature in RF models visualization and dimensionality-reduction-
based classification model analysis, we present our system’s design goals. These goals are
listed below

G1 Global interpretation. An RF model is a collection of trees. One of the best ways
to interpret the ensemble model’s inner working mechanism is to allow users to
understand what knowledge the overall model has learned [15]. After the RF model
training, the model presents an overview of the relationships between the data in-
stances and the various decision paths, given a target class label. These relationships
between decision paths and data instances mirror the RF model’s working mecha-
nism at a granular level and help users comprehend the generic knowledge (valid for
most of the instances) or specific knowledge (valid for only a few instances) learned
by the model. Therefore, it simplifies the model’s complex nature and presents the
knowledge learned (whether generic or specific), helping to understand how the
overall RF models decisions. By enabling the interpretation of the knowledge learned
by an RF model, we aim to explain the model globally.

G2 Local interpretation by preserving the global context. Local interpretation describes
the reasons behind a specific decision for a particular instance [25]. In most RF
models, local interpretation usually involves presenting the decision paths used to
classify an instance [14]. However, to perform better local interpretation, preservation
of the global context of the forest is essential so users can compare the used logic
rules in the forest and answer questions such as—‘Are the decisions made from the
most certain logic rules?’, ‘Does these rules have a good amount of data support
(coverage) as compared to others?’. Being able to answer these questions not only
helps users develop trust in their local explanation but also allows them to retain the
local faithfulness [49] on unseen instances. Local interpretation also means allowing
users to find out hidden patterns from the dataset or a specific set of examples and
deduce further explanations based on them [15].

G3 Comparative analysis of RF models. Another design goal is the ability to have a
comparative analysis between two or more RF models to assist model developers in
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selecting reliable models [50]. An RF model is built using various parameters such as
the number of trees, splitting criteria, maximum depth of a tree, and the maximum
number of features to be considered during a split. These factors are very imperative
and influence the overall prediction capability of a model [42]. By visualizing and
comparing RF models built using different properties, we can interpret their function-
ing and shed light on hidden patterns. For example, enabling the analysis of what
happens to a model when we do not limit the tree depth.

3.3. Analytical Tasks

Based on the related work discussed in Section 2 and to fulfill our design goals, we
have developed the following analytical tasks.

T1 Analyzing structure and properties of decision paths. The decision path in every RF
model tree provides a way to understand the final predicted class. Hence, the analysis
of the structural differences between various logic rules is imperative to uncover
the black-box nature of an ensemble model (G1). For instance, how do we know
which group of rules among the forest classifies samples as a particular class? Have
they learned anything generic from the training data? We aim to provide users with
an answer to these questions through our technique. Besides analyzing structural
similarities between logic rules, it is also essential to know about the properties
such as a rule’s class probabilities (certainty) and how much training data support a
decision path has concerning its predicted class (rule coverage). High coverage and
certain logic rules are the important ones in the model as they are valid for most of
the instances (generic knowledge) and essential to the RF committee [14].

T2 Visualizing the forest. Visualizing an entire forest of trees is a challenging task, and its
complexity increases with the number of trees used in an RF model. To support the
case of understanding the working mechanism of complex ensemble models with
certain number of trees (G1), it is essential to provide a way to visualize the entire
forest. Visualizing the forest also helps users understand where a decision path is
located within the forest and how these decision paths are related to one another [44].
Hence, to summarize the structure and understand various decision paths that form
an RF model, visualizing the entire forest is non-trivial.

T3 Interpreting class separation among instances. The primary goal of any ML classifica-
tion problem is to separate the data instances into their respective classes. By establishing
a clear decision boundary between the classes, we can validate the model’s accuracy,
understand its inner working mechanism (G1), and allow for the improvement of
models through comparative analysis (G3) [42]. Thus, providing a visual metaphor to
understand the class separation between the instances in a dataset is crucial.

T4 Knowledge used by the model to make a prediction. To understand the prediction
of a single instance or a group of instances, it is necessary to know what knowledge
was used by the model [13], i.e., which logic rules were used to classify an instance.
Although local interpretation methods allow users to know what rules (decision
path) were applied to a sample [14,15], there is a lack in interpreting the knowledge
learned from the entire forest of logic rules visually, preserving the global context (G2).
The ability to inspect local instances while having a visual cue of the used rules from
the forest allows users to perform in-depth interpretation, and it provides insights on
the voting process for that instance.

T5 Understanding the instances. Analyzing the structure of instances in a dataset helps
provide intuition into specific hidden patterns that can, in turn, assist in understand-
ing the way an RF model works on similar types of instances (G3). For example,
by analyzing the within-class overlaps among samples in a dataset, we can interpret
class errors made by the model in a classification problem and build user trust in
the model. Additionally, understanding similarities or differences between a group
of instances can help the user develop reasoning on how the RF model sees every
instance and how it differentiates them.
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T6 Performing model diagnosis. To develop an understanding of RF model performance,
i.e., how properly the model can separate the classes, ML model experts and devel-
opers often need to drill down and analyze specific aspects, such as detecting the
mistakes made by a model using confusion matrices [51] and visually comparing
multiple confusion matrices [52]. Although confusion matrices are easy to use, they
become challenging to interpret when the number of classes increases in a multi-class
classification problem [42]. By having the ability to visualize the patterns formed
among the logic rules in a model and compare it with other models (G3), users can
develop their confidence in the models’ overall functioning and select the model that
produces the desired result.

3.4. Overview

This section discusses RFMap based on the design goals mentioned in Section 3.2.
RFMap comprised visual representations and steps involved in interpreting RF model
is presented in Figure 1. Primarily, in our technique, we focus on three visualizations:
Instance view, Forest view and Feature View. To fulfill our design goals, we have amalgamated
the three views into a cohesive and scalable system. The integration of all the three views
into one interactive system (Figure 1) allows us to target both global (G1) and local (G2)
interpretability perspectives [53]. We emphasize that to clearly understand the knowledge
learned from a vast forest of trees, presenting only the decision paths when explaining the
results of classification is not very beneficial [16]. Therefore, preserving the forest’s global
context is imperative for local interpretation so users can understand from which part of
the forest an instance is using the logic rules. Our method also enables users to further drill
down into analyzing the used rules contextually with the other forest rules to help them
answer some of the crucial questions discussed in (G2). The global preservation approach
can also help shed some light on one of the essential components of RF models, i.e., the
voting committee.

Figure 1. RFMap system with Iris dataset. The letters indicate the system’s different modules. (A) is the Logic rule extraction
part, after which we derive the instance-rule and rule-instance matrices for our projections; (B) is the Instance View; (C) is the
Forest View; (D) is the Feature View. The user first explores the Instance View and notices the three separated clusters of classes
by color. One of the clusters (1) is shown in dotted circles. They take note of some misclassified instances (2) from the view.
They then click on an instance (3) to understand the knowledge learned by the instance from the forest. The highlighted
rules in (4) show the logic rules being used by the particular instance. The user analyzes the structural differences (similar
or not similar rules) and certainty, coverage of the various logic rules as shown in (5). To understand a ‘knowledge cluster’,
the user draws a lasso around the certain cluster of rules (6), and the instances covered by the rules are highlighted in (7).
For enabling further interpretation and analysis, the knowledge contents are shown in (D).

In our approach, the logic rules are first extracted from an RF model Figure 1A and
the necessary instance-rule and rule-instance mappings are derived using the ExMatrix
package [14]. Using RFMap, the user first explores the Instance View Figure 1B to understand
how the RF model sees all the data instances and analyzes the separation of classes among
instances (1) of the dataset. This view also helps a user to understand the similar and
differing instances from RF models’ perspective and enables interpretation of misclassified
instances (2). Users can click on any particular instance (3) to perform local interpretation
to understand which logic rules were used to classify the instance while having the global
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context of the forest (Figure 1C) preserved. The preserved forest view helps the user
perform contextual analysis of the used logic rules with other forest rules. The highlighted
rules (4) in the Forest View (Figure 1C) displays the used logic rules. The Forest View also
allows users to derive an understanding of the structure of various logic rules and the
certainty of their predictions, as shown in (5). To understand the classification of instances
from a global perspective, users can lasso-select a rule or cluster of rules (6) from the Forest
View and the instances being classified would be highlighted as in (7). The lasso-selection
of rules also intuitively presents the feature values of instances using those rules in the
Feature View (Figure 1D).

RFMap is a web-based tool developed using D3.js [54], Plotly [55] and Bootstrap
for the front-end, and Python for the back end. The motivations and visualizations for
understanding instances and logic rules are further discussed in the following sections.

3.5. Visualization Design Preliminaries

Based on the effective results achieved using Dimensionality-Reduction (DR) tech-
niques in the interpretation of neural networks [19,35], we adopt a similar strategy to build
both Instance and Forest views. DR techniques often take a distance matrix for projecting
the data instances (points) into a 2D layout [18]. The DR layout for the Instance View uses
the distance matrix for instances defined by [43,56], observing leaf nodes from decision
trees. In this way, instances are similar by sharing the same leaf nodes, and such instances
tend to be close in the DR layout. For the Forest View, the DR layout is created using a
distance matrix calculated from a binary matrix that indicates the instances for which a
particular rule is valid. Thus, rules are alike by covering the same instances, favoring to be
close in the layout.

We also incorporate a third view to visualize the feature values of instances used by a
rule or group of rules, called Feature View. An inherent problem with using DR methods for
visualization is that they can result in cluttered representations with occlusion issues. This
issue particularly applies to our research work since we build our visual representations
based on whether an instance uses a logic rule to be classified or not. Hence it is expected
that many instances might end up being in the same projection position if they use the
same rules. To remove the projection overlaps and meet our design goals, we employ the
DGrid algorithm [57]. DGrid uses a binary space partitioning technique together with the
projections to completely remove overlaps while preserving the original layouts as much
as possible.

One of the critical goals of our work is to be able to interpret what knowledge an
RF model has learned (G1) and understand the knowledge learning process for a data
instance while preserving the global context of the forest (G2). However, our focus lies on
the principle that interpreting the overall RF model should not be mentally overwhelming
for the user. It should be easy to understand from an explainability perspective. By taking
motivation from these goals, we decide on visualizing just the decision paths (logic rules)
instead of individual decision trees to represent an entire forest of trees.

3.6. Instances View

The first visual representation, Instance View (Figure 2), is a 2D DR layout of the
instances in a dataset from the perspective of an RF model. The key idea is to allow users
to understand the structural similarities or dissimilarities (T5) between the data instances
considering what has been learned by the RF model. We intend to give users an idea of
how similar the instances are in the RF model’s eyes irrespective of whether the data are
high-dimensional [58]. Therefore, the instance similarity will vary based on a model to
model. Using our technique, we visualize the class separability among the instances (T3)
and allow model developers to visualize their model’s performance and detect outliers and
wrongly classified instances. A near-to-accurate RF model will present a visualization with
clear decision boundaries between the classes with very few within-class overlaps [42].
This serves as an initial guide for developers in building effective and robust RF models.
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We start with building an RF model based on several parameters, such as the total
number of trees, maximum depth, split criteria, and others. In any projection-based technique,
the distance metric choice is critical, and its performance relies on the metric used. Hence,
an ideal alternative to aligning with our design goals is the Proximity measure suggested
in [43,56]. This measures for two instances xi and xj the number of times the same leaf
node (decision path) classifies both instances within each decision tree, normalized by the
total number of trees in the entire forest. Based on this concept, we derived the following
dissimilarity measure

d(xi, xj) = 1− 1
M

M

∑
m=1

∑
r∈DTm

{
1 If xi and xj are both valid for r
0 Otherwise

(1)

where r ∈ DTm is a decision rule derived from the mth tree and M is the number of trees in
the forest [43]. This dissimilarity range in [0, 1] with values closer to 0 indicating instances
reaching the same leaf, thus representing the instances from a model perspective [59].

To project our dataset using this dissimilarity, we use the Multidimensional Scaling
(MDS) technique [60]. We use MDS based on Breiman et al.’s adoption [43,56] of MDS for
visualizing training data to understand clusters and outliers from an RF model perspec-
tive. Additionally, MDS is a global technique, and since, in our case, it is vital to enable
interpretation of groups of instances (Figure 1A) based on the class labels (T3) rather than
preserving local neighborhood, it is a reliable alternative.

Projection-based techniques represent data instances with high dimensions into more
human interpretable forms, such as 2D. However, it is also critical to understand how well
the data are represented in a lower dimension to avoid presenting a wrong representation.
In the case of our MDS projection, we measure the effectiveness of projected points using a
metric called Stress [61]. As per the definition, Stress of an entire projection is measured as
the difference between the actual distance of all points and their projected values. For this
work, we adapt Kruskal’s formula [61] to compute the stress value per point approximately
(xi) using the below formula.

stress(xi) =
∑N

j (d(xi, xj)− d̂(x̂i, x̂j))
2

∑N
i ∑N

j d(xi, xj)2
(2)

where xi is the original point, d(xi, xj) is the distance between original points and d̂(x̂i, x̂j)
is the distance between projected points. We focus on displaying Stress per point to bring
out the projection method’s effectiveness and allow users to build up their trust on the
projected points.

Each instance in the Instance View is drawn as a rounded rectangle filled with the
color of their original labeled class. In the case of misclassified instances, the outside
stroke color surrounding the rectangle represents the model’s predicted class, and the
fill color inside represents their original class (Figure 2). To represent the Stress value
s, computed for individual data instances, we use opacity O as another variable in our
proposed visualization. Since we derive the stress-per-point formula from the Kruskal’s
stress, we use the goodness-of-fit table [61] to form five brackets to control the transparency
of the data instances using

O =



1, if 0 ≤ s ≤ 0.025
0.8, if 0.025 ≤ s ≤ 0.05
0.7, if 0.05 ≤ s ≤ 0.1
0.6, if 0.1 ≤ s ≤ 0.2
0.5 if s > 0.2
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Figure 2. Instance View: Represents misclassified instances, decision boundary between the two
classes and outliers.

Therefore, data instances whose projected representation is almost equal to their
original high-dimensional representation will visually be much brighter. Our primary focus
is to present a visual metaphor to help the user understand how the RF model sees every
instance after being trained. This way, we can establish a hypothesis regarding the instance
structure and derive further explanation on new and unseen data (T5). By analyzing the
various cluster of instances formed, a user can acquire an idea of the generic knowledge
learned by an RF model and explore how a particular group is different from others in
terms of their prediction or feature values. This is very helpful for users who need to derive
case-based reasoning based on these instance interpretation.

Another critical element that users can gain insight into using the Instance View is
detecting the within-class outliers [59]. By computing the average proximity value of an
instance with respect to all other instances in a dataset, we can show the instances that have
high overlaps with other class instances and affirm that these samples are the ones that the
RF fails to classify correctly. Thus, the Instance view serves as an effective solution for users
to interpret the classification errors, detect outliers and understand decision boundaries.

3.7. Forest View

The second visualization, Forest View (Figure 3), was designed to allow users to analyze
every decision path (logic rules) in the forest and therefore gain an understanding of what
the RF model has learned (G1). To derive insights into the structure of various logic rules,
it is essential to identify the similarities or differences between them. In our technique,
two or more rules are considered to be identical if they are valid for the same instances.
A near-to-similar set of rules will have an intersection of instances and will be closer
to proximity. These similar rules form distinct sets of high certainty clusters, which we
refer to as a ‘strong knowledge cluster’. A ‘strong knowledge cluster’ suggests that the
model has learned strong (high-coverage) relations between training instances given a
target class. The ‘knowledge clusters’ represents a very well-defined piece of knowledge
learned by the RF model since these clusters are valid for most of the data instances and,
therefore, more generic. To our knowledge, this is the first time an RF model’s learning is
visualized this way. Other than interpreting generic ‘knowledge clusters’, analyzing the
instance classification from the point of view of a set of rules can also provide insights into
understanding the patterns defined by these set of logic rules, i.e., what kind of instances a
set of rules classify as a particular class. We enable users to answer questions such as these
by selecting a set of logic rules and visualizing the various hidden patterns.

The view for visualizing the logic rules is also based upon the same underlying
principle of DR techniques. However, the choice of distance metric used, and the DR
technique applied varies here. To do the projection, we use an instance-rule matrix derived
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from the ExMatrix package [14], Imn, imn∈ [0, 1] (#instances x #rules) that gives a binary
value of 0 or 1 based on whether an instance uses a rule or not and then apply a transpose on
it. The result is a rule-instance matrix (#rules x #instances), Rij, rij∈ [0, 1], where 0 represents
a rule not valid for an instance and 1 the opposite. Since the value of the matrix elements
is binary, we use the Jaccard distance [62]. Then, the non-linear dimensionality-reduction
algorithm UMAP [63] is used to project the rules into a 2D space. UMAP performs well
in preserving both local and global distances. Since our focus is to maintain the balance
between similar logic rules (local) and the overall rules based on class labels (global) to
make explanations on the model workings (G1), we choose UMAP as the most suitable
projection technique.

Figure 3. Forest View: visualizing the forest of logic rules (decision paths) in the Random Forest
model. Shows high (big circles) and low (small circles) coverage paths. Strong knowledge clusters
are seen to be formed inside the model. Individual class probabilities can be seen when hovered over
a rule, as shown by the arrow.

Each pie-chart in the Forest view represents one single rule (i.e., the decision path
from top to the leaf node in a decision tree). We draw each decision path as a pie chart
to understand each leaf node’s resulting class probabilities. Therefore, each slice in a pie
chart represents the classification probability for that specific class. Visually, when the
certainty of classification in a leaf node is 100%, the pie charts will present themselves as
just a circle filled with the color of the predicted class. However, when the classification
probabilities at the leaf node are not 100%, it will be presented as a pie. Users can also
hover over individual pie charts to gain relevant information on the decision path, such
as the rule coverage percentage, rule certainty probability, and final predicted class (T1).
A forest of trees will generally have a set of high and low-coverage decision paths. Since it
is critical for users to interpret which rules are important from the RF model perspective,
we control the size (radius r) of each pie chart based on the coverage value, c. The outer
radius r of the pie charts are defined using

r =


11, if c ≥ 70
9, if 30 ≤ c ≤ 70
6 if c < 30

Hence, high-coverage decision paths will be comparatively bigger than the low-
coverage ones. We allow users to compare multiple (G3) RF models by placing Forest Views
side-by-side in our system.
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3.8. Feature View

The Feature view (Figure 4) is designed as a combination of Parallel coordinate plot
(PCP) and a bar chart to help support analysis of the instance feature values from both
global (G1) and local (G2) perspectives. From a global point of view, we focus on under-
standing the patterns defined by the logic rules through this visualization displaying the
valid instances with their feature value ranges so users can effectively compare them and
derive particular insights, such as how a set of rules is different from others in terms of the
instances they classify. Locally, we enable users to analyze the input feature values of the
selected data instances to understand the differences or similarities between them from not
the perspective of the RF model but the actual dataset.

Figure 4. Feature View: PCP showing the relationship among various features of instances in the
Iris dataset.

Each feature in a PCP is represented as a vertical bar, and the advantage of using
this plot is that these bars can have different ranges and units. It has also proved to be
beneficial in representing high-dimensional data [64]. The lines in the PCP are colored as
per the original class label for each instance, and features order is set by the user, selecting
and moving any feature to the left or right. To locally inspect differences among features,
users can select a group of instances in the Instance View, and the PCP will present their
feature values. For global analysis, we allow users to lasso select a cluster of logic rules
from the Forest View, and the PCP will display all the valid instances for the cluster in this
view. To support the analysis of the logic rules using the PCP, a bar chart is incorporated
into the Feature View that displays a count per class for instances using the set of logic rules.

4. Results and Evaluation

In this section, we present two usage scenarios to evaluate the effectiveness of RFMap
in interpreting and visualizing Random Forest (RF) models. We leverage the ExMatrix [14]
package to perform rule extraction as discussed in Section 3.1.

4.1. Usage Scenario 1: Breast Cancer Diagnostic

In this usage scenario, we describe Karen, a data scientist working with a healthcare
company who needs to understand the overall working mechanism of an RF classification
model to align it to her understanding. Interpreting the classification model is imperative
for her company so the decisions can be trusted and put to real-time use by medical experts.
To do that, Karen uses our RFMap system to visualize and interpret an RF model she has
developed to classify breast cancer diagnosis. The dataset she uses to train the RF model is
from the University of Wisconsin (Wisconsin Breast Cancer Diagnostic [65]), and it contains
samples of solid breast masses collected from 569 patients, out of which 357 were labeled
as Benign (B) and 212 as Malignant (M). The total number of features in the dataset is
30. Karen develops the classification model by randomly selecting 70% of the dataset as
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training and the remaining 30% as testing. To build the model, she sets the total number of
trees as 10 and max depth as ‘none,’ which allows her model to learn more information
from the data. For evaluating the quality of a split, she uses ‘gini’ as criteria. The resulting
model comprises 184 decision paths (rules), and the accuracy on testing data is 98.8%.

Karen loads the RF model in the RFMap system and is presented with the Instance,
Forest, and Feature Views. She first inspects the Instance View and notices two significant
clusters of classes, orange (Malignant) and blue (Benign) as seen in Figure 5 (1&2). The clus-
ters have a clear visible separation between them, with only a few instances from both
classes mixed on the layout’s top and bottom center parts. Seeing the clear separation
between the two classes visually allows her to affirm to the understanding that the model’s
performance is good, and it is confused only about a few instances (T3). She also observes
that the not properly separated instances are less bright than the clearly separated ones.
This means their position cannot be fully trusted, which matches the model’s perception
in these instances. She quickly notices three instances that have outer stroke color ‘blue’
and the inside circles are filled with ‘orange’, giving her an indication that the model has
wrongly classified these three instances as ‘Benign’ (T5). Identifying false negatives is very
important, especially for her organization, which deals with cancer diagnoses. Therefore,
she hovers over these three data points to know which specific patient IDs were wrongly
classified so they can be investigated in depth.

Karen then focuses her analysis on the specific misclassified instance 136. She un-
derstands from the bright transparency that its position in the view can be relied upon,
and it definitely belongs there. The instance lies at a close proximity to the other ‘benign’
instances, which means the RF model sees these instances as similar. She wants to drill
down more to understand if the model is confused and wrongly predicts or if the instance
has similar feature value ranges with the neighboring instances. The RFMap system allows
her to click on an individual instance or a group of instances to analyze their feature values
in the Feature View (T5). Therefore, she clicks on instance 136 and its immediate neighbor
161 (Figure 5 (3)), and goes to the Feature View. She realizes that other than ‘texture_worst’,
the rest of the features have almost similar values for both the samples (Figure 5 (5)).

Karen then moves to the Forest View to analyze the knowledge (T4) used from the forest
to classify these two instances. From the highlighted red rules, she acquires a clear picture
of the decision paths used by both instances. Karen notes that the rules used to classify
instance 136 and neighboring ones have differences. She also does a contextual analysis
of the rules used by instance 136 in terms of the other forest rules to understand their
certainty and coverage. Karen notices that eight of the rules are from the blue ‘knowledge
cluster’ and two are ‘orange’ rules from the middle of the forest. She notes that although
the two ‘orange’ rules are certain in their predictions, they have little coverage since they
are smaller in size. She hovers over these two ‘orange’ rules to obtain the actual coverage
value and sees that they are 0.6% and 5%. These values are significantly less than the other
‘blue’ rules from the strong cluster of knowledge, which suggests that these have learned
considerably less from the training data. This contextual analysis level in terms of the
entire forest helps Karen develop trust in her local explanations. Karen thinks instance 136
might be a rare case since position wise it belongs to the ‘blue’ cluster and has similarities
with other blue instances, but its ground truth label is ‘orange’. She decides to bring it to
an oncologist’s attention so they can investigate the case in detail. Being able to perform
this kind of interpretation is very beneficial for her as this way, she can increase her trust in
the model to be used in practice.
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Figure 5. RFMap system with Breast Cancer dataset. (1 and 2) RF model clearly separates most of
the instances based on predicted classes and forms two clusters. (3) Misclassified instance 136 and
its neighbor 161 selected. (4) Rules used by the instances highlighted in the Forest View. (5) Parallel
coordinate shows the difference between the two selected instances. (6) A lasso-drawn to understand
a ‘knowledge cluster’. (7) Instances using the ‘knowledge cluster’ highlighted in the Instance View. (8)
PCP shows the knowledge content defined by the cluster. (9) Bar chart displays the count per class
for all instances using the ‘knowledge cluster’.

After developing her understanding of the instances, Karen decides to gain insights
on the predictions from the forest of trees’ perspective (T2). Her objective is to look into
the inner working mechanisms of the RF model to make it transparent. She observes
two ‘strong knowledge clusters’. One with ‘blue’ rules and other with ‘orange’ rules as
represented in Figure 5 (4). Karen understands the significance of these strong clusters
of knowledge and wants to gain more insights, specifically on the ‘blue benign cluster.
She draws a lasso around this cluster Figure 5 (6) and the Instance View highlights all the
instances using this set of rules Figure 5 (7). The first thing she spots is that this ‘knowledge
cluster’ covers all the perfectly classified benign instances, which means that this cluster has
learned a very well-defined piece of knowledge from these instances and is very generic.
To further understand the pattern between all the rules in this cluster, she scrolls down to
the Feature View and sees from the bar chart Figure 5 (9) that 344 instances are from the
‘blue’ class and 16 are from the ‘orange’ class. Karen observes the pattern among the ‘blue’
cluster rules in terms of the instance features Figure 5 (8). This helps her make hypotheses
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on any unseen instance (patient) as they will probably be classified as ‘benign’ if they have
similar features. She notes the features that are too low or high in values so domain experts
can develop a clear understanding of ‘benign’ class cells.

Karen also grabs the attention of the low-coverage decision paths in the middle of
the forest (Figure 5 (4)) that have not formed strong clusters. These rules have internally
developed some homogeneous groups but have no class-level separation. She assumes
that using these rules might lead to instances not being separable in their true classes
and decides to analyze if her hypothesis is true. Therefore, she clicks on one ‘blue’ and
one ‘orange’ instance (T4) from the top and below portion of the Instance View which
are not clearly separated by the model as shown in Figure 6 (Top-Left). She notices that
these instances primarily use the low-coverage decision paths (Figure 6 (Top-Right)). She
also selects two perfectly classified instances (Figure 6 (Bottom-Left)) and spots the high-
coverage decision path clusters in the Forest View. These explanations help her validate
that the initial understanding was correct, and the model might have confusion when
using the low-coverage rules for classifying the instances (that are not part of the clearly
separated clusters in the Instance View). The ability to learn these insights from using the
RFMap system makes Karen’s model transparent and gives her the confidence to put it into
real-time practice.

Figure 6. (Top) Left: Instance View where instances selected are marked by an arrow. These instances
are not clearly separated, and hence Karen wants to investigate if they use the rules from the center
part in Forest View. Right: Forest View shows the used decision paths highlighted in red. The majority
of the rules belong to the center part, which has all the low-coverage rules. (Bottom) Left: Instance
View with two perfectly classified instances selected. Right: These instances use high-coverage
decision paths from the two blue and orange clusters.

4.2. Usage Scenario 2: Election Votes

The second usage scenario presents John, a Machine Learning Engineer, working with
a Strategy & Analytics team that develops ML models to predict the potential tendency
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of voting for US presidential elections given user preferences. He receives two RF models
that a team member has developed. As part of his role, John needs to evaluate various
ML models to be deployed to the production systems. In the past, John has seen models
performing very well with high accuracy on training and testing data, but when it comes
to using them in real time on new and unseen data, the models have failed to generalize
at times. This has led to wrong predictions, and the trust in such types of applications
is impaired. Therefore, John’s goal is to select a robust and generic model from among
the two, so it works well on unseen samples in the future. The first model (Model 1)
is built using 20 decision trees with a depth limit of 7, reaching an accuracy of 94.48%.
The second model (Model 2) has 30 decision trees with a depth limit of 2 and accuracy
of 94.3%. Although both models’ accuracy does not significantly differ, he would like to
analyze the models in detail, so he does not just select a model based on ‘high accuracy’.
John learns about the ability to do comparative analysis among various RF models using
the RFMap system and starts his analysis.

He first loads Model 1 into the system as shown in Figure 7a. This model is large,
comprising 1596 rules (decision paths). His previous experience with visualizing bigger
models, such as this, has been overwhelming because the systems were either unable to
visualize the entire model or the complexity in interpretation was very high. The scalable
nature of RFMap helps him visualize the whole model with various logic rules. He notices
two knowledge clusters in this model, but most of the rules are very specific (low coverage),
with some being certain and some not. More specific low-coverage rules imply that they
have not learned much from the training data and are not very generic. John then loads
up Model 2 (Figure 7b), and from the Forest View he sees that this is a considerably less
complex model, with only 120 rules, containing two strong knowledge clusters with only
a few specific (low-coverage) rules. This model’s strong knowledge clusters are mostly
very high in coverage, meaning they have learned good relationships from the training
data samples and, therefore, are more generic. He inspects the rule certainty in the two
strong knowledge clusters and is satisfied that they have a high inclination towards their
respective classes.

John concludes from his comparative analysis (T6) that a balance between coverage
and certainty is a critical criterion in the case of evaluating RF models, i.e., a model
comprising of rules that are high on certainty but low on coverage (like Model 1) will
lead to specific knowledge learning. However, a model with higher coverage and lower
certainty rules will mean the model has not learned any robust knowledge and results in
lower prediction capabilities. Therefore, in this case, Model 2 might be the ideal one for John
to select as they have more generic rules which are also highly certain, thus establishing a
proper balance between certainty and coverage. The ability to derive insights about the
knowledge clusters (generic rules), specific rules, and certainty-coverage balance is not
available in traditional model evaluation techniques, and being able to compare multiple
RF models using the RFMap system helps John in assessing the model not just from the
perspective of ‘accuracy’, thus giving him a much effective model. He is also convinced
that the marginal loss in accuracy by selecting Model 2 (94.3%) instead of Model 1 (94.48%)
is acceptable as long as he has a generic model that can predict well on unseen data.
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(a) More complex model. (b) Simpler model.

Figure 7. Comparative Analysis of the two RF models (a) Model 1 with 20 Trees, max_depth:7, Accuracy: 94.48%. (b) Model
2 with 30 Trees, max_depth:2, Accuracy: 94.3%. The visual comparison using RFMap shows the effectiveness of models
from a variety of perspectives.

4.3. User Study

Study Design and Tasks. A quantitative and qualitative study was conducted to
evaluate the effectiveness and ease-of-use of RFMap in interpreting RF models. Our primary
goal is to understand whether users can derive general insights about an RF classification
model by interacting with the system and explaining their predictions so they can build
up trust in the model. The total number of participants recruited for the study was
15. Out of them, 8 were from a pool of graduate students with good knowledge of ML
and specifically RF models. Four were working as data scientists or ML engineers in the
software industry, and the remaining 3 had other roles (software engineer, data engineer,
etc.). Each participant was initially presented with a tutorial on RF models and logic rules
extraction, followed by a tutorial on using the RFMap system. Participants were then asked
to perform ‘nine’ tasks on the system and answer the questions using RFMap. A couple of
questions also had a qualitative assessment immediately after performing a task to judge
their experience. We also added two sets of Likert-scale-based statements to understand
how much the users agreed or disagreed with the overall interface and system’s experience.
Finally, two open-ended questions were presented to obtain user feedback on the system
and suggestions for future improvements.

Results and Feedback. The average time taken by all the participants to complete
the tasks and qualitative questions was 35′03′′ (including two tutorial videos). Users
were able to obtain the correct answer for most of the tasks with accuracy ranging from
(86–100%), which suggests that they could use the RFMap as expected. Majority of the
participants (85.7%) ‘Strongly agreed’ that the graphs were easy to interpret and would
like to use the system frequently. The feedback on the system was also collected from the
subjective questions. Two of the ML Engineers mentioned—‘they would like to use the
tool in their day-to-day job’ and ‘a very good system to understand RF models’. Another
two participants recommended having a feature to understand ‘feature importance’.
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5. Conclusions

In this paper, we present Random Forest Similarity Map (RFMap), an interactive visual-
ization tool that supports the explanation of RF models globally and locally by preserving
the forest context. RFMap uses dimensionality-reduction techniques to visualize the forest
of decision paths and explain the structural relationships between the data instances from
the model’s perspective. It also helps users visualize RF models with thousands of logic
rules, one of the most scalable visualization solutions for RF analysis. To prove the effec-
tiveness of our technique, we present two user scenarios and the results from a user study
that summarizes the practical applications of RFMap in various domains. The results show
that the tool can help understand RF models from the multiple perspectives discussed in
this work.

RFMap also has a couple of interesting avenues for future research. Incorporating
feature importance and splitting criteria is something we plan to be working on in the
future to broaden the perspectives of explaining RF models.
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